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CRITICAL WETTING FOR A RANDOM LINE IN LONG-RANGE
POTENTIAL

P. COLLET()), F. DUNLOP(2) AND T. HUILLET(?

ABSTRACT. We consider a restricted Solid-on-Solid interface in Z, subject to
a potential V (n) behaving at infinity like —w/n?. Whenever there is a wetting
transition as by = exp V (0) is varied, we prove the following results for the
density of returns m (bo) to the origin: If w < —3/8, then m (bo) has a jump at
b; if —3/8 < w < 1/8, then m (bo) ~ (b5 — bo)*/ ™ where 6 = 1 — YIBW,
If w > 1/8, there is no wetting transition.

1. INTRODUCTION and SUMMARY of RESULTS

We consider a restricted Solid-on-Solid (SOS) interface in 1+1 dimension, pinned
at the origin, in a potential V' (n) characterized by

n w 1
bn::ev( ):1_F+O(m)’ CE(O,l],?’LEZ+ ::{0,1,2,...}.
A configuration (X;)Y , with Xo =0, X; € Zy, [Xiy1 — Xi| =1,i=0,..., N — 1,
has probability

N

PSOS (Xl, ...,XN) ~ HeV(X-;).
i=1
Both the free boundary at the endpoint N and the bridge (X = 0) are considered.
Central to this problem is the matrix R obtained while deleting the first row and
column of the matrix @ defined by:

1 .
— if p—yq|l=1
Qpy =1 B, lp .ql
0, otherwise

The matrix @ (and R) acts on infinite sequences w = (wg, w1, ...) (respectively
w = (wy,ws,...)). We let

w1(p) =inf {wy : w>0and Rw = pw — 1p—1 },
with 1o1(p) = oo if the set is empty. If w1(p) < oo, we denote by to the pos-

itive sequence (tv,)p>1 solution of Rw = ptv — 1,—1, with ro; = wi(p). With
limy, 00 (R¥7)Y ") = p (R) > 1 we define

= lim m1(p)_

oo (R) 4bip
We show that the SOS model exhibits a (wetting) phase transition as by is varied
if and only if R is 1—transient (equivalent to (1) < co as from Vere-Jones [19])
or equivalently if b5 < co. This can occur only if w < 1/8. If w > 1/8, there is no
phase transition. With to1(p (by)) = 4p (bo) bob1 defining p (by), we show that the
1

b
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Gibbs potential per site is —log p (bo) if by < b§ and equal to 0 if by > b§. If m (bg)
is the density of returns to the origin, we show that

by < b5 = m (bo) >0
by > b5 = m (by) =0

Finally, if there is a phase transition, we show that

o if w < —3/8 it is first order: m (bp) has a jump at b,

o if —3/8 < w < 1/8, then m (by) ~ (b5 — bo)?/ = as by 70,
where 0 =1 — —Vlgsw. This agrees with results by Lipowsky and Nieuwenhuizen
[17] who do the computation for a Schrodinger equation of the type
1 d?
2dz?
with V (Z) = Volzgz() — W/2’21Z>Z0.

+vwﬂaaEa@

The paper is organized as follows:

In Section 2, we develop the relation SOS model versus random walk, allowing
to derive an expression for the Gibbs potential.

In Section 3, we focus on the restricted SOS model. We derive the phase diagram
in terms of the dominant eigenvalue of the matrix R.

Section 4 is devoted to the study of the density of returns to the origin and
corresponding order of the phase transition.

In Section 5, we show that, when the phase transition is continuous, the critical
indices are universal in that they only depend on w.

In Section 6, we develop exact results for a particular sequence of (b,), solved
while using Gauss hypergeometric functions.

In Section 7, we develop exact results for a class of sequences (b,) built from
random walks.

Most of the proofs are postponed to the Appendix, Section 8.

2. GIBBS POTENTIAL and RANDOM WALK

2.1. Background. We consider a random line or directed polymer Xy, X1,..., Xx
with Xg =0 and X; € Z;+ = {0,1,2,...} with probability distribution

N-—1 N
(2.1) PSOS(Xl, LX) = Z;[l (H ew(Xn,Xn‘Fl)) H e*V(Xn)7

n=0 n=0

where W(q,p) = W(p, q) for all q,p € Z4, and Zy is the partition function normal-

izing the probability. In SOS model terminology, V(X;) is the one-body potential.
Here the SOS model represents an interface between two phases at coexistence,

interacting with a wall located at X = 0. This interaction typically decreases

polynomially with the distance to the wall. The zero of energy can be fixed for all

such models by requiring

(2.2) lim Z e~ Wlap)e=VP)/2 = 1,

p— o0
qELy
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and the sum for each p € Z, is assumed to converge. We will be mostly interested
in knowing whether the line (interface) stays in the vicinity of the wall (partial
wetting) or escapes to infinity (complete wetting).
In the sequel we will use Landau’s notation ~, namely for two sequences (a,,)
and (b,), (an) ~ (b,) means
. Gp
lim — =1.
n—oo n

Similarly, a,, = b, is when the limit is any non-zero constant instead of 1.
2.2. Computation of the Gibbs potential. The Gibbs potential is defined by
1
. d((by)) = lim ——logZy.
(23) (bn) = Jim —~log Zy

In order to represent (2.1) as the probability of a random walk trajectory, possibly
weighted at its end-point Xy, let us assume for some p > 0 the existence of a
solution U depending upon p to

(2.4) Z e U(@D/2e=W(ap)=V(9)/2-V(2)/2 = [ =U®)/2 1>

qE€Ly
and define a random walk starting at Xo = 0 with values in Z4 by the transition
probabilities

(2.5)
P™W (X, =p| Xn=¢q) = p e~ Wlap)=V(a)/2=V(p)/2=Up)/24U(0)/2 ¢ 1 > (.

Note that (2.4) implies that (2.5) is properly normalized. Moreover (2.5) im-
plies that the walk obeys the detailed balance condition with respect to the un-
normalized measure exp(—U(q)) over Z4. Also (2.5) gives

(2.6) e~Wlap)=V(p)/2-V(9)/2 — - (PRW(p’ q)PRW(q,p))
The SOS model and the random walk started at Xy = 0 are related by
(2.7)
PSOS(Xl, LX) = Z;[lePRW(Xl’ . ’XN)e—%U(O)—%V(O)-{-%U(XN)—%V(XN)’

1/2

and their marginal

(2.8) PSOS(XN) _ Z;,lePRW(XN) eféU(O)fév(O)Jr%U(XN)f;V(XN).
PSOS(X ) and PRW (X ) may differ strongly due to the factor e2VX~) | but con-
ditioned on the value of X, the distribution of Xi,..., Xy_1 is the same for SOS

and for a corresponding random walk. This correspondence between random walk
and random line was developed in [16] and [5].

2.3. Bridge. For the bridge (Xany = 0) the partition function is given by

2N -2 2N—-1
VA _ Z ( H —W(Xn,,Xn+1)> < —V(Xn)> —W(Xan-1,0) ,—V(0)
2N — € H € e e

X1,..,.Xan-1 \ n=0 n=0
(2.9) = pNe VOPIW (X, y =0).

Hence if )
lim o= log P™W( X,y =0) =0,

N —o00

the Gibbs potential is equal to —log p.
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Remark 1. If the walk has a normalizable invariant measure the above condition is
satisfied. If the walk has a non-normalizable invariant measure, it may happen that
P™W(Xyn = 0) decay exponentially fast with N. In that case the Gibbs potential is
not — log p.

2.4. Free boundary condition. Summing over Xy in (2.8) we get

(2.10) Zy =pN > P (Xy) e~ 2V =3V (0)+3U(Xn)—3V(Xn),
XN

Here the situation is more delicate because the function e2V(X~) may diverge. If

1 1 1

li —1 E PRW X EU(XN)—gV'(XN) —

NoSse N ng (Xn)e 0,
N

the Gibbs potential is — log p. If |V| is bounded we only have to look at the behavior
for large N of

Z PRW(XN) e%U(XN).

XN

By detailed balance, for every p, we have
P™W(Xy =p| Xo=0)eV®) e 3U0) = VO PRV (x = 0| Xy = p)e VP
and the bounds (see also lemma 25)

(2.11) YOPPEV(Xy = 0] X =0) <O PRV (Xy = 0] Xy =p)e VP

p

<e"O(N+1)- sup e 2UP),
0<p <N

Therefore, if (e*%U(p)) is a bounded sequence and

1
2.12 lim — log PPV (X, =0) =0
(2.12) im o~ log (Xoany =0) =0,

N —o00
the Gibbs potential is equal to —log p. This applies to random walks with period
one (irreducible) or two.

3. The CASE X,.1 — X, = +1

For ¢ — p = £1, the normalization (2.2) is satisfied with W(q,p) = log2 and
V(q) — 0 as ¢ — oo. Therefore
1 1 [ 2+ 3V(g)+ iV (p) ifp—q==+1
(3.1) Wlg.p)+ EV(q) + §V(p) N { +o0 otherwise

Letting
by = eV®) and Up = e U2,
equation (2.4) reads
Qv = pv with
1 .
——, ifp—¢ql=1
Q0,, = T p—d
’ 0, otherwise
so that )
th for P = 0

(Qu), = 1 1
p 2\/bpbp+lvp+1 + 2\/bpbp71vp_1, forp>0
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We will sometimes write @)y, instead of ) in order to emphasize the dependence
in bg, our main parameter below.

In general there is a continuum of values of p such that there exists a positive
solution to Qv = pv, but there is only one Gibbs potential. In the case of the
free boundary condition, the other solutions with a p # e~® leave a non trivial
boundary term in the relation (2.10). This gives an exponential correction leading
finally to the right Gibbs potential. Assume we have a positive solution of Qv = pv.

Then
(Y Vo

2
+ =
NN

can be rewritten as v
2

N N

which means that (w,) defined for p > 1 by

o 2’Up vV b0b1

w
p Vo

is a positive solution of
(3.2) Rw = pw — 15—,

where R denotes the matrix @ without its first row and first column,

1 _
Ro) NS forp=1
( v)p* forp>1

2¢/bpbpi1 Uptt F 2¢/bpbp—1 Up—t)
Note that R is independent of bg.

In the terminology of [19], the matrix R must be p—transient. Indeed, according
to Corollary 4. Criterion IT in [19], the matrix R is p—transient if and only if
equation (3.2) has a positive solution. Else, R is p—recurrent.

For convenience we will use {1,2,...} for the indices of R. We also have

(%1
= U s
N
hence
4p1}pb0b1
Wy = ——
(%
and in particular
w1 = 4pb0b1

Let
w1(p) =inf {wy : w>0and Rw = pw — 1p—1 },
with w1 (p) = oo if the condition leads to an empty set. Then
4pbob1 > w1(p)
or in other words
1 (p)
4pb1
This condition is thus necessary and sufficient for the equation Qv = pv to have a
positive solution.
As will be seen in detail below, many properties of the model depend on the
function o1 (p). We now recall some results by Vere-Jones (see [19]) adapted to our
setting.

< by.
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Theorem 1. (i) The limit
p. = lim (R

n—oo

exists and is independent of (i,7) for all i — j even.
(i)
p.=inf{p: Jw >0, Rw=pw—1,-0}.

(ii1) For p < p, the equation Rw = pw — 1,—¢ has no positive solution.

Proof:

(i) follows from Theorem A in [19].

(1) follows from Corollary 4 in [19].

(iit) follows from Corollary 1 in [19]. O

The latter theorem holds under more general conditions. In the case of our
Jacobi matrices @) or R we can get the following more precise results which we have
not found in the literature.

T 1 1
Theorem 2. (i) liminf, Tt < p < Sup,>q \/ﬁ'
(40) If lim, 00 by, = 1, then 1 < p, < 0.
(ii7) Vp > 0, the equation Qu = pv has a unique solution modulo a constant
factor.
(iv) If there is a positive solution to (3.2), then the equation Rv = pv has a
positive solution.

Proof: The proof is given in Appendix A.1. Note that the v in (¢i¢) is not
necessarily positive.
From now on we will assume that

(3.3) D 1= byl < 0,
n=1

which implies of course lim,_ o b, = 1. We will denote by tv the sequence (1v,,)p>1
solution of

(34) Rw = pto — ].p:l,
with o3 = 11 (p). Note that by continuity, () is a non-negative sequence and from

the recursion, in fact positive.

Lemma 3. We have
(i) The function w1 (p) is decreasing and continuous in p for p € (p,(R),0).
(ii) The function p~tro1(p) is decreasing and continuous in p for p € (p,(R),0).

(ii)

tim "L g,
p—00 P
(iv) If p.(R) > 1,
o
lim wy(p) =00, hence lim w1(p) =00
PP (R) PNp(R) P

(v) If p,(R) =1 and lim,~ 1 101 (p) < 0o, then

lim 101 (p) = i (1).
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Proof: The proof is given in Appendix A.2.

As will be seen below, the existence or not of a phase transition is related to the
property that p,(R) =1 and R is one-transient. This corresponds to the situation
p.(R) = 1 and lim,\ 1 101(p) < oo (see Lemma 3). We have not found a general
criterion to decide if this property is true or not for a general sequence (by,).

Besides the explicit example given later on, we can deal with several cases.

Proposition 4. If b, > 1 for alln > 1 and lim,, 00 b, = 1, then p,(R) = 1 and
R is one-transient.

Proof: The proof is given in Appendix A.3.
We will be mostly interested later on by sequences (b,,) such that for n > 1

w 1

Proposition 5. Assume the sequence (by,) satisfies (3.5). Then

(i) For w > 1/8 the equation Rw = w — 1,—1 has no positive solution.

(#3) For any w < 1/8, there exists a positive sequence (by,) satisfying (3.5) such
that the equation Rw = w — 1,—1 has no positive solution.

