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The paper deals with geometric and elastostatic calibration of robotic manipulator using partial
pose measurements, which do not provide the end-effector orientation. The main attention is paid to
the efficiency improvement of identification procedure. In contrast to previous works, the developed
calibration technique is based on the direct measurements only. To improve the identification accuracy,
it is proposed to use several reference points for each manipulator configuration. This allows avoiding
the problem of non-homogeneity of the least-square objective, which arises in the classical identification
technique with the full-pose information (position and orientation). Its efficiency is confirmed by the
comparison analysis, which deals with the accuracy evaluation of different identification strategies. The
obtained theoretical results have been successfully applied to the geometric and elastostatic calibration
of serial industrial robot employed in a machining work-cell for aerospace industry.

Keywords: robot calibration; parameter identification; partial pose measurement; accuracy
improvement

1. Introduction

To achieve the desired accuracy, each industrial robot must go through the calibration procedure,
which deals with proper parameter tuning of the mathematical model embedded in the robot
controller [1, 2]. Because of its importance, the problem of robot calibration has been in the focus
of research community for many years and has been studied from different aspects [3–12]. In spite
of this, the issues of the identification accuracy and calibration error reduction have not found
enough attention, only limited number of works directly addressed these important problems
[13]. Generally, two main approaches that allow us to improve the identification accuracy without
increasing the number of experiments exist. The first one deals with the preliminary optimization
of the manipulator measurement configurations (so-called design of calibration experiments).
The second approach consists in enhancing the objective function to be minimized inside the
identification algorithm (in order to minimize impact of the measurement noise). As follows from
the literature analysis, the first approach has been considered in a number of papers [14–18],
while the second one received less attention of the researches. For this reason, taking into account
particularities of the measurement system used in our experiments, this paper focuses on the
improvement of the second method, which looks rather promising here.

In robot calibration, there exists a number of techniques that differ in the measurement equip-
ment, the nature of the experimental data (position, orientation, distance, etc.) and in the opti-
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mization algorithm that produces the desired parameters [19–28]. At present, the most popular
are the so-called open-loop methods that utilize external measurement devices to obtain either
a full or partial pose 1 of the end-effector (i.e. position and/or orientation) [22–28]. However,
it should be noted that the manipulator end-effector orientation cannot be measured directly,
so the orientation angles are calculated using positions of several points around the end-effector
center point (TCP). A relevant example can be found in [29], where the end-effector orientation
is evaluated using three target points located on the special measurement flange (i.e., three ori-
entation angles are computed from nine Cartesian coordinates provided by the laser tracker).
However this approach, which is based on the minimization of the squared sum of the position
and orientation residuals, does not allow to minimize the measurement errors impact in the
best way (in fact, the position and orientation components of the objective to be minimized are
not weighted properly from the statistical point of view). To overcome this difficulty, in this
paper it is proposed to use only direct measurement information, i.e. to replace the conventional
objective function (squared sum of the position and orientation residuals) by a homogeneous
squared sum of position residuals for all measurement points. In contrast to previous works that
also based on the partial pose measurements, here it is proposed to use the same data as for
the full-pose approach (i.e. several reference points for each configuration in order to compute
orientations), but using all direct measurements only without computing the orientation angles.
It is clear that this approach is promising for the identification accuracy improvement, but it
requires some revisions of the identification algorithm, which is proposed in this paper.

The main contribution of the paper is enhancing partial pose measurement technique. It is
proposed to use Cartesian coordinate measurements for several reference points located on the
end-effector and to avoid direct computation of the end-effector orientation. It is worth mention-
ing that usual techniques implement other ideas: (i) computation full pose coordinates (position
and orientation) from three reference points that are directly included in the identification equa-
tions; (ii) using Cartesian coordinates of a single reference point obtained for exhaustive number
of measurement configurations. Compared to previous works, the proposed approach has essen-
tial advantages. In particular, in the case of three reference points (minimum to compute full
pose coordinate), the new approach will have 9 identification equations instead of 6 for each
manipulator configuration. However, this approach requires additional parameters that define
tool transformation for each reference point. Therefore, in this paper a particular attention is
paid to the developing of the mathematical routines for simultaneous parameters identification
for several tool and base transformations, which correspond to different reference points and
measurement system locations. In contrast to other works, such an approach can be efficiently
applied both for elastostatic and geometric calibration and allows user to obtain not the manip-
ulator parameters only but also the base and tool transformations.

To address the above defined problem, the remainder of this paper is organized as follows.
Section 2 defines the research issue and basic assumptions. In Sections 3, the identification
algorithm is presented. Section 4 proposes comparison of the developed identification algorithm
with the conventional one. Section 5 presents an application example illustrating benefits of the
proposed approach. Finally, Section 6 summarizes the main contributions of the paper.

2. Problem statement

Let us consider a serial robot whose end-effector location t = (p,ϕ) (position p and orientation
ϕ) is computed using the following vector function

t = g(q,θ,π) (1)

1The term “partial pose” is adopted here to stress that only positional components of the “full pose” (position and orien-
tation) is used. This terminology has been also previously used by other authors [9].

2



November 19, 2014 AdvancedRobotics˙2014˙Klimchik˙Wu˙Caro˙Furet˙Pashkevich

where g(.) defines the manipulator extended geometric model, q is the vector of actuated co-
ordinates, θ is the vector of robot elastostatic deflections, and the vector of the parameters
π = π0 + ∆π is presented as the sum of the nominal component π0 and geometrical errors ∆π
to be identified via calibration.

In addition to the geometric equation (1), let us consider the elastostatic model that allows
us to compute the deflections θ caused by the external loading F applied to the manipulator
end-effector. It should be mentioned that taking into account the elastostatic deflections is very
important in many industrial applications (robotic-based milling, friction stir welding, etc.),
where essential forces caused by the manufacturing task are applied to the robot end-effector
[30]. In this case, the compliance errors become the main source of the manipulator inaccuracy
and should be compensated using either on-line or off-line compensation technique [31]. The
relevant equation that allows us to compute deflections in virtual joints (or in actuated joints if
their suppleness is a major source of the manipulator elasticity) can be presented in the following
form [32]

θ = kθ · JT
θ · F (2)

where the matrix Jθ = ∂g(q,θ,π)/∂θ is the manipulator Jacobian with respect to the elasto-
static deflections θ, and kθ is the manipulator compliance matrix to be identified.

Assuming that the values ∆π and θ are relatively small, equation (1) can be linearized and
presented in the form

t = g0 + Jπ ·∆π + Jθ · kθ · JTθ · F (3)

where the first term g0 = g(qi, 0, π0) corresponds to the nominal geometric model (i.e. to the
case when θ = 0, ∆π = 0), and the matrix Jπ = ∂g(q,θ,π)/∂π is the manipulator Jacobian
with respect to the geometrical parameters π.

The above presented equation (3) is the basic expression for the robot calibration that allows
the user to obtain the desired geometric and elastostatic parameters ∆π and kθ. For this purposes
a set of experiments are carried out, in which the end-effector locations {ti} are measured by
an external device for several manipulator configurations defined by the vectors of the actuated
coordinates {qi}. It is also assumed that the corresponding vectors of the external loading {F i}
are known. It is clear that corresponding system of linear equations can be solved for (∆π,kθ)
if the number of manipulator configurations m is high enough and the vectors

{
qi, i = 1,m

}
are

different to ensure non-singularity of the relevant observation matrix used in the identification
procedure. However, there are some difficulties here related to the estimation of the orientation
components {ϕi} of the location vectors ti = (pi,ϕi). There are two main approaches that are
considered below.