(¢it) For any w < 1/8, there exists a positive sequence (by,) satisfying (3.5) such
that the equation Rw = w — 1,—1 has a positive solution.

i) For the sequence b, =1 — 35 for all n > 1, there exists 0 < w, < suc

jv) For th by =1— 3% lln > 1, there exists 0 < 1/8 such
that for any w < w., the equation Rw = w — 1,—1 has a positive solution.

Proof: The proof is given in Appendix A.4.
We have performed numerical simulations suggesting that in case (iv), w. = 1/8.
3.1. Gibbs potential revisited. We define
o
b= lim 20
P\p. (R) 4b1p

Note that b5 > 0 may be infinite, and by Lemma 3, b5 < oo implies p,(R) = 1. In
this case r1(1) < oo (R is 1—transient).

Lemma 6. Assume lim, ., b, = 1. Consider both the free and zero boundary
condition (bridge).
() If bo < b§, there is a unique p(by) (which is larger than one) such that
w1 (p(bo))
4p(bo)br
and p(bo) = p,.(Qp,) and the Gibbs potential coincides with —log p(bo).
(i1) Assume b§ < oo and by > bf, then the Gibbs potential is equal to zero.

Proof: The proof is given in Appendix A.5.
When b§ < oo, this result is a hint for the existence of a phase transition.

4. DENSITY of RETURNS to the ORIGIN and PHASE
TRANSITION

Recall (see 2.5) that if the equation Qu = pv has a positive solution, the walk
on Z reflected at zero given by for n > 1

1 Un41

Pn = —F——— )
" p\/bubpi1 Un
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(and pg = 1) has a positive invariant measure (7, ) (not necessarily normalizable)
given by

2

Tp = U,,.

Recall also that v is unique up to a positive factor. When v € (*(Z.), we will
denote by (v,,) the invariant probability measure

Tn, v2

Vp = = .
TOYRem Xy

In the sequel, for a given by < b§ (and for by = bf if b < oo0) we will take
p = p(bo).

Proposition 7. Assume by < b§ in which case the random walk is positive recur-
rent. Then
(i) the following limits (density of returns to the origin) exist

2N-—-1

1
B Y PO K | e =0) Y
X1, Xon—1 =1
and
1 N
Jim = > P (Xy,. X)) 1x=0.
Tyeeey XN =1
(i1) Moreover, these two limits are equal to
2
1
(4.1) m(bo) = vo = g =

szo U;% L+ (4boby)~t Z;il 1o, (p(bo))?

(#i1) The function m(bgy) is non-increasing.
(iv) The Gibbs potential ® ((b,)) has a partial derivative with respect to by equal
to m(bo)/bo

Note that m (the density of returns to the origin) is equal to zero if the denom-
inator diverges, namely if (7,,) is not normalizable.
Proof: The proof is given in Appendix A.6.

Theorem 8. Assume (3.5). Then
(7) For any by < b5, m (bo) > 0.
(13) Assume b§ < oo and by > bf, then m (by) = 0.
(131) Assume b < o0, if —3/8 <w < 1/8 then

lim m(bg) = 0.
. (bo)

(1v) Assume b§ < oo, if w < —3/8 then

lim m(bg) > 0.
. (bo)
Proof: The proof is given in Appendix A.8.
We note that, whenever w < —3/8 and b§ < oo, the density of returns m(by) has
a jump at bg.
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5. UNIVERSALITY of CRITICAL INDICES

We show the following
Theorem 9. If the sequence (by,) satisfies

w _o_
(5.1) b=1- % 40 (07

for some 1 > (¢ > 0 with —3/8 < w < 1/8, and if R is 1-transient, then the sequence
(w,(1 +¢€)) (e > 0) satisfies

(5.2) 0< 1ir6n/‘i(1)1f ¢ Zmp(l +€)? < limsup €’ Zmp(l +€)? < o0

p=1 e/0 p=1

where § =1 — 1;8“’.
Remark: Observe that for —3/8 <w < 1/8,

0
< — .
0_179<oo

(the transformation w — 6(w)/(1 — 6(w) maps bijectively the interval [—-3/8,1/8]
on RT). The condition ¢ < 1 is of course non restrictive but will be convenient in
the estimates later on.

We will use the argument developed in Appendix A.10 to determine the value of
the critical index, but now in the general case. Recall indeed that (see Proposition

7.(iv))

b
m(bo) = —%(—Zo)abopo(bo)-

From (5.2) and Proposition 7.(ii), if p(bg) = 1+ €(bg) we have
m(bo) ~ 6(()0)9.

Therefore (bo)
Ohopolbo) = Dnye ~ —E4 (b))
This implies
bG — by ~ '’

and therefore we obtain the

Corollary 10. Under the hypothesis of Theorem 9, the density of returns to the
origin obeys
m(bo) ~ (b§ — bo)e/(l_‘g) as by ' b.

Remark: In (8.7), s = oy is the “other” solution of

(5.3) s°—s+2w=0,
namely

s=1—a_,
and we get

3/2—s a_+1/2 0
s—1/2 1/2—a_  1-0’

as expected from the results for the hypergeometric model developed in the next

Section.

The proofs for critical indices are postponed to Appendix A.14.
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6. The HYPERGEOMETRIC MODEL: a SOLVABLE CASE
Up to now, in our discussion, we presented rather general results. For a particular
choice of the sequence (by),,~, one can derive more explicit expressions.
6.1. The sequences (b,) and (tv,). Let s > 1/2 and a > 3/4 (other parameter

ranges are possible). For n > 1 define

(s+n—24+2a)T(a+n/2—-1/2)T(s+a+n/2—1)

bn = 2T(a+n/2)T(s +a+n/2—1/2) '

Let

V(n) = log b,
then

nhﬂn;o V(n)=0
and

by =1— % +O0n3)
with
we T 52
2

Note that w < 1/8, and the half line s € [1/2,00) maps to the half line w €
(—00,1/8].

Theorem 11. It holds that

(4)

. .2
—pF(a"’(p_l)/27a+17/272a+17+5_17p )
Fla—1/2,a;2a+ s — 1;p72)

Wy, (p) = 2(2p) X

I'(s —142a)T'(s+ 2a)T'(2a +p — 1I'(2s +2a+p — 2)
I(s+p—2+2a)'(s+p—1+2a)'(2a)'(2s+2a—1)

(i1) po(R) =1

(7i1) We have
B — wi(l) 1l(a+s—1)(a+1/2)
7 4by, 2 D(a)(s+a-—1/2) °

and for 0 < by < b, p(bo) is the unique solution larger than one of the implicit
equation

ilplbo)) _ 1 _Fla,a+1/%2a+ sip” (b))
dp(bo) b1 4p(bo)?b1 F(a —1/2,a;2a+ s — 1507 %(bo))

bo =

(iv)

(1) ~ p'

Here F' =5 F} the hypergeometric function. The proof is given in Appendix A.9.
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12 cr|t|c§l line, af 0.97

— uf =—log(iw, (1)/(4 b))

-- w=1/8
0.0 : : : : : :
12 -10 08  -06  -04  —02 0.0 0.2
w
. . o 1o (1)
FIGURE 1. The critical line u® = —log(=7=).

6.2. Thermodynamics of the hypergeometric model. One can think of w as
some normalized inverse temperature and u := —logbg = —V (0) (or better u/w)
as pressure. Because u and m are intensive variables, — log p is a Gibbs potential.

Proposition 12. (i) For any 0 < by < b§, with p = p (bo)
(6.1)

m

1

= 2+ 3F(a+1,a+3/2;2a+s+1;p*2) ala+1/2) o iF(a+1/2,a+1;2a+s;p*2) ala—1/2) "
p2  F(a,a+1/2;2a+s;p=2) 2a+s p2 F(a—1/2,a;2a+s—1;p~2) 2a+s—1

(13) For1/2 < s<3/2 (-3/8 <w<1/8)

lim m (bg) =0,
o (bo)

and

1' m(b07 S)
bt (b — bg) B/2—2)/G=172)
exists, is finite and non zero. The critical index (3/2—s)/(s—1/2) can be expressed

in terms of w using the relation w = (s — s%)/2.
(i9i) For s > 3/2 (w < —=3/8)

1
lim m(by,s) = —=—.
o) 2+ Zin

For the proof, see Appendix A.10 8.
In figure 1, with ¢ = 0.97, we plot the critical line

u’ := —log (bj) = —log (mib(ll ))

as a function of w.



12 P. COLLET™, F. DUNLOP(®® AND T. HUILLET®

lines of different w, a=0.97

U 0.9F L

IR
T -
. Rt
PR
0.8f __-" -
PR -
" e
et T -—-—-— w=.0695
0.7 -
B w=0
,/
B w=-3/8
0.6 —e——- w=-1.0
1st order transition
9300 0.05 0.10 0.15 0.20 0.25

0.30

FIGURE 2. The thermodynamic diagram in the plane (m,u).

In figure 2, we plot the thermodynamic diagram in the plane (m,u), with lines
corresponding to various values of w. The red line corresponds to the first order
phase transition, namely the inverse function of u — m(exp(—u), w(u)) with w(u)

such that p(exp(—u),w(u)) = 1.

6.3. Particular values of s. The formulas simplify for s integer, we only treat

the cases s =1 and s = 2.

s =1 (w = 0). In that case it is easy to verify that b, = 1 for any n > 1. Also

to,, = 2¢~ " for n > 1 with
cosh(v) = p.
The equation for p is
1w, = 2e” Y = 4pby

hence b5 = 1/2. For 0 < by < b we have

1
p(bo) = —log2 — 3 (log b + log(1 — bo)) ,

and
1/2 — by

m(bo): 1—b0 .

See Appendix A.11 for the details of the computations. Note that in accordance

with Proposition 12,

im0 o
bo /2 1/2 — by
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6.3.1. s =2 (w=—1). In this case we have

_ (2a+p)?
" Qa+p)? -1

mp:2p,p(1+m)ip(a+p/2*1/2) 1fp*2fafp/2+1/2+p72(a+p/2)

X
(a+p/2+1/2)
a+1/2 a(2a+p+1)
(a—1/2)\/1—p2—a+1/24+ap=2\ (2a+p—1)(a+1)
and
a
= :
07 2a 41
For 0 < by < b5 we have
2
C C 2 C C C (6] C
1 (\/bO 2 (bO - bO) + (bO - bO) (bO - 2bO 2) + bO (bO - b0)>
= ——log | 1-
plbo) = —5 log b
num
by) = —
m(bo) den’
where
num = +/bf (4bob§ > — (8b3 + 6bo) b5 2 + (43 + 6b3 + 3bo) b — 3b%) +
N bo\/bg 2 (b +2) b§ + 1 (4bobg 2 — (46 + 2bo) bG + bo) |
den = \/b§ (4b5* — (1209 + 8) b5 ® + (1202 + 16bg + 4) b5 % — (4bj + 8bZ + 8bo) b§ + 4b3) +
N bo\/bg 2 — (bo +2)b§ + 1 (4b§> — (8bo + 4) b5 > + (4bg + 4bo) b — 2by)
and
lim mibo) =
1m m = —.
bo b 0 4a + 2

See Appendix A.12 for the details of the computations.

7. From RANDOM WALK to SOS MODEL

In this Section, we supply a class of interesting random walks on the integers
(reflected at the origin) akin to the discrete Bessel model. From the probabilities
(Pn, qn) to move up (and down) by one unit given the walker is in state n with
Pn + gn = 1, n > 1, the sequence (b,,) of corresponding SOS model is given by the
recurrence

1
Apngnt1 ’
allowing to compute (by),,~, as a function of by. We shall assume p,, — 1/2 asn —

n >0,

bnbn+1 =

oo (the random walk has zero drift at infinity) and furthermore p,, ~ % (1 + % + %)
for some A as n — 0o, compatible with b, =1 — %5 + O () for w = A (1 — A).
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Letting indeed Bjgy1 = bog+1 and Cy = bay, we find

2k—1G2k 1
ku = BkUkJrl, BO = b

P2kG2k+1 4boqr

P2kq2k+1
Crp——22 L = Oy Vi1, Co = bo
DP2k+192Kk+2

— 1 as k — oo. Thus,

Byyn = B

Cr+1

1
where Bka = b2kb2k+1 = m

k
B -
OHUlijOBOu 1
=1
k
C Vi = Copv=1
OE lk—)oo ov

By,

Ck

_ o0 p21-2921—-1
where v = =1 po_1q2

value of by for which b, — 1 as n — oo.
More generally, for p > 1, we can build the sequence (b,) of an SOS model
corresponding to a random walk while using the recurrence

= 1/bg and u = 4bgq;. This shows that there is a unique

bnanrl == n Z 0.

4p*Prn+1’
We would conclude proceeding similarly that there is a unique value of by = by (p)
for which b,, = b, (p) — 1 as n — oo. The latter recurrence can be represented by
the matrix
Q = pPs

where, with P the transition matrix of the (reversible) random walk and 7 its speed
measure solution to m = 7P, Pg = D}r/ ’PDy /2 is the symmetrized version of P.
We used D, =diag(mp,n1,...). The matrix @ is the one defined in Section 3 and
Qv = pv with v, = \/m, > 0, n > 0. The speed measure formula for (my), for
k>0, is

k—1
o bj Prk—1

7.1 T = — —_ = ——T—1.

(7.1 w Ly =7

We now come to our special class of random walks.

7.1. Bessel random walks. Let zg,d > 0 be parameters. With R, = n + x,
n > 0 integer, the radii of balls of dimension d with area and volume

2) d/2 d/2
TRl and V(Ry) = -

A(Ry,) = T (a/2) mRia

we are interested in a random walk in concentric nested balls of radii R,,. Although
V (R,) >V (R,-1), always when d > 0, we note that if d > 1, A(R,,) > A(R,-1),
while if d < 1, A(R,) < A(Rp—1). The domain confined between ball number
n and ball number n — 1, n > 1, is an annulus with volume V (R,) — V (Rn-1);
V' (Rp) is the volume of the central ball.