The usual approach is based on the straightforward utilization of equation (3), where each
configuration qi produces six scalar equations corresponding to the components of the six-

dimensional location vector ti = (pxi, pyi, pzi.ϕxi.ϕyi.ϕzi)
T . Corresponding optimization problem

allowing to compute the desired parameters (∆π,kθ) can we written as follows

m∑
i=1

∥∥ti − g0i − Jπi ·∆π − Jθi · kθ · JTθi · F i

∥∥2 → min
∆π,kθ

(4)

However, in practice, the orientation components (ϕxi.ϕyi.ϕzi) cannot be measured directly, so
these angles are computed using excessive number of measurements for the same configuration
qi, which produce Cartesian coordinates

{
(pxij , pyij , pzij)| j = 1, n ;n ≥ 3

}
for several target

points of the measurement tool attached to the manipulator mounting flange (Figure 1). Hence,
instead of using 3mn scalar equations, that can be theoretically obtained from the measurement
data, this conventional approach uses only 6m scalar equations for the identification. These may
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Figure 1. Typical measurement tool used for robot calibration.

obviously lead to some loss of the parameter estimation accuracy. Another difficulty is related
to the definition of the vector norm in equation (4), where the six-dimensional residuals are
not homogeneous. It is clear that the position and orientation components must be normalized
before computing the squared sum, but it is a non-trivial step affecting the accuracy (in practice,
the normalization factors are usually defined intuitively).

To overcome this difficulty it is proposed to reformulate the optimization problem (4) using
only data directly available from the measurement system, i.e. the Cartesian coordinates of all
reference points pij = (pxij , pyij , pzij)

T (Figure 1). This idea allows us to obtain homogeneous
identification equations where each residual has the same unit (mm, for instance), and the
optimization problem is rewritten as follows

m∑
i=1

n∑
j=1

∥∥∥pij − g(p)
0ij − J

(p)
πij ·∆π −

[
Jθij · kθ · JTθij · F i

](p)∥∥∥2
→ min

∆π,kθ
(5)

Here, the superscripts “(p)” indicate the position components (three Cartesian coordinates) of
the corresponding location vectors, the index “i” defines the manipulator configuration number,
while the index “j” denotes the reference point number. An obvious advantage of this formulation
is simplicity in the vector norm definition (conventional Euclidian norm can be applied here
reasonably, the normalization is not required) and elimination of the problem of the weighting
coefficient selection. In fact, under assumption that the measurement noise is presented as a set
of i.i.d. random values (similar for all directions x, y, z and for all measurement configurations),
the optimal linear estimator should have equal weights. Besides, there are some potential benefits
in the identification accuracy here, since the total number of the scalar equations increases from
6m to 3mn.

To prove advantages of the second approach based on the objective function (5), the following
sections will be devoted to the development of the dedicated identification algorithm and the
comparison study of the conventional and proposed techniques.

3. Identification algorithm

Let us assume that the measurement tool has n reference points (n ≥ 3) that are used to estimate

relevant vectors of the Cartesian coordinates pji = (pjxi, p
j
yi, p

j
zi)

T
for m manipulator configura-

tions. Using the homogeneous transformation technique, corresponding geometric model (1) can
be presented as the matrix product

T ji = T base · T robot(qi,θi,π) · T jtool (6)

where the vectors pji are incorporated in the forth column of T ji , the matrix T base defines the

robot base location, the matrices T jtool, j = 1, n describe locations of the reference points that are
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observed by the measurement system (see Figure 1), and the matrix function T robot(qi,θi,π) de-
scribes the manipulator geometry and depends on the current values of the actuated coordinates
q, the robot elastostatic deflections θ, and the vector of the parameters π to be estimated.

Taking into account that any homogeneous transformation matrix T ba can be split into the
rotational Rb

a and translational pba components and presented as

T ba =

[
Rb
a p

b
a

0 1

]
(7)

the Cartesian coordinates of the reference points pji , j = 1, n corresponding to the configuration
qi can be expressed in the following form

pji = pbase +Rbase · probot(qi,θi,π) +Rbase ·Rrobot(qi,θi,π) · pjtool (8)

This equation should be accompanied by the elastostatic model θi = kθ · JT
θ (qi,θi,π) · F i that

allows us to obtain 3mn scalar equations for the identification purposes, where the following
vectors/matrices are treated as unknowns: pbase, Rbase, p

j
tool, kθ and π.