Negative dimensions can be meaningful as well: indeed, the Euler gamma func-
tion I (@) is positive when « lies in the intervals o € (—2k, —2k + 1), k > 0. To have
both A (R,),V (R,) > 0 forces both d/2 and d/2 + 1 to lie within these intervals,
thus d can take any negative value except {..., —6, —4, —2}, the set of even negative
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integers. When d < 0, both V (R,,) <V (Rp—1) and A(R,,) < A(Rp-1).

If n > 1, the probability to move outside the annulus number n is
pn=A(Ry) /[ (A(Ry) + A(Rp-1)),

while the probability to move inside this annulus is ¢, = 1 —p,. If n = 0, we assume

that the probability to leave the central ball of radius z¢ is po = 1. See [2], [3].
Note that, if d > 1, p, > 1/2if n > 1, while if d < 1, p, < 1/2if n > 1.
Equivalently, po = 1 and for n > 1

- (n + @)
" (n+z0)" 4 (n—1+z)""

" - (n+zo —1)*! 1
! (n+20)" 4 (n—1+20)" "

are the transition probabilities of this random walk on Z, = {0, 1, ...} . It is reflected
at the origin.
Suppose we deal with a random walk with d > 1 (with A(R,,) expanding).
opd’ /2

Consider the transformation d — d' = 2 —d < 1 with A’ (R,) = e R&—1
contracting. Then (n > 1)

d—1
(n+a—1)
Pn = Dp=Gn= — —
" o (n+az0)" 4 (n—1+a)""
(n+z0)d71 ’
Gn = G, =DPn= - — =1-p,.
" " " (n—i—xo)dl—i—(n—l—i—xo)dl "

The Markov chain with transition probabilities py = 1 and (p),, q;,),,~; is thus the
Wall dual to the Markov chain with transition probabilities p, = 1 and (Prs Gn) 1o
see [8]. And the random walk model makes sense for all d. -

The probability sequence p,,, n > 1 is monotone decreasing if d > 1, while it is
monotone increasing if d < 1. We have

142t
Pn™g 2(n+xo)
S0 pn, — 1/2 as n — oo either from above (d > 1) or from below (d < 1) and the
corrective term is O (1/n).

We suppose p, = 1 and we look for an homographic model for the transition
probabilities

) as n — oo,

_ . n+xp+a n—+xo+a
Pn = 2(n+x0+b) (n+zo+a)+m+rot+at+2(b—a))
qn = 1_1_)717”21)

which are the closer possible to the original ones. Of course the parameters (a, b)
will then depend on (zg, d) .
To do this, we impose p,, ~ pn as n — oo and p; = p;. This leads to
(3+2$0—d)p1—(1+1‘0) d—1

= db=a— ——.
a = 2, an a >
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Under these hypothesis, the models p,, and p,, agree fairly well (ranging from 10~°
to 1072), for all n > 0 and all zp > 0 and d. When d = 1 or d = 2, the two
models are even exactly the same (p, = D,, = 1/2, n > 1 in the first case, p, =
Dn = (n+z0)/(2n+2z9 — 1), n > 1 in the second case, obtained while ¢ = 0 and
1
).

If xz — 0, the model makes sense only if d > 1 and then p; — 1 and soa — d—2;

as aresult,p, = (n+d—2)/(2n+d—3), n > 1. Note p; =1, see [2].

Suppose d > 1. The homographic model p,, may be written as

— o n+fo
P = ¥ T+ (n+T0— (d—1))
an = 1_1_)717”213

where Ty = xo + a, a = a (xg,d). Thus, with R, = n+To and R,,_1 = n + Ty —
(d-1),p,=A4 (En) / (A (Rn) + A (Fn,l)) with A (En) = 21R,,, the circumfer-

ence of a disk in dimension 2. Equivalently, R,, = To + (d — 1) n.

Under the transformation d — d’ = 2 — d, we have

o net
T e E) (v — (@ - )
where T, = z( + ¢’ with 2, = 2o +d — 1 and
/:(3+2$/0*d)p1*(1+$/0);b/:a/de*l'
1—2p 2

7.2. Special cases. e a = xg and d > 2.
If we impose a = xg we get

560(172]?1):(3+2$0*d)p17(1+$0)

o d71:17 d—1
1+ 2o 200 +1

There is a zg =: 2o (d) € (0,1) obeying this equation only if d > 2 and then

_ n —+ 2xg _l 14 d—1 n>1
P St 220) —(d—1) 2 Mmtdrg—(d—-1)) =

e a=—x0 and d < 2. See [6].
If we impose a = —xy we get

—XI0 (172]?1) = (3+21‘0*d)p1 - (1+SCO)
This is also p; = 1/ (3 — d) . Thus
wo =1/ ((2 — )~V 1)

which makes sense only if d < 2. In this case, 29 € (0,1) if 0 < d < 2 and

_ n _1 14 d—1 > 1
bn =St o—a) 2 m-d-1) """

which is independent of xg. We note that this model is still valid, would dimension
d be negative.
ea=—x9+d—1andd>1. See [12].

This is also
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If we impose a = —xg +d — 1, we get

Zo d_l_d—$0
1+SCO _1+SCO

There is a xg =: zo (d) > 0 obeying this equation only if d > 1 with z¢ € (0,1) if
d<2,x9g>1if d > 2 and then

p,— a1l _Lf 41 )
Pn = o Yd—1 "~ 2 mt@d-1) """

This is also

which is independent of zy. The latter two models are Wall duals.

7.3. Thermodynamics. In both cases of the Bessel random walk and the homo-
graphic random walk, we have A = (d — 1) /2 leading to w = (d — 1) (3 — d) /8. The
random walk is positive recurrent if d < 0 or d > 4 (corresponding to w < —3/8)
and null recurrent if 0 < d < 4 (corresponding to —3/8 < w < 1/8), [14].

In such random walk models, one can compute explicitly the b, solving the
recurrence bpb,11 = , n > 0, together with the unique critical value of by

1
APngn41
leading to b,, — 1. Clearly the Pochhammer symbols are involved and making use

of Stirling formula. We skip the details.

8. APPENDIX: PROOFS

We now come to the proofs of our statements.

A.1 PROOF of THEOREM 2.

(i) Assume « := liminf,, > 0. Let « > € > 0 and N an integer

bnbn+1
such that for any n > N, L > o — €. Let Ry be the matrix R without

Vb1 T

its N first rows and N first columns. For i,7 > N we have for any integer k,
(Rk)i,j > (R;“V)” > (Tk)i_N,j_N where T is the tridiagonal matrix with zeros on
the diagonal and the other nonzero entries equal to (« — €) /2. Since the number
of walks of length 2k from i — N to j — N is 2%* up to a polynomial correction in
k, one gets

. 1/(2k)
klggo ((TQk)ifN,ij) =a—¢€

and the lower bound follows. The proof of the upper bound is left to the reader.

(i) = (ii)

(7i7) follows immediately from the fact that vy determines vq, and for n > 2 we
have a second order recursion equation for v, as a function of v,,—1 and v, _s.

(iv) Assume there is a positive w solving (3.2). Let (v,,) be a solution of Rv = pv
with v; > 0. It follows that wives —wav; = 201 b1bo. It follows from Lemma 14 that
Vn > 2, ol S ;’]—’T’I Since v = 2pv1v/b1ba > 0, the result follows by recursion.O

7 Wn41

e A2 PROOF of LEMMA 3.
We start with the following proposition.
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Proposition 13. Let 1 < p’ be such that the equation Rw' = p'w' — 1,—1 has a
positive solution. Then for any p > p', the equation Rw = pw — 1,=1 has a positive
solution.

Proof: Let (w]) be a positive solution of
Ruw' = p'w' —1,-1.
so that

1
Ul(p/) = 24/b1by (p/ — —/) >0
wy
and for n > 2, let
w;erl

/
wn

Un(pl) =

Note that this formula also holds for n = 1 with our definition of o1 (p’).
Let 1 < p’ < p. Consider the sequence (0,,) = (o, (p)) defined by o1(p) = o1(p’),
and recursively for n > 2 by

b, 1
On = 2p\/brbpy1 — +

bn—l On—1 '
We have
oy, bpt1 1 Oop—
— = 2y/byby, .
9p A V=
Hence, since d,01(p) = 0,01(p’) = 0 we conclude recursively that for all n > 2
doy,
it) >0 and 0,(p) > on(p).
dp
Hence the sequence w,, defined by
1
8.1 wy = ———— 5 >0,
( ) 1 o—p + wLi

we = 24/b1bs (pw1 — 1) = O'l(p/)’u}l >0,
and for n > 3

n—1
wn = wy [ o5(p)
j=2

is positive and satisfies
Rw = pw —1)—4
completing the proof of the Proposition. O
Therefore, letting w) decrease to 1 (p’), we get 101 (p) < w1(p’), since from (8.1)

1

R ———)
D)

This fact proves (i) of Lemma 3 except continuity. (i¢) and (¢i¢) follow im-
mediately. The proof of (iv), (v) and continuity in (i) rely on several results of
independent interest. O

The following lemma is essentially due to Josef Hoéné-Wronski.
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Lemma 14. If v and w satisfy (Rv)n = pvn, (Rw), = pwy, forn >k > 2, then
forn >k

bn+1
Un+1Wn Wn+1Un = (vnwn 1 WnUn 1)
bn—l
Hence
1/2
n
— bj+1
Un1Wp — Wpy1Vp = P (VpWr—1 — WiVR—1) -

o b

Proof: From (Rv), = puy, it holds that

b _
Un+1 + n+1 Un—1 _ 2[) /bnanrl
Un bn—l Un

and similarly for w,. The difference between the two identities gives the result. O

For p > 1, we will denote by z > z_ (24 (p) > 2_(p)) the two (real) solutions
of

(8.2) 22 —2pr+1=0.
Note that 0 <z_ <1 < z4.
Proposition 15. For p > 1, the equation

(Rw)n = pwn,

for all n > 2 has two independent solutions wt such that
+

Wy,

~zh.
Any other solution is a linear combination of these two solutions.

Note that these solutions may not be positive.

Remark. The heuristics is clear: one tries an ansatz w,, = ™ and one chooses
the value of = such that the equation (Rw), = pw, is satisfied for large n at
dominant order.

Proof: The equation (Rw),, = pw,, for n > 2 is a linear recursion of order two,
therefore the set of solutions is a vector space of dimension two. We first construct
a solution w~ using an idea of Levinson [15].

For n > 1 we have

Wn+1 Wnp—1

+ = pWn
bn anrl 2 \V4 bn bnfl P

which can be rewritten (with p=n — 1)

= 2p\/bpy1bpwp 1 — H wp+2
Let up, = wy/2?, we get

[ b
Up = 2pz,\/bp+1bpup+1 — ZL'% ﬁ’uerQ.
p
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Let 6, = up — 1, we get

b
(Sp =Tp + 2p$_\/ bp+1bp5p+1 — .T2_ b—p5p+2.
P42

/b
rp:pr,\/prrlbpf:c% bP —1.
p+2

This can be rewritten
(8.3) Op — 2pT_0pt1 + x2_5p+2 =r,+T (5)p

with

where T is the operator defined by

b
T((S)p =2pr_ (\/ bp+1bp — 1) Opt+1 — a? ( - 1) Op+2-

bp+2

We now consider the operator defined by

Using hypothesis (3.3) it is easy to verify that there exists N > 4 large enough such
that the linear operator U o T is bounded with norm less than 1/2 in the Banach
space ¢ ([N, 00)),

([N, 00)) = {()zn ¢ lim Jun| =0}

n—oo

It is well known that equipped with the sup norm, ¢°([N,c0)) is a Banach space
(see for example [22]). Similarly, using

Ty = 2p2_ (\/bp_l,_lbp - 1) — 72 ( by 1) ,

bpio

and hypothesis (3.3) we deduce U (r) € ¢"([N,o0)). Taking N larger if necessary,
we can also assume that

U (M) lleo(1v,00y) < 1/4-
Therefore the sequence (5)[ N,o00) defined by
S=I—-UoT) U (r)

has norm at most 1/2 in ([N, 00)). It is easy to verify that for any p > N, this
sequence satisfies equation (8.3). For p > N we define

w, =" (1+ Op)-

For 1 < p < N, w, is defined recursively (downward) using again (8.3). We
obviously have, since 6 € ¢?([N, 00)),

and (Rw™), = pw, for p > 2.
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For n > N define (the idea comes from the Wronskian, see Lemma 14)

. 1/2
w1 li[ b
+ _ — I+1
w = Cw, Z S b
j=a Wi Wi—1 \;25 b1

where C' is a positive constant. For n < N, we define w; recursively downward.
It is easy to verify (using 0 < z_ = 1/xz4 < 1) that one can choose the positive

constant C' such that
+

n—oo xl

Moreover, we have (Rw*), = pw, for p > 2. O
Lemma 16. If p > 1 and the equation
Rw = pw —1,—4
has a positive solution, then for p large, the positive solution defined in (3.4) obeys

w, ~ ¥

and for v the positive solution of Rb = pv with v1 = 1 we have

v, ~ x’_:_

Proof: From Proposition 15 we have for some constants A and B and for n > 2
o, = Aw;r + Bw,, .

Assume A # 0 (otherwise the result follows from Proposition 15). From the posi-
tivity of o we have if A #0

0, > cx’y
for some ¢ > 0 and any n > 1. From the same Proposition 15 we conclude that
there exists a number I' > 0 such that for any n > 1

0<y, < Fz:’_.