To simplify computations, it is proposed to split the identification procedure into two steps.
The first one deals with the estimation of pbase, Rbase, p

j
tool, which are related to the base and

tool transformations (assuming that the manipulator parameters are known). The second step
focuses on the estimation of kθ and π under assumption that the base and tool components are
already identified. To achieve desired accuracy, these steps are repeated iteratively several times.

Step 1. For the first step, taking into account that the errors in the base orientation are
relatively small, the matrix Rbase is presented in the following form

Rbase = [∼ ϕbase] + I (9)

where I is 3×3 identity matrix, vector ϕbase includes the deviations in the base orientation, and

the operator “[∼]” transforms the vector ϕ = (ϕx, ϕy, ϕz)
T in the skew symmetric matrix as

[∼ ϕ] =

 0 −ϕz ϕy
ϕz 0 −ϕx
−ϕy ϕx 0

 (10)

It should be mentioned that such linearization is valid only when the orientation of the base
frame of the measurement system has been preliminarily specified close to the orientation of the
robot base. This adjustment is usually executed via calibration of the measurement system using
its embedded software and can be performed for the work-cell with both a single and several
robots. This leads to the following presentation of equation (8)

pji = pbase + pirobot −
[
∼ pirobot

]
·ϕbase +Rbase ·Rrobot(qi,θi,π) · pjtool (11)

Further, taking into account (9) the last term of (11) can be presented as

Rbase ·Rrobot(qi,θi,π) · pjtool = Rrobot(qi,θi,π) · pjtool +ϕbase ×
(
Rrobot(qi,θi,π) · pjtool

)
(12)

where the symbol “×” denotes the vector product (it can be proved that for any vectors ϕ, p
it is true that [∼ ϕ] · p = ϕ × p). In this case, the second term in equation (12) is the vector

product of ϕbase and
(
Rrobot(qi,θi,π) · pjtool

)
, whose order influences on the sign before the

term. This transformation yields the following expression −Rrobot(qi,θi,π) ·pjtool×ϕbase for the

second term of equation (12), where the vectors pjtool and ϕbase can be also rearranged (with

5



November 19, 2014 AdvancedRobotics˙2014˙Klimchik˙Wu˙Caro˙Furet˙Pashkevich

changing the term sign for the second time). Further, after expensing the vector product in the
matrix form, the latter can be rewritten as

Rbase ·Rrobot(qi,θi,π) · pjtool = Rrobot(qi,θi,π) · (I + [∼ ϕbase]) · p
j
tool (13)

Finally, taking into account (9), one can get that for the considered problem (due to the spe-
cific structure of Rbase) the matrices Rbase and Rrobot(qi,θi,π) are commutative and can be
rearranged in expression (11), i.e.

Rbase ·Rrobot(qi,θi,π) · pjtool = Rrobot(qi,θi,π) ·Rbase · pjtool (14)

So, expression (11) can be presented in the following form

pji = pbase + pirobot −
[
∼ pirobot

]
·ϕbase +Ri

robot · u
j
tool (15)

where

ujtool = Rbase · pjtool (16)

For the convenient purposes equation (15) can be rewritten in a matrix form as

pji = pirobot +
[
I

[
∼ pirobot

]T
Ri
robot

] pbaseϕbase
ujtool

 (17)

where pirobot and Ri
robot are defined as follows

pirobot = probot(qi,θi,π); Ri
robot = Rrobot(qi,θi,π) (18)

Here the vectors pbase, ϕbase and ujtool, j = 1, n are treated as unknowns.
Applying to the linear system (17) the least-square technique, the desired vectors defining the

base and tool transformations can be expressed as follows

[
pbase; ϕbase; u

1
tool; ...u

n
tool

]
=

(
m∑
i=1

AjT

i A
j
i

)−1( m∑
i=1

AjT

i ∆pi

)
(19)

where

Aj
i =


I
[
∼ pirobot

]T
Ri
robot 0 ... 0

I
[
∼ pirobot

]T
0 Ri

robot ... 0
... ... ... ... ... ...