Therefore, the sequence (w) defined for n > 1 by
B c
Wy = 10, — ﬁnn
is a positive solution of
Rw=pw —1,-1
which satisfies

C
w1:m1*§<m1

which is a contradiction. Therefore A = 0 and this proves the first part of the
statement. For the second part, applying again Proposition 15, we have to exclude
that v, ~ z”. Assume this is the case. Using Lemma 14 for w and v, and the
asymptotic of w, we would get

1/2

n

b1
[Ipe] ~a
j=1

=1 b

which is a contradiction since z_ < 1 and (b,,) converges to one. O
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Lemma 17. Assume that for some p > 1, the equation
Rv=pv
has a positive solution v which satisfies v1 =1, and
on ~ 24 (p)".
Then there exists € > 0 such that for any p' € [p — €, p + €], the equation
Rv=pv
has a positive solution such that

n

vn(p') ~ 24 (p)"

Proof: The sequence o,(p) = v,41(p)/0n(p) (defined for n > 1) satisfies for
n>2

bn 1
On (P) =2p V bnbn—i-l - 1

bnfl On—1 (P) -

Moreover, by Lemma 16, this sequence converges to 4 (p) when n tends to infinity.
For p > 1 since x4 (p) > 1 we can choose ¢ > 0 such that § < x4 (p)/2, and

1

0<5<z+(p)—$+(p).

Note that

Choose 0 < §’ < 6 such that

0<d <6—

7+ (0) (@1 (p) = )

Since (b,,) converges to 1, and o, (p) converges x4 (p) > 1, one can find N large
enough such that
in% on-1(p) >0

n>

and

bnt1 0
8.4 sup | 20'\/bpbpi1 + n <.
(84) n>N ( PN bt 001 (p) (001 (p) — 9)
By continuity, for any p’ with |p’ — p| small enough and any ¢ with |0} — 01| small
enough we can define recursively a sequence (0 -, <) such that

1<

BENU:‘ >0, oy —on| <4,

and for any 2 <n < N

[bppr 1
(8.5) o =20 \/bybps1 — ; 1 o
n—10np_1

We now observe that if |p’ — p| < §' and if for some n > N +1, o/, _; is defined and
satisfies |0, — 01| < d, then o}, defined by (8.5) satisfies also |o], — op| < &

since
b 1 o’ 1 — Onp-1
200 = p)V/ b + [ I
n—1 Op_10n—-1

|U;z —ou| =
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bt 5

bn—l (Un—l - 6)0n—1

< 28 bnanrl + < 5,

by condition (8.4). This implies in particular o], > 0. Therefore we can define
recursively for all n > 1 a sequence (o)) > 0 satisfying (8.5). We leave to the

n
reader to prove that (o)) converges exponentially fast to x4 (p’). It then follows

that the sequence v), defined recursively by v}, = 1 and

is a positive solution of
with

The Lemma is proved by taking e = ¢'. O
Lemma 18. Assume that for some p > 1, the equation
Rv = pv
has a positive solution v which satisfies v1 =1, and
on ~ 24 (p)".
Then the equation
Rw=pw—1,-1

has a positive solution. Moreover

w0,
lim 4 =g (p).

n—oo 10,
Proof: Let w be a solution of the equation
Rw = pw — 1,-1,
and v a solution of
Rv = pv,
with v1 = 1. We have
wav1 — Vawy = 24/b1bs (pwy — 1) — 24/b1bapwy = —2\/@.
Therefore from Lemma 14 (with k = 2) we get for any n > 2

1/2

J+1
Wnn—1 = Uy 1 = —21/bibs Hb
Jj=3

This implies for any n > 2
1/2

Wn _ Wn-1 Vbibe [ 1 bjt1
115"

Un Un—1 vn Un—1

Therefore for n > 2

&:wl_Qz Vb1 by f[ j+1

Up, 5 VqUq—1 = 3b
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We now take v = v. We conclude that for

1/2
—— [ 4
w1>2§: b b H_bj+1
T g \ b
q=2 7=3
we have a positive solution (w).
It is easy to verify that for
1/2
[e'e) q
wy =2y Yol (7 bt
— 991 \ s bior )
q=2 7=3
we have
lim Wp+1
p—oo Wy B

It follows from Proposition 15 that o = w.
We now give the proof of (iv) in Lemma 3. Assume p,(R) > 1 and
lim twi(p) < oo.
P oo (R) (°)
It follows from Lemma 16 that v,, ~ 27 (p). We can now apply Lemma 17 and then
Lemma 18 to conclude that for some 1 < p’ < p,(R), the equation Rw = p'w—1,-1
has a positive solution which contradicts the definition of p, (R). O

Proposition 19. For any n > 1, the function o, (p) is monotone decreasing in
p € (p,,0) if either p, > 1 or p, =1 and R is 1—recurrent. w,(p) is monotone
decreasing in p € [1,00) if p, = 1 and R is 1—transient.

Proof: Let p/ > p > p, if either p, > 1 or p, = 1 and R is 1—transient or
p>p>1ifp, =1and R is 1—transient. Let w = ro(p) and w’ = w(p’).
From Rw = pw — 1= and Rw’' = p'w’ — 1,=1, we conclude that

Rw —w') = p(w —w') — (o = p)u'.

The sequence s, = (w, — wl,)/w, satisfies
1

— (R(ws))n — psn = —(p' = p)w,, /wn

Wn
where (ws), = wys,. Assume the sequence s, = (w, —w),)/w, takes negative val-
ues. We now derive a contradiction using the so called negative minimum principle.
Using Lemma 3.(¢) we have wy — w] > 0. From Lemma 16 if p > 1 and Corollary
23 below if p = 1, we conclude that for any n large enough wy, —w}, > 0. Therefore
there can be only a finite number of indices n such that s,, < 0. Let n, be an index
(there may be several) such that

Sn

s

=infs, <0.
n

Note that n, > 1. Since s,,+1 > s,, and s,, -1 > s,, we conclude that

Wn,+15n.+1 Wn,—15n,.—1

0> —(p" = p)wy, /wn, = * -
(" —np) n*/ M an*m 2wn*\/m pon

> Wn, +1 + Wn, —1 —p _ 0
= On, — Y%
2Wn, /b, bn, ., 2wWn, \/bn.bn.—1

a contradiction which proves the announced monotonicity. O
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We now give the proof of continuity stated in (i) of Lemma 3 for p > p,. The
proof is by contradiction. Assume there exists p > p, such that

lim to > lim tv .
p/P 1(/)) P\P 1(/))

Here we used the monotonicity of w;(p) proved earlier. By continuity, it follows
that the two sequences defined for n > 1 by
w, = lim 1o
n = lim 1o, (p)
and

w,, = lim w,(p)

T ~
PP
satisfy the equation
Rw=pw—1,-1.
From Proposition 19, we conclude that for any p > p’ > p, we have for all n > 1
W, (p') > 10, > 10, > 0.

Therefore
lim w, = lim w, =0.

n—oo n—oo
We get a contradiction from Proposition 15 and Lemma 16 since the two sequences
(1v,,) and (w,,) must be linearly independent.
Finally we give the proof of (v) in Lemma 3. Monotonicity has already been
proved in Proposition 19. Let

v, = li .
1y pl\mlml(ﬁ')

By continuity, to = lim,\ ; tv is a solution of Rtv = w—1,,—¢. Therefore to; (1) < cc.
By Proposition 19, we have for any n, v, < tv,(1), hence equality follows by the
minimality in the definition of tv. O

¢ A.3 PROOF of PROPOSITION 4.

Proof: It is easy to verify that if b, = 1 for all n > 1, then w, = 2 satisfies
Rw =w — 1,1, so that p, = 1. Recall that in [19], R is called 1—transient if

Z(Rn)Ll < OQ.

The left hand side is obviously a decreasing function in each b,, and p, (R) < 1.
The proof follows using (i) of Theorem 2 and (i) of Theorem 1. O

e A4 PROOF of PROPOSITION 5.

Before we start the proof we need some preliminary results. The first goal is
to obtain an analog of Lemma 16 when p,(R) = 1. We define a family of Banach
spaces B, which depend on an integer ng > 1 and a positive number ~ by

%noﬂ = {(u)n>no : S;lp |un| n’ < OO}
n=no

It is easy to verify that B, - is a Banach space when equipped with norm

||(Un)Hno'v = sup |up|-n".
n>ngp
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Lemma 20. For a« € C MR (a) < 1/2), there exists Ny = Ny(a) such that the
operator S defined by

p—1 .
S= S e I
m=n p= m+1 5 j:erl'j_a

is a bounded operator from By, to Bn_1~y—2 for any v > 2 and N > Ny with a
norm uniformly bounded in N.

The proof is left to the reader.
Lemma 21. For any o € C R (a) < 1/2), let T be the operator defined by

(Tu)n = Un+1 + Up_1 — 2un + % (UnJrl - Unfl) .

There exists Ng = No(a) > 0 such that for any N > No(a) and v > 2, T is
a bounded operator from Bn_1~ to By, with norm uniformly bounded in N.
Moreover S o T is the canonical injection from By_1.~ to By_1,4—2.

Proof: The first part of the statement is obvious. Let u € By_1,, and let
g=Tu€ By, Letting
(8.6) Zn = Up — Up_1,
we have
Q@
Zn+1 — ”n + 5 (ZnJrl + Zn) = Gn-
In other words

o
Zn+1 (1 + _) = Zn (1 - _) +gna
n

which can be rewritten

1 + n 9n

1_ ZnJrl 1 _ a”
n n

We will use this relation only for n > o + 1. We use the solution

Jta
S NE v

P j=n

Zn =

where for p = n the product is equal to one. Note that this is well defined from the
assumption on the decay of g, and Ra < 1/2.
From this sequence we can recover u,, by solving (8.6). We get

[e’e] [e’e) g p—1 j+Oé
= > 7= I 57 =9
m=n p=m+1 p j:7n+1'7

The result follows from Lemma 20. O
For w < 1/8, let ay > a— be the two solutions of the equation

(8.7) o — a4+ 2w = 0.

Note that a— < 1/2 < ay.

For w > 1/8, the two solutions of a? — a + 2 w = 0 have real part equal to 1/2
and we denote by a_ the solution with negative imaginary part. For w = 1/8 we
define a_ =1/2.
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Proposition 22. Assume

by =1 =+ 01>,
for some ¢ >0 and w # 1/8. Then, the equation

(Rv)y = vy
has two independent solutions v such that for large n
vE =n% (14 0(1)).
For w =1/8, we have
v =nt? (1 +0(1)), v =n'?logn-(1+o0(1)).

Any solution of (Rv),, = v, for large n is a linear combination of v™.

Note that these solutions may not be positive.

Remark. The heuristics is clear: one tries an ansatz v, = n® and one chooses
the value of « such that the equation (Rv), = v, is satisfied for large n at dominant
order.

Proof: For a = a_, we look for a solution of Rv = v of the form

v =n*(1 4+ uy)

with wu, small for large n. Using Proposition 34 below, it follows that there is a
solution of Rv = v satistying v, =n*- (14+0(1)).
Let (wy,) be a solution of Rw = w independent of v~. From Lemma 14 we have

Wn+1 B Wn Cn

Un+1 Un Un VUpt1

where C,, is a sequence converging to a non zero limit. Therefore, for n > N + 1

n—1
W, — WN Cp
+

Un UN =N VP Upt -
Since
v, =p“ (1+o0(1))

with ®a— < 1/2, the sum on the right hand side diverges or oscillates, and we get
ifa_ #1/2

. w
0<hm‘ < 00,

n—oo | %+

and the result follows for w # 1/8 since

n

noz,—our E

p=1

0 < lim

n— oo

< 0Q.

p

_ . . 1 n 1 _
The same argument can be used for w = 1/8 since lim, oo Togn szl 5= C,
Euler’s constant.
Finally, since the equation Rv = v can be solved by a recursion of order 2, its

set of solution is a linear space of dimension two. O
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Corollary 23. Assume (3.5) holds with w < 1/8. Assume that p = 1 and the
equation
Rw = pw — 15—
has a positive solution. Then for p large
mp ~ pa,
and for v the positive solution of Rv = pv with v1 = 1 we have
v, ~ n*t.
Proof: The proof is similar to the proof of Lemma 16 and left to the reader.
We now start proving Proposition 5.
e Proof of (i) in Proposition 5.

If p,(R) > 1 this follows from (4i7) in Theorem 1. If p,(R) = 1 and w > 1/8,
assume there exists a positive solution to

Rw=w—1,_;.

For n > 2 we have (Rw), = w, and Proposition 22 implies that there exist two
constants A and B such that for o = Say

wy, = Av;t + Bu, = n'/? (An' + Bn™") + o (nl/Q) .
It is easy to verify that there is no choice of (complex) A and B such that the right

hand side is positive for any n. O

e Proof of (ii) in Proposition 5.
For w < 1/8, let
by=1- 2, Vn>3.
n

Choose b; > 0 and by > 0 such that 4b1by < 1.
Assume R is 1—transient, namely there exists a (wy,),>1 positive such that

Rw=w-—1,-1.