I
[
∼ pirobot

]T
0 0 ... Ri

robot

 (20)

and the residuals are integrated in a single vector ∆pi =
[
∆p1

i ; ...∆p
n
i

]
. Finally, the variables

defining the location to the reference points are computed using expression (16) as pjtool =

RT
base · u

j
tool. This allows us to find the homogeneous transformation matrices T base and T jtool

that are contained in expression (6).
Step 2. On the second step, the remaining parameters π and kθ, which define the manipulator

geometry and the elastostatic properties, are estimated. For this purpose, the principal system

6



November 19, 2014 AdvancedRobotics˙2014˙Klimchik˙Wu˙Caro˙Furet˙Pashkevich

(6) is linearized and rewritten in the form

pji = pirobot + J
j(p)
πi ·∆π +A

j(p)
θi · χ (21)

where the subscript “(p)” denotes the positional components (three first rows) of the correspond-
ing matrices, ∆πis the vector of geometrical errors, χ is the vector of unknowns derived from
the elements of the compliance matrix kθ, the matrix J jπi is the geometric Jacobian computed

for the configuration qi with respect to the reference point j, and A
j(p)
θi is derived by relevant

transformation of the last term of equation (3) into the vector form:

Aj
i =

[
J j1iJ

j
1i

T
F i, ...,J

j
niJ

j
ni

T
F i

]
(22)

In the last expression, J j1i, ...,J
j
ni denote the vector-columns obtained by splitting of the geo-

metric Jacobian J jπi. For the computational convenience expression (21) can be presented in the
matrix form

∆pji =
[
J
j(p)
i , A

j(p)
i

]
·
[
∆π
χ

]
(23)

where ∆pji = pji − pirobot is the residual vector corresponding to the jth reference point for the
ith manipulator configuration.

Applying to this system the least-square technique, the desired vectors ∆π, χ, defining the
manipulator geometric and elastostatic properties, can be expressed as

[
∆π
χ

]
=

 m∑
i=1

n∑
j=1

B
j(p)T

i B
j(p)
i

−1 m∑
i=1

n∑
j=1

B
j(p)T

i ∆pji

 (24)

where B
j(p)
i =

[
J
j(p)
i , A

j(p)
i

]
.

It should be noted that, to achieve the desired accuracy, the steps 1 and 2 should be repeated
iteratively. This iterative procedure allows us also to overcome decrease of the identification
accuracy due to linearization since on each iteration the model linearization takes into account
parameters identified on the previous step.

4. Comparison analysis

To illustrate the efficiency of the proposed technique, let us compare its accuracy with the con-
ventional one that operates with the full pose information. Their distinctions and particularities
can be described as follows:

• Approach #1 (conventional): The identification is based on the full pose information
t0 = [p0,ϕ0], where both position p0 and orientation ϕ0 vectors are computed from the
Cartesian coordinates of three reference points {p1,p2,p3} located on the manipulator
end-effector (see Figure 1).
• Approach #2 (proposed): The identification is based on the partial pose information,

where three measurement points {p1,p2,p3} are directly included in the objective function
to be minimized by the identification algorithm.
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Figure 2. Input data for two identification approaches.

Let us consider a 3 d.o.f. serial manipulator whose geometry is described by the following
equations

x = (l2 cos q2 + l3 cos(q2 + q3)) cos q1

y = (l2 cos q2 + l3 cos(q2 + q3)) sin q1

z = l1 + l2 sin q2 + l3 sin(q2 + q3)

ϕx = 0; ϕy = q2 + q3; ϕz = q1

(25)

where q1, q2, q3 are the actuator coordinates and l1, l2, l3 are the link lengths to be identified.
The manipulator kinematics and procedure of the input data preparation for the approaches #1
and #2 are presented in Figure 2.