We have
w2
VTR
w3 wy
Wtz | 2l
hence

ws 1 1
+ —wy (1———) <o,
NN ( 4b1b2)

a contradiction. O

e Proof of (iii) in Proposition 5.
An example is given by the hypergeometric solution of Section 6.

e Proof of (iv) in Proposition 5.
For w < 0, the matrix R is 1—transient by Lemma 4.
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For 0 < w < 1/8, we will use a continued fraction result. We will use Henrici’s
notation

5 L

n=1 g;j

N
g + gzjfim
We have (for example from [10] formula 12.1-11)

S _—Vhiee/b e

n=1 72 bj+1bj+2 - J=1 1

for the continued fraction

where
1
ag = ———
RN
and for j > 1
1
a; = — .
T dbbin
For w > 0 small enough we have for all j > 2
n 1 < 1
aj+-| < ——~.
T = A4z o)
By a result of Pringsheim (see for example [11]), this implies convergence of
o Y
j=2 1

This implies that for w > 0 small enough, the sequence (o,)p>1 defined for p > 1

by
o_su o —Vbhie/b
P Jj=p 1 Jj=p—2 bj+1bj+2
is well defined and continuous in w. Since it is nonnegative at w = 0, by continuity
it is nonnegative in a neighborhood of w = 0.

By continuity in w we also have that for w > 0 small enough,

01 < 24/ b1bs.

We now define recursively a positive sequence (wy,)n>1 by
1

_ _a
12

vb1ba

w1 =

and for n > 1
Wp = Wp—-10n—1-
It is easy to verify that the sequence (o0,),~, obeys the same recursion as in Ap-

pendix A.2 and that the positive sequence (wy,)r>1 is a solution of Rw = w — 1,—
and the result follows. O

e A.5 PROOF of LEMMA 6.

We start by a preliminary lemma.

Lemma 24. Assume lim, o, b, = 1. Then for both the free and zero boundary
conditions the Gibbs potential defined in (2.1), (2.3) and (3.1) is nonpositive.
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Proof: It is enough to prove the result in the case of the bridge since the
partition function in the case of free boundary condition is larger. We denote by
(By,) the standard random walk reflected at zero. It is easy to verify that in the
case of zero boundary condition

Zow = P(Bay = 0) - E (25701525 | By ).
Using Jensen’s inequality we get
Zon > P(Boy = 0)62?50 E(log bp, | Ban=o)
By the Markov property and symmetry, we have
E(logbs,| Bon=o) = » P (B; = p)P(Bay_; = p)log by.
P

Let € > 0 be fixed and let K = K (€) be such that
sup |log by| <e.
p=>K

We have
K
E(log bg, | Ban—o) = Y P (B; = p) P(Ban—; = p)log b, + R
p=0
with
|Re| <.
The result follows from the well known result that for any fixed K

lim P(B; < K)=0.O

Jj—o0

We now give the proof of Lemma 6. The existence and uniqueness of p(bg) follow
from the results of Lemma 3. Note also that p(bg) > p.(R) > 1 (see Theorem 2).
In order to finish the proof of (i), according to formula (2.9) or (2.12) we only need
to prove that

Jim % log P (Xyn = 0) = 0.
For by < b, we have a positive solution of Qp,v = p(bo)v, unique modulo a multi-
plicative constant, given by

v = 2p(b0)\/ bobl’Uo

and for p > 1
_ U110y
7 2p(bo)bobn
which can also be written for any p > 1
Votoy

vp = 2D N
It follows from Lemma 18 that
lim Il _
p—oo Uy
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Therefore using formula (2.5), (recall that exp V(n) = b, and exp(—U(n)/2) = v,),
we get, with p = p(bg)
Pn = PRW (Xl =n+1 | Xy = n) — pfleflog27V(n)/27\/(n+1)/27U(n+1)/2+U(n)/2

_ 1 Un+1

207/ bpbpi1 Un

This implies since p > 1 (see equation (8.2))

lim p, = z-(n) _ 1/2.

It follows (by positive recurrence of the corresponding RW) that
inf PPV (Xyn = 0) > 0,
N>0

hence for by < b§ the Gibbs potential is equal to —log p(bo).

We now consider the case by > b§. It is easy to verify that the Gibbs potential
is not decreasing in by. Moreover, since b < oo it follows that

lim —lo bo) > 0.
. g p(bo) >

By Lemma 24 we have

0< lim —logp(by) < ®((b,)) < 0.0
< m, og p(bo) < @ ((bn)) <

e A.6 PROOF of PROPOSITION 7.
The positive recurrence of the random walk was just proved above. In the sequel
we will need the following mixing results valid for any p € Z, under the positive
recurrence of X, (see Appendix A.7):

(8.8) Jim P*W (Xon =0 | Xo = 2p) = 2wy,
Jim P*™W (Xon11 =0 | Xo=2p+1) = 2.

We start with a preliminary lemma
Lemma 25. Assume by < b§. Then

0< KliinooZPRw(XQK = p| Xo = 0)erVP=3V®) < o,
p
and
0< lim 3 P (Xoxis = p| Xo = 0)erV @72V 0) < oo,
—00
p

The two limits may be different.
Proof: As for the proof of (2.11), using detailed balance we get

ZPRW(XN _ p| Xy = O)Q%U(P)*%V(P) — eU(O) ZPRW(XN -0 | X, = p)eféU(p),%V(p).
P P

For N even, the sum only runs over the even p’s while for N odd the sum only runs

over the odd p’s. Since by < b§ we have by Lemma 16 that exp(—U(p)/2) = v, =

v1w,(p)/(4pbob1) behaves like ¥ . The result follows from (8.8) and Lebesgue’s

dominated convergence theorem. O
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Lemma 26. Assume the mixing condition (8.8). Then the two limits

N
. 1
lim — Z PSOS(Xl,...,XN)Z]_XLZO
X1, XN =1

N—oco N
and
1 aN-1
li PSOS (X1,..., Xon—1 | Xony =0 ly,—
NS 2N — 1 > (X1, Xowa | Xow =0) 3 xi=o
X1,..0y Xon—1 =1
exist and are equal to vg
Proof: In the first case (free boundary condition) we have
N
> PSS (X, XN)) 1x—0
Xl ..... XN =1
N
:Z Z PSOS(Xla'"7Xl71705Xl+17"'5XN)'
=1 X1,...,X1-1, X141, . XN

For | < N we have using equality (2.7), the Markov property and equality (2.10)
PSOS (Xla o alelaonl+17 s 7XN)
= ZJ?flePRW (Xla o 7Xl—1a 0) Xl-‘rla ey XN) 67%U(0)7%V(O)+%U(XN)7%V(XN)
_ Z;[1pNPRW (X1,..., X1, X, =0) PRW (Xig1,. -, XN) e~ 3U(0)=3V(0)+3UXN)—3V(XN)

This implies
Z P(Xla"'7Xl—1aOaXl+1a"'aXN)

— Z&lePRW (Xl — 0) Z PRW (XNfl) e—%U(O)—%V(O)-F%U(XN,L)—%V(XN,l)
XN-1
- PRV (X, = 0) ZXN,Z PRV (X)) e—3U(0)=3V(O)+3U(XN-1)—3V(Xn-1)

= ZXN PRW(XN)ef%U(O)f%V(O)Jr%U(XN)f%V(XN)

Using Lemma 25, the mixing condition (8.8) and Lebesgue’s dominated convergence
theorem the result follows. Note that PEW (X; = 0) = 0 if [ is odd.
In the case of the bridge (zero boundary condition) we get

2N—-1
> PO (X, Xon o | Xon =0) Y 1x,-0
X1, Xan—1 =1

= Z Z P(Xla'"aXl—laOaXl+la"-7X2N—1 | XQNZO)

For | < 2N — 1 we have using equality (2.7), the Markov property and equality
(2.10)
P98 (X1,..., X1-1,0, X141, ..., Xon—1 | Xoy = 0)
=P™W (X1, ., X;1,0, X151, ., Xon—1 | Xon =0)
=P™W (X1, ., X1, Xy = 0)P™Y (X0, Xon—1 | Xon = 0).
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This implies
> P (Xy, X 1,0, X4, Xon oy | Xon = 0) =PV (X, =0 Xon =0).

The result follows from the mixing condition (8.8). O

Proposition 27. Assume lim, o b, = 1.

(i) Then for any by > 0, the operator Qu, has an essential spectral radius in
IP(Z4) equal to one, for any 1 < p < co.

(i1) All its eigenvalues are simple.

(iii) The operator Qu, is self adjoint in 1>(Zy).

(iv) For by < b§, p(bo) := p.(Qu,) is the largest eigenvalue of Qp, in 1*(Zy).

(

v) For by < b§, p(bo) is real analytic in by, and
p(bo)vg
bo £(b0) bo ijo 1)]2

Proof:
(i) Given € > 0, let N be such that

sup |1 —b,| <e.
n>N

Define the infinite matrix ngﬁv) by

N), . . .
Ql()o )(ZJ) = Qo (4, J) - Li>n - 1j>n.
It is easy to verify that

<l+e
»(Z+)
Therefore its essential spectral radius is at most 1 + €. Since Qp, — ngév) is a finite
rank operator, we conclude by Nussbaum’s Theorem (see [18]) that the essential
spectral radius of Qp, is also at most 1 4 €. Since this is true for any € > 0, the
result follows.

(#4) This follows from the fact that if Qp,v = pv, then vy is determined by vy
and then recursively for all v, with n > 2 since the equation is a recursion of order
two.

(7i1) Qp, is real-symmetric and bounded.

(iv) Assume the largest eigenvalue in ¢?(Zy) is p > p(bg). Let © denote the
corresponding normalized eigenvector, and denote by v the positive eigenvector
corresponding to p;, . We first claim that v, > 0 for all n. Indeed if v, = 0 for some
n > 1, we have (by the positivity of the sequence and the equation (Qp,v), = 0)
Up41 = 0. This implies v = 0. If vy = 0, it follows that v; = 0, and this implies by
a recursive argument v = 0. For any positive h € ¢?(Z, ), and for any integer n,
Q™h is a positive sequence, moreover

lim p7"Q"h = (v, h) -0

n—oo
where (v, h) denotes the scalar product in £2(Z. ). Since any complex sequence can
be obtained by a linear combination of at most four positive sequences, we conclude
that there exists a positive h € ¢?(Z,) such that (¥, h) # 0. This implies that all
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the ¥, have the same sign. However this contradicts the well known fact that if
p # p(bo), then (v, v) = 0.
(v) Follows from analytic perturbation theory of a simple eigenvalue, see for
example [13].
The formula displayed in (v) can also be written as:
dlogp(he)  0B((b)  vR

dlog(bo) — dlog(bo) Y52y v2’

when by < bf, in agreement with Lemma 26.

We now give the proof of Proposition 7.

() Follows from Lemma 26.
(#4) Follows from Lemma 26 and the following computation. We have

v = 2[)\/ bo bl’UO

and for p > 1
(% Vo
o 4 pbo by () 2/bg by »(0)
Hence

2 2
vy vy 1

oo v2 YT 02 T (4bobr) T Y0 0,(p)2
(¢i¢) Follows by a standard convexity argument.
(iv) Follows from Proposition 27 and Lemma 6.

e A7 ANOTHER APPROACH to Zy and a PROOF of (4.1).

We now come back to the factor 2 in equation (8.8) and make some more com-
ments.

One can express the partition function Zy in terms of the infinite matrix Qp,.
It is easy to verify that in the case of the bridge

Zy = e VO 0]Qj 10)
where |0) is the sequence
|0}, = 1,,—0.
In the free boundary case one has
N = e*V(O)/2<e*V/2 | Qé\fo |0)
where |e~V/?) is the sequence
|€_V/2>n — e—V(n)/Q-
These expressions lead to another proof of part (i) in Lemma 6 using the spectral

theory of Qy, (in 1?(Zy) and I*(Z, ) respectively).
Let S denote the involution acting on sequences by

(Sh)p = (=1)"hy,

It is easy to verify that
SQpyS = —Qu,-
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This implies that the spectrum of @4, is invariant by multiplication by —1. In
particular, —p(bg) is also an eigenvalue with eigenvector Sv. Since S|0) = |0), we
find that for any integer N
(01Q5*10)=0

and

2 v}
||UH?2(Z+) .
The same result holds for the Markov operator P, associated to the walk which is
conjugated to Qp,, namely with obvious (Hadamard) notation

1

: —2N 2N _
i p(bo) ™ (0]@," 0) =

Pyh=—— h).
bo p(bo)’UQbO(U )
Since
PN (0,2p) = P (Xon = 2p) = —22— . (0| Q2 [2p)
0 ? 'UOP(bO)QN 0
we get ,
2
lim PRV (Xyy = 2p) = —o 22—
NS00 ””HeZ(m)

which implies the first statement in (8.8). One proves similarly that

202
lim P*W(Xony1 =2p+1) = 7§p+1 )
N-oroo ||v|\€2(Z+)

Finally, since for all NV

ZPRW(X2N =2p)=1

p=0
we get
oo oo
g v2 *l E v2
2p T 9 D
p=0 p=0

¢ A8 PROOF of THEOREM 8.

- Proof of Theorem 8.(i).
It follows from Lemma 18 that for large p, v, which is proportional to tv, behaves
like ~ z” . Since this sequence belongs to [? and vg > 0, from (4.1), we get m > 0.

- Proof of Theorem 8.(ii).
Let bg > 6 > b, and denote the number of returns to zeros between 1 and K by

K
N = Z 1Xj:1'
j=1

By Jensen’s inequality

Z2N(ﬂ) — ZQN(bo)<e‘ﬂ2N71(10gb0*10g5)>b0 oN > Z2N(b0)e(10gb0*10gﬁ) <MN2N-1>pg,2N

and

Non_ 1 log Z log Zon (b
Jim sup —2N—1 Zbo. 2N i 08Z22n(B) s Zan(bo) _
N—o00 2N 10g bo — 10gﬂ N—o00 2N N —o00 2N
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by Lemma 6.(i¢). The result follows since 9x > 0.

- Proof of Theorem 8.(iii).
In this case using Corollary 23 we have

Z 1, (1)? = cc.
P

For any K > 0, let N(K) > 1 be an integer such that

N(K)

> wy(1)° > K.

p=1
By Lemma 3.(v) we have

N(K)
;i/ml zp:mp(/))2 = ,%I/Inl o mp(l))2 > K.

Since this holds for any K we conclude that
lim 1o 2 = 0.
Pyl ; »(p)

The result follows from formula 4.1. O

- Proof of Theorem 8.(iv).
From Corollary 23 we have

> w,(1)? < o0

if and only if o < —1/2 which gives w < —3/8.
If w < —3/8, we have by Proposition 19 for any p > 1

S to,(0)2 < 3 w0y (1)? < o
P P
and the result follows from formula (4.1). O

¢ A9 PROOF of THEOREM 11.

We start with several preliminary lemmas.

Lemma 28. For u and s real
(w4 1/2)(u-s)
2u+s)(2u+s+1)
=Fu,u+1/2;2u+s;2) — Flu+1/2,u+ 1;2u+ 1 + s; 2).

Flu+1,u+3/2;2u+2+s;z)

Proof: We first observe that
Flu+1/2,u+1;2u+1+s;2z) = Flu+ 1, u+1/2;2u+ 1+ s; 2).
Therefore we need to prove that
(et 1/2)(-u—s)
2u+s)2u+s+1)
=F(u,u+1/2;2u+s;2) — Flu+1,u+1/2;2u+ 1+ s;2)

Flu+1,u+3/2;2u+2+s;z)
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This follows from formula 9.137.16 in [9] by taking
a=u, f=u+1/2, y=2u+s. O
Lemma 29. Let a real, define for alln > —1
P,(z)=F(a+n/2,a+ (n+1)/2;2a 4+ n+ s; 2).
Then
4(2a+n+s—2)2a+n+s—1)

Po(z) = 2 (2a+n—1)(2a+n—2+2s) (o1 (2) = Pa2 (2)) -

Proof: Apply Lemma 28 with u =a+n/2 —1. O

Lemma 30. Forn >1, and p > 1, define

_ n oy [T(s=142a)T(s+2a)T(2a+n—1)I(2s+2a+n—2)
wn, = C(2p) n—1(p"7)

I(s+n—24+2a)(s+n—1+42a)'(2a)(25+ 2a — 1)
where C' is a constant, and the P, (-) are defined in Lemma 29. Then for
any n > 1 we have

(Rw),, = pwp,.
Moreover, if
2

C =
F(a—1/2,a;2a — 1+ s;p72)’

then
(Rw)y = pwy — 1.
Proof: For n > 0, denote by T}, the product

_ |P(s =142a)l'(s +2a)I'(2a +n — 1)['(25 + 2a +n — 2)
"N T(s+n—-2+2a)T(s+n—1+2a)'(2a)T(25+2a — 1)’
For n > 0 we have

(s+n—24+2a)(s+n—1+42a) —1/2
8.9 Ty = T,.
(89) 1 ( 2a4+n—-1)(2s+2a+n—2)

Observe that for n > 1

(8.10)

b (s+n—2+2a)(s+n+2a—-1) (s+n—2+2a)(s+n—1+2a)
T T dla+n/2—1/2)(s+a+n/2—1) (a+n—1)(2s+2a+n—2)
Since

wy, = C(2p) " Pa-1(p™?) T,
we have for any n > 1 using Lemma 29 and equation (8.9)

Wn+1 —n—1 T"""l -n
— — pw, = C(2 P,———— — pC(2 P, T,
SN (2p) SN (2p) 1

—n P, —-n
=Cp(2p) " Tn (m — Pnl) =—Cp(2p) "I P2

_ 1 /(s+n—-3+2a)(s+n—2+2a
2\ (2a+n-—2)(2s+2a+n—3)

) —1/2
) C(Qp)_n+1Tn_1Pn_2.



38 P. COLLET™, F. DUNLOP(®® AND T. HUILLET®

The right hand side is equal to wy—1/(21/bnbp—1 if n > 1 from (8.10) and the
definition of w,_1.
We now choose

02<@2+2®@1+2@>U2 ) ,

(2a —1)(2s 4 2a — 2) ToP-1(p72) - Fla—1/2,a;2a — 1+ s;p72)

since
I(s—142a)T'(s+ 2a)T'(2a — 1)T'(2s + 2a — 2)

I'(s—242a)T'(s — 14 2a)I'(2a)I'(2s + 2a — 1)
(s —2+2a)(s—1+2a)
(2a — 1)(2s 4+ 2a — 2)

¢ =

With this choice of C, we get
(Rw); = pwy — 1. O

For large n, using Watson’s asymptotics (see [7] for example), or directly by
steepest descent form the integral representation 2.12.1 in [7], one gets that for

p>1
wn ~ (p—Vp?—1)"
From Lemma 16 since w > 0, we get o = w > 0 for p > 1. In particular this
implies that p,(R) = 1. This proves (i) and (é¢) of Theorem 11.
For p = 1, using Lemma 30, we have for any p > 1
Fla+(p—-1)/2,a+p/2;2a+p+s— 1;1)><
Fla—1/2,a;2a+s—1;1)

(1) = 2(2)7"

I'(s —1+4+2a)l'(s+2a)T'(2a+p— 1T'(2s + 2a + p — 2)
I'(s+p—2+4+2a)(s+p—1+2a)'(2a)'(25+2a —1)

I'2a+p+s—1)I'(s—1/2) Na+s—1/2)T(a+s—1)
Na+s+p/2—1/2)T(a+s+p/2—1) T(2a+s—1)T(s—1/2)
I(s—14+2a)T'(s+2a) | T'(2a+p—1)T(2s+2a+p—2)
I'2a)l(2s+2a—1) \|I'(s+p—2+2a)(s+p—1+2a)
By the duplication formula for the T" function (see for example [7])

I'2a+p+s—1) T'(2a+2s —2)
I'2a+2s+p—2) T'2a+s—1)

= 2(2)"

w, (1) = 2(2)~72°

I(s—14+2a)T'(s+2a) | T'(2a+p—1)T(2s+2a+p—2)
I'2a)I'(2s+2a—1) \[T(s+p—2+2a)(s+p—1+2a)

 T(2a+2s—-2) [T'(s—1+42a)l'(s+ 2a)
- "T'(a+s—1)\ T'(2a)(2s+2a—1)

I'2a+p+s—1) I'2a+p—1T(2s+2a+p—2)
I'2a+2s+p—2)\| I'(s+p—2+2a)'(s+p—1+2a)

204+s—1T(2a+2s—1) [T(s—1+4+2a)T(s+ 2a)
20+2s—2 T(2a+s) I'(2a)T'(2s 4+ 2a — 1)



CRITICAL WETTING FOR A RANDOM LINE IN LONG-RANGE POTENTIAL 39

I'2a+p+s—1) F'2a+p—1I'(2s+2a+p—2)
IF'2a+2s+p—2)\| I(s+p—2+2a)(s+p—1+2a)

_22a—|—s—1 I'(s—142a)(2a+2s—1) I'2a+p—1T'2a+p+s—1)
204252 I'(2a)T(s + 2a) L(s+p—2+2a)'(2a+2s+p—2)

B 1 I'(2a+2s—1) I'2a+p-—1)
7a+s-1\/(2a+p+52)(2a+51)\/ T'(2a) \/1"(2@—1—25—1—])—2)'

This gives the critical 1o, (1) for all p > 1, with, by Stirling’s formula
1,(1) = O(1) - p*=*) for large p.
We also have
s+2a— 1l (a)l(s+a—1/2)
2I'(a+ 1/2)I(s + a) ’
hence from the expression of tw;(1)

b — (1) ll"(a +s—1)T(a+1/2)
O 4by 2 T(a)(s+a—1/2)
proving (iii) of Theorem 11.
For by < bf, the equation for p(b) is given in Lemma 6.(¢) and we can replace

w1(p) by its explicit expression.

by = ¢

e A.10 PROOF of PROPOSITION 12.
Recall that for by < b5, from Proposition 7.(iv) we have

_ abop(b )
m(bo) = —bQWO)O.

In order to compute 9y, p(bo), we use
_ Fla,a+1/2;2a+ s;p7?2)
pF(a—1/2,a;2a+ s —1;p72)
and we take the derivative with respect to by of the implicit equation for p(by) given
in Lemma 6:

(8.11)
F(a,a+1/2;2a+ 5507 2(bo)) — 4p(bo)*bob1 F(a — 1/2,a;2a + s — 1;p~2(bg)) = 0.

We get

1 (p)

ala+1/2)
2a+s p

—4p(bo)*b1F(a —1/2,a;2a + 5 — 15 p~*(by))

a(a —1/2) Op,p _

20+s—1 p

—2F(a+1,a+3/2;2a+s5+1; p %) 80 (Opyp) brboF(a—1/2,a;2a+s—1; p~?)

+8b1boF(a+ 1/2,a+ 1;2a + 530~ 2(bo)) 0,

which is also
Fla+1,a+3/2;2a+ s+ 1;p72) ala+1/2) Op,p

-2 —8p (0 b1b
Fla—1/2,a;2a+s—1;p72) 2a+s p3 P (9bp) bibo

(a+1/2,a+1;2a+ s;p72) ala — 1/2) Oy, p _
(a—1/2,a;2a4+s—1;p72)2a+s—1 p

0.

F
74p2b1 + 8b1b0 Ia
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From (see Proposition 7.(iv))
Bpop = — P
b()p - bO b
we get

1 Fla+1l,a+3/2;2a+s+1;p72) ala+1/2) m
20%b; F(a—1/2,a;2a+ s —1;p72) 2a+s  byp>
2 Fla+1/2,a+1;2a+s;p7 %) ala—1/2)
P2 Fla—1/2,a;2a+s—1;p72)2a+s—1
We can now use again equation (8.11) to get
2 Fla+1,a+3/2;2a+ s+ 1;p72) ala + 1/2)
P2 F(a,a+1/2;2a+ s;p~2) 2a+ s
) 2 Fla+1/2,a+ 1;2a + s;p72) a(a — 1/2) 0
_1- = m =
P2 Fla—1/2,a;2a+s—1;p72)2a+s—1 ’
and we get the claimed expression (6.1) for m.
We have to estimate the denominator of equation (6.1) for p(by) near one.

+2m

m = 0.

m—+ 2m

We first consider the case 1/2 < s < 3/2.

Recall that if vy > 0 and v > a+

NIy —a—B)
Iy = a)l(y = B)

;i/mlF(Oé,ﬂ;v;Z) =

Therefore

I'(2a+s—1)I(s — 1/2)
Na+s—1/2)T(a+s—1)
(since in that case vy — 8 — a = s — 1/2 > 0). Similarly

I'(2a+ s)T(s — 1/2)
T(a+s)T(a+s—1/2)
If v > 0 and v < a+ S, the limit is infinite. More precisely, it follows from formula
2.10.1in [7] that if -1 <y—a—-8<0
y—p—a TN (a+B8—7)

L(e)I'(8)

lim Fa—1/2,a;2a+s—1;2) =
z,'1

lim F(a,a+1/2;2a+ s;2) =
z, 1

Fla, B;7;2) = (1= 2)

+0Q).

Therefore for 1/2 < s < 3/2 we get

atl.a gt sl ) = (1 p)s-32L(2at s+ DIE/2—5)
(8.12) F(a+1,a+3/2;2a+s+1;2) = (1—2)53 Tt Da+3/2) +0(1),
and
Fla+1/2,a+1:2a+ 5 2) = (1 232020 T ICB2=5) gy

I(a+1/2)T(a+1)
Therefore, after simple algebraic manipulations, we get
Fla+1l,a+3/2;2a+s+1;2) (a+1/2) F(a+1/2,a+1;2a+ s;2) (a—1/2)

F(a,a+1/2;2a+ s;2) 2a+ s Fla—1/2,a;2a4+s—1;z)2a+s—1

=(1- 2)573/2F(2a +s—1)I(3/2-y9)
P(a+1/2)0(a+1)

(a+s—1)+0O(1).



CRITICAL WETTING FOR A RANDOM LINE IN LONG-RANGE POTENTIAL 41

From (6.1), this implies that for 1/2 < s < 3/2
o\8/2-s T(a+1/2)T(a+1)
bo) = (1 — p(bo)~2)**
m(bo) = (1= p(bo) ™) 2a(a+s— ) (2a+s— 1)I(3/2—s)
In particular, we see again that for 1/2 < s < 3/2

I bo) = 0.
bol}I}ng( 0)

3/2—s

(14+0(1—p(bo)7?))

In order to be able to compute the critical indices, we need to know how p(by) — 1
vanishes as a function of by — b when by " b§.

We have
wi(p(bo))  ti(1)

4p(b0)b1 451

B 1 F(a,a+1/2;2a+ s;p(bo)~2) 1 F(a,a+1/2;2a+ s;1)

" 4p(bo)?by F(a—1/2,a;2a+ s — 1;p(bo)~2)  4by F(a—1/2,a;2a+ s — 1;1)°
For any 0 < z < £ < 1, we can write, using formula 2.8.20 in [7]
S dF(a,a+1/2;2a+ s;t)

dt

bo — b§ =

dt

F(a,a+1/2;2a+s;§)—F(a,a+1/2;2a+s;z):/

z

1/2) (¢
:M/ Fla+1,a+3/2 20+ s+ 1;t)dt.
2a + s >

Using the identity (8.12) this is equal to
ala+1/2) /f ((1 B t)s,mr@a +s5+1)T(3/2 - s)

20T s Mat Di(at3/2) O(”) “

_ TI'2a+s)I'(3/2-5s) 1 N i
T T(@(a+1/2) 571/2((1_‘5) - (1-2)1) + 0 - 2).

We can now let £ tend to one and get
F(a,a+1/2;2a+ s;1) — F(a,a +1/2;2a + s; 2)
'2a+s)T'(3/2—s) 1

T T(@T(a+1/2) s— 1/2(1 _ )2 L 01— 2).