For simulation study, the following manipulator parameters have been assigned: l1 = 1 m, l2 =
0.8 m, l3 = 0.6 m. It was assumed that the geometric errors in the link lengths and the actuated
joint offsets are respectively ∆l1 = 3.0 mm, ∆l2 = 2.0 mm, ∆l3 = 5.0 mm and ∆q1 = 1.0 deg,
∆q2 = 0.5 deg, ∆q3 = 2.0 deg. Besides, it was also assumed that the measurements errors are
i.i.d. random variables with the standard deviation σ = 0.01 mm (which perfectly corresponds to
the precision of the equipment used for the experimental validations). The desired parameters
were estimated using three measurement configurations, which were generated randomly. To
obtain reliable statistics, the simulation of the calibration experiments have been repeated 1000
times.

Simulation results are summarized in Table 1, which presents the standard deviations for the
estimates of the desired parameters (corresponding mean values of the estimates are equal to the
assigned values with the high accuracy). Here, the improvement factor defines the ratio between
the parameters identification accuracy using the conventional full-pose measurements and the
proposed enhanced partial pose measurements. As follows from these results, the proposed ap-
proach ensures the accuracy improvement in the estimation of the link length deviations ∆li by
the factor of 2.25 ... 3.83, while the accuracy improvement for the joint offsets estimations ∆qi
is slightly less, up to 3.33. This confirms advantages of the proposed approach, but it should be
mentioned that these numbers are obtained for particular set of the measurement configurations
and particular normalization factor utilized in the approach #1. However, as follows from our
study, approach #2 always provides essentially better results.

8
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Table 1. Identification accuracy for different identification approaches
based on 3 measurement configurations.

Parameter
Standard deviation

Improvement factor
Approach #1 Approach #2

∆l1 0.069 mm 0.018 mm 3.83
∆l2 0.019 mm 0.006 mm 3.17
∆l3 0.009 mm 0.004 mm 2.25
∆q1 0.187 mdeg 0.185 mdeg 1.01
∆q2 3.742 mdeg 1.123 mdeg 3.33
∆q3 1.432 mdeg 0.866 mdeg 1.65

Figure 3. Experimental setup for the identification of the elastostatic parameters.

5. Application example

To confirm the applicability of the proposed calibration techniques and to demonstrate their ben-
efits from engineering point of view, this Section presents the identification results for geometric
and elastostatic calibration of the industrial robot KUKA KR-270 (see Figure 3).

The complete and irreducible geometric model for the considered manipulator includes 18
principle parameters , 6 parameters describing the laser tracker location with respect to the
robot base (both position and orientation) and 9 parameters describing locations of the end-
effector reference points with respect to the manipulator mounting flange (positions only for
three points). The optimal measurement configurations have been generated using the design of
experiments technique [33], whose objective function takes into account the work-cell constraints
and the manipulator joint limits. For the experimental study 18 measurement configurations have
been selected, in which reference point locations have been measured several times. It should
be mentioned that, to insure visibility of all reference points, two laser tracker locations have
been used. This increases the number of parameters to be identified by 6 (an additional base
transformation for the second measurement system location).

Using the obtained measurement data, the two-step identification procedure has been applied.
On the first step, the base and tool transformations have been computed, corresponding results
are presented in Table 2. Here, the vectors pibase, ϕ

i
base, i = 1, 2 define required modification in

the position and orientation of the ith base frame (each of which corresponds to the different

laser-tracker location used in the experimental study); the vectors pjtool describe the tool pa-
rameters for the jth reference point (j = 1, 3). On the second step, these transformations have
been used for the identification of the manipulator geometric parameters, which are presented in
Table 3. In this table, the parameters of the “complete, continues and irreducible” geometrical
model are listed in the first column (from the base to tool order). For some of these parameters,
corresponding deviations in DH-representation are given, where the symbol p denotes transla-
tional parameters; ϕ is the rotational parameter; ∆qi denotes the offsets in the actuated joints,
the subscript indicates the translation/rotation axis and the coordinate frame number. In the

9
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Table 2. Identification results for manipulator base and tool transformations (for geometric calibration).

p1
base, mm ϕ1

base, mrad p2
base, mm ϕ2

base, mrad p1
tool, mm p2

tool, mm p3
tool, mm−0.02

0.01
0.06

 −0.07
0.02
−0.29

 −0.10
−0.10
−0.08

 −0.15
0.10
−0.27

 277.23
−46.53
−93.87

 276.49
−48.25
94.05

 278.44
103.73
−2.17



Table 3. Identification results for manipulator ge-
ometric parameters.