In other words
F(a,a+1/2;2a+ s;2)

 TQa+s)(s—1/2) T(2a+s)T(3/2—s) 1
T T+s)la+s—1/2)  T(@l(a+1/2) s—1/2
_ I'(2a + s)I'(s — 1/2) <1F(a+S)F(a+sl/2) 1 a1
I'a+s)'(a+s—1/2) I'(a)T'(a+1/2) (s —1/2)2
Replacing a by a — 1/2 we get

Fla—1/2,a;2a+s—1;1)— F(a—1/2,a;2a+ s — 1; 2)

I(2a+s—1)I3/2—s) 1

T T(a—1/2T() s- 1/2(1 — 221001 - 2).

(1—2)"Y24 001 -2)

- 2)51/2>+(9(lz).

In other words

Fla—1/2,a;2a+ s — 1;2)
B I'2a+s—1)T'(s—1/2) _F(2a+s—1)F(3/2—s) 1 _ys-1/2 .
CT(a+s—1/2)T(a+s—1) I(a—1/2)I'(a) 5—1/2(1 ) TPH00-2)
~ T'Ra+s—-1)I'(s—1/2) (1_I‘(a+s—1/2)1"(a+s—1) 1 1
CT(a+s—1/2)T(a+s—1) I'a —1/2)T'(a) (s —1/2)2

— .=

- z)s_1/2)+(’)(1—z)

—
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We obtain the following estimate of by — b5 (near z = p(by) =2 = 1)

1 F(a,a+1/2;2a+ s; p(bg)~2) F(a,a+1/2;2a+ s;1)

— - +0(1-2)

aby \ F(a—1/2,a;2a+ s — 1;p(bo)~2) F(a—1/2,a;2a+s—1;1)

_ 1 TP@a+sl(s—1/2) Ila+s—1/2)l(a+s—-1) 1

4 T(a+s)T(a+s—1/2) T(2a+s—1)I'(s—1/2) (s—1/2)2
(F(a+ s=1/2)l(a+s—1) T(a+s)(a+s— 1/2))

(1 _ Z)S—I/QX

T(a—1/2)T(a) [(a)l(a+ 1/2)

1 2a+s-1 1 se1ol(a+s—1/2)T(a+s—1) a+s—1
= ats 1 GoipEl / T(a—1/2)T(a) (1_ a1/2)
_ 1 2a+s-1 1 (1- )571/2F(a+s—1/2)F(a+571)

T i ats—1(s—1/2)(a—1/2)" T(a—1/2)I(a) '

Therefore, for b < b§ and 1/2 < s < 3/2
m(bo) = C(b5 — bo) @2~/ 12 (1 4 0(1))

where C' is a positive constant that can be explicitly computed.
Finally for s > 3/2

Fla+1,a4+3/2;2a+s+1;2) T(2a+s+1)'(s—3/2)'(a+s)I'(a+s—1/2)

il/‘ml F(a,a+1/2;2a+ s; 2)  T(a+s)(a+s—1/2) T(2a+ s)I'(s—1/2)
_ 2a+s
- s5-3/2°
Fla+1/2,a+1;2a+s;2)  T(2a+s)(s—-3/2) T(a+s—1/2)I'(a+s—1)
zl/‘ml Fla—1/2,a;2a+s—1;2) T(a+s—1/2)T'(a+s—1) T(2a+s—1I'(s—1/2)
~ 2a+s-—1
- s-3/2
We get for s > 3/2
h}},cm(bo) 2at (a+1/21) 2ats—1 (a—1/2) 24 : '
2+2a<sf3/s2 Zats T so3)2 2a+s—1) w7

This completes the proof of Proposition 12. O
Remark: The form of the critical index can be guessed by the following argu-
ment. We have the relation
1 (p) -
— Y0,
4pb1
and taking the partial derivative with respect to p we get
wi(p) wi(p) _ dby
4pby 4p2by  dp’
Assume we know (as we saw before) that

1 dbg
— =2 _01)-(p=1)"
= =0 (-1,

1 1 /
dbo wi(p)  wi(p) -1
by — b :/ —dp:/ ( dp=0(1 -1,
O e dp p(bo) \ 4pbi 4pby Wto=1

and we get

m=0(1)-(p—1)"/(@"1,
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which is our result if we replace a by 3/2 — s.

e A.11 COMPUTATIONS OF SECTION 6.3.

We can eliminate p form the two relations

cosh(v) = p, w1 = 2e~" = 4pby,

and we get
1
2b, h(v) =e " or bg = ———.
o cosh(v) = e™" or by T
Hence
1 1—bg
v [ 1=
¢ \/bo \/ bo
and

1 1-0b b
P(bo):§ <\/ bo 0+\/1 _Ob0>

From this follows (after some computations)

_ dp 2b0 -1
= —byOp, ® = —bpp 1 — = )
m 00bg 0P dbo 2y — 2
We also have
S oo —2v
2 —2 € 4 4 4b0
D wp=4) e 1_e20 e 1 1/bp—2 1-2b
p=1 p=1
hence
> 1 2 — 2bg
1 2 -1 =
* Tooby p; W = T o T 1= 2

and, as expected m = (1 — 2bg) / (2 — 2by) . O

e A.12 COMPUTATIONS OF SUBSECTION 6.3.1.

We have
(p+2a)(p+2a+1)

p+2a—1)(p+2a+2)
Using formulas 15.1.13, 15.1.14, and 15.2.12 in [1] one gets

Fla+p/2-1/2,a+p/2;2a+p+1;2) =

2a+p / —2a—p 1(a+p/271/2)v172’70,*])/24’1/24’2((14’]}/2)
2O+ VI =2) i (a+p/2+1/2)z

bobp1 = ¢

Thus, from Theorem 11

L — 7p(a+p/271/2) 1—p*2fa—p/2+1/2+p72(a+p/2)x
wy, (p) = 2p7P(14+/1 - p~2) (atp/2+1/2)

a+1/2 a(2a+p+1)
(a—1/2\/1—p2—a+1/24ap=2\ 2a+p—1)(a+1)
=: AsP ap + 5

Va+p—1)2a+p+1)
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where
) a+1/2 a
o (a—1/2/1T—p2—a+1/2+ap 2V a+l
1 1
a: 5(\/17p*271+p72) i Bi= <a§> l—p2—a+1/2+ap?
q 1
and s =: .
p(1++/1—p=2)
Therefore b§ = o1 (1)/ (4b1) = a/ (2a + 1), and, with C;, Cy some explicit constants
. 2 2 2 Oéerﬂ)2
Y A P
I; 0 (P) Z 2atp+1)(2a+p—1)
B A_2 > 20 a’p+C a’p + Cy
2 st 2a+p+1 2a+p—1)°

Putting x = s?, v = 2a £ 1 and using

oo

(v 1 I'(v > 1), (v)p
Zv+p_z +pllp+1) T(v) pr()()

= I'(v+p+1)p! I'v+1) = (v+1),p!

['(v)
= —=F(1,v; 1; d
F(U+1) ( ,’U,’U+ 7$)7 an

i pr?  T(v+1)

= cF(2,v+ 1;v 4+ 2;x),
—v+p T(v+2) ( )

we get Z;O:l 1o, (p)2 in terms of Gauss hypergeometric functions, consistently with
(4.1) and

b 1
m(p’ 0) o 2 a(a+1/2)F(a+1,a4+3/2;2a+3;p=2)  2a(a—1/2)F(a+1/2,a+1;2a+2;p=2) °
(2a42)2ptbob1 F(a—1/2,a;2a+1;p—2) p2(2a+1)F(a—1/2,a;2a+1;p—2)

¢ A.13 VERIFICATION OF (4.1) FOR b, = b5 IN THE
HYPERGEOMETRIC MODEL.
-Let 1/2 < s < 3/2.

In that case, it follows from the asymptotic t,(1) = O(1) - p'~* that m = 0 as
expected.

- Let s > 3/2. We have

= I'(2a+p—1)
2 2
;(‘Hpﬂ Tat2s+p-2)

- I'(2a+p—1) —~ TI'Ca+p-1

=Y 0 tp Dy ot DY

= (2a+25+p 2) p:1F2a+25+p 2)
i I'(2a +p) i I'2a+p—1)
p:1F2a+25+p 2) p:1F2a+25+p—2)
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On one hand

i I'(2a + p) °°F2a+p (p+1)1
p:1F2a+23+p—2 F2a+25+p—2)p

p=1
= 1 r'(2
Z - Qa) (p2a, 1,20+ 25— 2:1) — 1)
(2a + 25 - 2)p pl T(2a+2s—2)
_ T(2a) [(2a+2s -T2 -3)
- T'(2a+2s—2) \I'(2s — 2) I'(2a + 2s — 3)
B I'(2a) 20+2s5—3 1) = I'(2a) 2a
- T'(2a+2s—2) 25 — 3 - T(2a+25—2)25—3
Similarly

F(Qa —|— 25 -2) p:1

i F2a+p-1)

p:1F2a+25—|—p—2)
 Ta-1)
" I'(2a+2s—2)

F2a+p-1l(p+1)1
I'2a+2s+p—2) pl

NE

1

]
Il

(2a—1), (1)p 1
(2a +2s — 2)pﬁ

WK

I'(2a—1)
- I'(2a+2s — 2)
I'2a —1) I'(2a +2s —2) T'(2s — 2)
T T(2a+2s—2) (r(zs —1)T(2a+2s—3) 1)
I'(2a—1) 2a0+2s—3 I'2a—1) 2a-—1
T T(2a+2s—2) ( 25 — 2 1> T T(2a+25—2)2s — 2
I'(2a)
T T(2a+2s—2)(2s—2)

(F(2a —1,1;2a + 25 — 2;1) — 1)

Hence,
oo

I'2a+p—1)
;(2a+p+8_2)1“(2a+25+p72)
B I'(2a) 2a I'(2a)
“Tar2s- 223 ¢ VT Gar s —2) -9
B I'(2a) 2a 1\ I'(2a) da+2s—3
T T(2a+2s—2) <25—3 §> T T(2a42s—2) 2(25—3)

Therefore, from the expression of w,(1) given at the end of the Proof of Theorem
11

im 2o 2ats—1 I'(2a+2s—1) I'(2a) 4a + 25— 3
P (a4 s —1)2 I'(2a) ['(2a+2s—2) 2(2s—3)

20 +s—1 4a 4+ 25 — 3
= lags TRt B -5
On the other hand
w1 (1) = s+2a—1
s+a—1
hence
45y = oy (1) = 2221 a

s+a—1
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1 «— 4a+2s —3 2a
1+——Y w,(1)=14+—"""=24 " .
+4b8b1pz:; p(1) + 2s—3 +s—3/2

We finally get
1 (24 22
m = —
(s—=3/2))"

which is precisely the expression of Proposition12.(éi7), derived in Appendix A.10
using a direct application of the formula. O

e A.14 PROOF of the UNIVERSALITY of CRITICAL INDICES.
- Sketch of the Proof of Theorem 9.

We want to find the minimal positive solution of
(8.13) Rw=(1+4¢w—1,-1

where
Wn+1 Wnp—1

1,>1.
2obin | /b

For € > 0, we define the integer N = N (e) by

o-[3]

The proof of Theorem 9 uses three zones.

Zomne 1. We first consider n < N(e). In that case we start by neglecting e
in equation (8.13). Note that indeed in that regime |1 — b,| > e. We prove that
wy, is well approximated by w® = r,. Recall (see Proposition 15) that 1, (1)
behaves like C1n® for large n, with C'; a constant independent of n and o = a—
the solution smaller than 1/2 of (5.3). Recall that for —3/8 < w < 1/8 we have
-1/2<a_ <1/2.

Zone 3. For n > N(e), we will use a refined version of Lemma 16 to prove that
wy, is well approximated by

(Rw), =

036—04/26—7116’
where C3 is some constant independent of n and € to be fixed later on, and k =
cosh™ (14 €) ~ /2e.
Zone 2. For n =~ N (¢), we introduce the scaled variable z = ny/e. We then look
in this range for a solution w,, of the form f(n+/€). Using this ansatz in equation
(8.13) and expanding, we get (at dominant order) for f the equation

2w

f'(x) + (F - 2) f(z)=0.

See below for the details in zone 2. According to formula 8.491.5 in [9], (taken at
a purely imaginary argument) we get

f(z) = AVzK,(V2z) + Bzl (v 2x)
for some constants A, B, and v given by

v1i-8w 1
2 2

Note that since @« = a— and —1/2 < a_— < 1/2, we have 0 < v < 1. We look for
a solution which tends to zero at infinity exponentially fast. In the sequel we will
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therefore take B = 0, and A = ¢~ /2 for the homogeneity of the matching, leading
to

(8.14) f(x) = e 2 VaK,(V2z).
Recall that (see for example [1].9.7.2 and [1].9.6.9) K, (z) = K_,(z) and for v > 0

K, (2) 271 T(v) 27 (1 + o(x)) for0<z <1,
v &) =

V2272 e (1 +o(1/x)) forx>1.
Therefore,

O(1) e /2 g for0<z <1,
J@) = {(9(1) /2 e V2 forg > 1.
or equivalently
o) n” forl<n<N,

f(nve) = {0(1) e /2 eV forp > N,

These two asymptotic estimates allow the matching at the dominant order. The
complete proof of the matching is done using estimates on the remainders.

- Matching equations.