Parameter Unit Value CI

px1 ≡ ∆d2 [mm] -0.353 0.086
py1 [mm] 0.426 0.272
ϕx1 [deg] 0.015 0.005
∆q2 [deg] -0.007 0.005

px2 ≡ ∆d3 [mm] 0.458 0.082
ϕx2 [deg] 0.022 0.014
ϕz2 [deg] -0.023 0.005
∆q3 [deg] -0.023 0.019

px3 ≡ ∆d4 [mm] -0.214 0.089
pz3 ≡ ∆d5 [mm] -0.508 0.363

ϕz3 [deg] -0.011 0.017
∆q4 [deg] 0.001 0.008
py4 [mm] -0.167 0.113
pz4 [mm] -0.018 0.073
ϕz4 [deg] 0.025 0.015
∆q5 [deg] -0.011 0.027
pz5 [mm] 0.016 0.104
ϕz5 [deg] -0.008 0.018

third column of the table, the identified value are presented for which the confidence intervals
are given in the forth column. It should be mentioned that in order to increase the identification
accuracy, this two-step procedure has been repeated iteratively (for the presented case study,
with the stopping criterion 10−7 mm for the difference in the positioning accuracy between two
consecutive iterations, 280 steps have been required).

The above presented table includes 18 parameters, some of which cannot be modified in the
robot control software. So, it is interesting to examine the effect of reducing the number of
these parameters by setting them to their nominal values. Relevant analysis shows that the
manipulator end-effector positioning error impact (because of such simplification) essentially
differs from parameter to parameter, and they can be split into the following groups:

• Parameters {px1, py1, px2, px3, pz3, py4,∆q2, ∆q3, ϕz2, ϕz3, ϕz4}, for which the loss of accu-
racy caused by neglecting varies from 0.10 mm to 0.95 mm;
• Parameters {pz4,∆q5, ϕx1, ϕx2, ϕz5}, for which the loss of accuracy caused by neglecting

varies from 0.03 mm to 0.08 mm;
• Parameters {pz5, ∆q4 }, for which the loss of accuracy caused by neglecting varies from

0.003 mm to 0.007 mm.

Comparing to the milling accuracy required for the considered technological process, the above
listed positioning error impacts are not negligible for the most of the geometric parameters.
So, their deviations should be compensated either in geometric model embedded in the robot
controller or on the step of generation of the machining trajectory.

The developed identification technique has been also applied to the elastostatic calibration.
To take into account the influence of the gravity compensator (which creates the closed-loop)
and to apply the virtual joint modeling approach developed for strictly serial robot [33, 34],
an equivalent non-linear virtual spring is used (its stiffness depends on the joint variable q2).
However, to implement this idea, it is reasonable to consider a set of the compliance coefficients
{χ2i, i = 1, 2, ...} corresponding to a number of different joint angles {q2i, i = 1, 2, ...} that cover
relevant joint limits (see [35] for more details on this approach). This yields the extended set of
the elastostatic parameters χe = [(χ21, χ22...), χ3, ..., χ6] to be identified and leads to the linear
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Figure 4. Measurement tool with three markers used for elastostatic calibration experiments.

Table 4. Identification results for base and tool transformations .

pbase, mm ϕbase, mrad p1
tool, mm p2

tool, mm p3
tool, mm 0.27

−4.83
−3.73

  5.34
0.49
−1.46

 279.49
−46.01
−94.25

 279.45
−44.75
93.64

 280.37
105.68
−4.90



Table 5. Identified values of manip-
ulator elastostatic parameters.

χi Values, [rad/Nmm]

χ21 0.287 0.0003
χ22 0.277 0.0004
χ23 0.302 0.0005
χ24 0.293 0.0010
χ25 0.246 0.0007
χ3 0.416 0.0011
χ4 2.786 0.0071
χ5 3.483 0.0120
χ6 2.074 0.0267

system of the identification equations similar to those considered in Section 3.
To find the measurement configurations that ensure the best identification accuracy, the design

of experiments technique has been applied, which is based on the dedicated industry-oriented
performance measure proposed in our previous work [30]. This yielded 15 optimal measurement
configurations with five different angles q2 that are distributed between the joint limits almost
uniformly. These optimal configurations have been obtained taking into account physical con-
straints that are related to the joint limits and the possibility to apply the gravity force (work-cell
obstacles and safety reasons).

At the measurement step, the manipulator was sequentially moved from one configuration to
another, where the external loading 250 kg was applied to the special end-effector presented in
Figure 4 (it allowed us to generate both external forces and torques). Corresponding experiment
setup is shown in Figure 3. To measure the reference point Cartesian coordinates, the laser
tracker system Leica AT901 was used. To evaluate manipulator elastostatic deflections, the
reference point coordinates have been measured twice, before and after application of the external
loading.

Using these measurement data, the two-step identification procedure has been applied. On
the first step, the tool and base transformations have been computed; corresponding results are
presented in Table 4. This table is organised similar to Table 2 for geometrical calibration, the
only difference is related to the number of the laser-tracker locations used in the experimental
study. On the second step, they have been used for the identification of the elastostatic param-
eters, which are presented in Table 5. It includes an extended set of the elastostatic parameters
(compliances for the joints #3-#6 and equivalent compliances for the second joint, which take
into account the gravity compensator impact).

Let us now illustrate the efficiency of the elastostatic calibration and related compliance er-
ror compensation technique by applying it to the robotic-based machining using the industrial
robot KUKA KR-270. In accordance with the considered specifications, the technological process
should be performed in the square area of the size 2000 mm2000 mm located at the height 500
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Figure 5. Robot positioning accuracy before and after elastostatic calibration.

mm over the floor level. For comparison purpose, it is assumed that machining force is constant
throughout the working area and it is equal to F = (0, 360N, 560N, 0, 0, 0)T , which corresponds
to a typical milling process. Relevant computations have been done throughout the required
working area, where the end-effector deflections have been evaluated for the machining force
F . The computational results are summarized in Figure 5a, where the end-effector compliance
errors are presented. These results show that the compliance errors are not negligible here and
vary from 0.36 to 3.5 mm. So, to achieve the desired precision, it is reasonable to apply the error
compensation technique, which is based on the developed stiffness model. As a result, the robot
positioning accuracy has been increased essentially (Figure 5b): the positioning errors are about
0.05 mm in the middle of workspace and are less that 0.4 mm at the borders. These results show
that the obtained elastostatic model allows us to achieve essential improvement of the robot
precision; it is able to compensate about 90% of elastostatic deflections caused by the machining
force. Hence, such a model can be used for the compliance error compensation for the robotic
based milling in industry.

6. Conclusions

The paper presents the advanced robot calibration technique that is based on the partial pose
information, without explicit computation of the end-effector orientation. In contrast to previ-
ous works, the proposed technique utilizes the Cartesian coordinates measurements only, but
several reference points of the end-effector are used. The proposed approach allows us to avoid
the problem of non-homogeneity of the least-square objective, which arises in the conventional
identification technique, where the full-pose information (both position and orientation) is con-
sidered. The technique does not require any normalization of the residuals and can be efficiently
applied to both geometric and elastostatic calibration. As follows from the simulation analysis
presented in the paper, the developed technique essentially improves the identification accuracy
compared to the conventional one. The obtained theoretical results have been successfully ap-
plied for the geometric and elastostatic parameters identification of an industrial robot used in
aerospace industry.
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