We define V' as the unique solution of the equation
RV =(1+¢V

satisfying V7 = 1. This solution is unique since the recursion is of order two except
for n = 1. We define (G),,~, as the unique solution of the equation

RG = (1+¢)G,
satisfying (recalling N = N (e))
Gy =N'"% Gny1 = (N+ 1)

This solution is unique since the recursion is of order two.
The solutions W, F' and H of

RX=(1+4X -1,

and the numbers 1 < M < N; < N < Ny < M’ < co are given in Propositions 36,
37, 33; see (8.23), (8.19) and (8.17). Within each zone, we will construct solutions
Wi i=1,..,3 as follows (for some constants A, B, C, D):

Zone 1:n < Ny, solution W}l =W, + AV,.

Zone 2: M <n < M’, solution W? = BF,, + CG,,.

Zone 3 : n > No, solution W3 = DH,,.

The matching points are L and L + 1, L' and L' + 1, with M < L <
N1 < N < Ny < L' < M'" where

_ _ e\/? —1/2 /2 _ 1N —1/2
~log (6 Gl 1 }

L' = |N(1+ dM = N 1 .
(1+ o ] an + e og (6 )

This is summarized in figure 3.
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(W, V) (H)

FIGURE 3. Domains of solutions and matching points.

The matching conditions therefore are

Wy + AV, = BF, + CGyp, Wi+ AVL+1 = BFr+1+CGpr41,

BF + CGyr = DHy,, BFr 1+ CGL/+1 =DHp 4.

These matching conditions can be written in matrix form, namely

—VL FL GL 0 A WL
Vi1 Fryi Graa 0 B 1 _| Won
0 Fr/ G —Hy, C 0
0 Fryw Gryn —Hpga D 0

Define the discrete Wronskian sequence (after Josef Hoéné-Wronski and Casorati)
W (X,Y), by

W(X,Y), = Xnt1Yn — X5 Yoq1.
After some computations using Cramer’s rule, one gets

_ W(GaH)L’W(FaW)L7W(FaH)L/W(G7W)L

8.15 A=
( ) W(G,H), W(\V,F), +W (F,H);,, W(G,V),
W(GvH)L’ W(Va W)L
B= :
W(GaH)L’W(VvF)L+W(F7H)L’W(GaV)L
C_ WEH)L o W (F.G)y W (V. W),
B W(G,H),, W(G H), W(V.F), + W (F,H),, W(G,V),

We have:
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Theorem 31. There exist constants ¢ > 1 and ey > 0, such that for any € €]0, €],

for any L = {I;g}—lizl)} and for L' = [N(l + %\é))] , with

y = 1nf{</2,2\/§é’},
(see Proposition 37 for the definition of C'), we have
1
-<W(G,H),, WV,F),, W({V.W),, W(G,F),, <c
c

and |W (G, W), | < c. Moreover

|W(Ga V)L| < O(l) : 604—1/27
|W (Fa W)L| < O(l) ! 61/2_a7
W (F,H),,| <O(1) - /27

Proof:

Estimate of W (V,W). Note that (since V; = 1)
Vo =2 blbg(l + 6)

and
Wo = 2/b1ba(1 + ) Wi — 21/b1 ba.
Therefore
W (V,W), = VoW1 — WaVi = 24/b1 .
The bound on W (V, W), follows from Lemma 14 and

0<ﬁbj<00
j=1

Estimate of W (G, F)r/. Using Lemma 14, we get
W(G,F),, =W (G,F)y.

We use equation (8.28) with z,, = n'=* 46, = 0 (sincen = N or N + 1), y,, =
f(ny/€). We obtain using Proposition 37

W (G, F)y =W (G,y)y (1+6%)+0(1) Ne/2+¢/2,
W (G,y)y = (N+ 1) f(NVe) = N'=* F(N + 1)ve)

— 1o ((1 F1) e - A+ wa)

= Vi (SR + FVVA) = SN + VA + 0 NNV

11—« 11—« / € —2
= v (L H0VVA - VEF (VYA - 51716+ 0() - N () )

for some £ € [Ny/€, (N + 1)y/€]. This implies
W (G.y)y = N~ (1= ) F(NVE) = VeNJ'(NV/€) +0(1) - /2.
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Using formula 8.472.2 in [9] and o = 1/2 — v, we have
(1—a)f(z) —af (z) = e *?2*2K, 1 (2).
Therefore
W (G, y)y = N~ “/2(NV26)* 2K, 1 (NV2€) = 25/*K, 11 (V2) + O(1) - €'/2.
We obtain
(8.16) W (G, F)y =2*K, 1(V2) + o(1)
and the bound on W (G, F') ., follows.

Estimate of W (F, H),.
We use equation (8.28) with z,, = €/4=%/2\/nK,(n\2¢) = f(ny/e) and y,, =
e~ /2¢=Fn We get using Propositions 37 and 33
W (F,H),, =W (z,9),, (1+387, + 063, +67,65,) + Ry
with
[BEF] < O1) -2 1904 (V3= ¢ /34572000

<0(1)- l/2a (672(L/7N)\/Z + e</2)
for L'’ < O(1) - Nloge .
Since |0| < 1/2 and |0,] < 1/2, we have

3 5
— T S0 by 40,0, < 7

Finally
W () = 2 N (£ + D)ve) — e F(LVE)) -
|F((L + 1)Ve) —e " F(LVe)| < (1—e7%) fF(L'Ve) +O(1) - Ve |f'(€)]
<0(1)- el/2—a,—2(L'—N)v2e
We get
(W (F,H) | < O(1) - /270 (e 2K -NIVa L (/2 4 gm2/=0)vac)
With our choice of L', for ¢ small enough we get

W (F,H) | < O(1) - e!/27047,

Estimate of W (G, H)r .
We use equation (8.31) with z,, = F,,, y, = Gy, and z, = H,, and p = N. We
get

W G,F - W G,F b ; b .
W(H,G)p, =W (H,F)L, <% + ( )pGL/-i-l) —Hp, ( >P \/ﬁ

Fy vV byp+1bp / vV bp+1bp Fr ’
_ LZ V bl+1bl < 0(1) . Ga—1/2’

FFy —
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Using (8.16), Propositions 33 and 37 and the bound on Wy, and Hy//Fr, = 140 (1),
we get

W (H,G),, = —\/223/41(,,“(&) + o(1).

Estimate of W (F,W). We use equation (8.28) with x,, = f(n+/€) and y,, =
n®. We have

W (@,y), = F((L+ DVELS = (L+ 1) F(LVE) = L (Vef (LvVE) = T F(LVA))

1o (G2 +er©)
for some £ € [L/e, (L + 1)+/e].

L (Ver(Lye) - S1(eve) = 127 (Lver Ve - (5 -v) £Lve)

2 (er@ - (5-v) )
= Lo tem/? (@KV(\/E:C) + V223K (V2z) — (1 ) ﬁKV(\/Ex))

2 2"
= [ g (\/ixKL(\/ix) + VKV(\/E.T)) = V2L e 232K, (V2x)
— O(1) - LOH23/40l2 [ ([7/3e) = O(1) - Lo+V/23/A=a/2 =1 /2-1/2
— O(1) - LOTV/23/Ama/2[—a=1/2-1/4=a/2 _ (1) . (1/2—
by 8.472.1 in [9]. We have

e (Grava )| <o e

Using 36 and 37 we get for the second term in (8.28)
e (0741 — 07) (1 +0%) — (0741 — 07)(1 +67))
=01) - L* (eL+ L7'7%) < 0(1) - €'/,
Collecting all the terms we get
W (F,W) | <O(1) - />

Estimate of W (G,W). We will use (8.31) with z =W, y=G, 2 =F,p=N
and n = L. We have
Yp _ Gn 1—2a —1/2+4a
- ZN _0(1) N2 =0(1)- .
Lo Z-oq (1)«

Next W (y,z), =W (G, F)n =0 (1) as seen from the estimation of W (G, F');, and

N
7/bi+1b
gn+1 _ 72 1+19] _ O(l) . N172a _ O(l) . 671/24»(1.

We also have
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using Proposition 36 and Lemma 14. The estimate |W (G, W), | = O (1) follows
using the above estimates and the estimate of W (W, F') .

Estimate of W (V, F)r.
We use equation (8.31) with z,, = W,,, y», = Vi, 2, = F,, and p = 1. We get

i W(V, VV)1 . W(V, W)l 7/br4+1br,
WI(E V) =W (F,W — 2V - F .
(F\V), (F\W) (W1 + T e N W,

N N
Vi = Z L 0@1) - L2 WV, W), = 24/biba.

WiWita
Using the above estimate of W (F, W), , Propositions 36 and 37, we get

€2\ /L\/eK, (L\/2¢ )
CLe

W (V,F), = 9¢ o) - (61/2—aL1—2a L2 +61/2—o¢)

w (1 + 0(1))

Estimate of W (G,V).
We first use equation (8.31) with z, = F,, yp = G, z, = V,, and p = N. We
obtain

W(V,G)L:W(V,F)L <@+MG ) VLW(G’F)N \/bLJrlbL.

Fy  \/bni1by Vonpiby L

We have the estimate

Gy WI(GF)y "~ Vonb _ o01). o172
FN \/bN+1bN I=L+1 EE-i—l

We also have

Vi WL Vi
Fp,  FL W
and use (8.29) with y,, = V,,, ,, = W,, and p = 1. We obtain
/bi41b
ﬁ _ Vl Z 1+101 0(1) . L1—2a-
Wr, W1 b2b1 WiWi 1

Combining the above estimates we get
W (G, V), | <O(1) L2712 o
Corollary 32. Under the hypotheses and notation of Theorem 31, we have

W, + AV, forl<n<L+1
w,(1+e)=<¢BF,+CG, forL<n<L +1
DH, for L' <n,

with A, B, C, D given by 8.15.
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Proof: We define a sequence (wy,) by

W, + AV, forl<n<L+1
w, =8 BF,+CG, forL<n<L +1
DH, for L' <n.
Using Propositions 36, 37, 33, and the fact that A, B, C, D solve the matching
conditions, we deduce that (w,,) satisfies Rw = (14 €) w — 1,=1. From Proposition
33, we also know that this sequence has the right asymptotics at infinity. It remains
to prove that w,, > 0 for all n > 1 and the result w,, = w,,(1 + ¢) will follow from
(3.4).
Using Theorem 31 we get
(W(F,H), W(G, V)| <O(1)
therefore D > 0 and for € > 0 small enough
B>c?+0(1) € >0.
From D > 0 we have w,, > 0 for n > L'.
From equation (8.29) we have (with p = 1)

& <0(1)- nl—2

n

Using Theorem 31, this implies that for L < O(1) - e~'/2 and € > 0 small enough
1
AL 1
-2
From the positivity of W,,, this implies w,, > 0 for 1 <n < L.
For L <n < N, we use equation (8.30) (with p = N) giving

Gn
E,
For N <n < L, we use equation (8.29) with p = N also giving

G <O(1) -1/,

n

sup
1<n<L

<O(1)- N2 < 0(1) - 27 Y2,

This implies using Theorem 31
C G,

sup BT,

L<n<L'

<0O(1)-€.

Therefore for € > 0 small enough, we conclude that w, > 0 for any L <n < L. O
- Proof of the main result (equation (5.2)).

We can split the sum

L

Zmlere Zmlere D w1+ + > wy(l+e)
p=L+1 p=L"

The result follows from Corollary 32 using Propositions 36, 37 and 33. Note that
each of the three terms of the sum contribute an order e . O
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We now come to the construction of the solutions in the 3 different zones that
were just used in the proof of equation (5.2) from the matching conditions.

- Zone 3, n > N(e).

Proposition 33. There exists a constant C' > 0, such that for any e €]0,1], and
for any

!
(8.17) n2N21+[3C],

Ve
the equation Rw = (1 + €)w, a unique (positive) solution (H,) such that
H, = e_a/Qe_k"(l + 5;3),

with k = cosh™! (14¢€), and lim,,_, o 6i = 0. Moreover

1
sup |5f’l| < -,
n>No 2
and for any n > No
1
52 < 240
ny/e
and o
1
|52 - 5i+1| < #

Proof: We look for a solution of equation (8.13) of the form
Wy, = e 2R (14 5,).

The factor e~®/2 in front is to ensure the homogeneity in the matching. Inserting
this ansatz into equation (8.13), we get a recursive equation for ¢, (see [15]). We
get

€_a/2€_k(n+1)(1 +6n+1) G—a/Qe—k(n—l)(l +6n—1)
2 bn+1bn 2 bn—lbn
This can be rearranged as follows.

e~k (1+5n+1) ek (1+5n71)
2 + 2

1 1 1
F1 i) (L — ) s [F o — ).
e i ey S ——r

This can also be rewritten (using 1 4 ¢ = cosh (k))

e F(0ni1 —0n) — (6 — 1) =

1 1 1 1
2 (1 + 8,41 (- - 7> +2eF(1 4 6,_1) (— B —"
2 2 bn+1bn 2 2\/ bn—lbn

5n - 5n—1 = 672k(6n+1 - 671)

1 1
—2 72k1+5n - | = 2(1 4,
e ( +1)<2 5 /—bn—‘,-lbn) ( 1)

=214 e)e (1 +6,).

—1+e¢ (146, =

—_

or

N | —

1
- 2\/ bn—lbn> '
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Assuming the sequence (4,,) converges to zero when n tends to infinity, we get using
equation (8.26) with p = co
571 - 57171 =

oo

: 1 1
— Z 672k(]+1) 672]6(1 + 5n+1+j) 1l — | + (1 + 5n71+j) 11— —— .
=0 brt1+5bn+; brn—14;bn+j

Finally, assuming lim,,_,« 0, = 0 we get using equation (8.27) with p = oo

= =D ) e U (1 4 6p404) [ 1 - ———= ] +
bp+2+jbpt1+;

p=n j=0

1
(1 + 5;D+j) 1 - ]
bp+jbpt1+;

Observe that the right hand side is the action of an affine operator on §, denoted
by T (). From the asymptotic behavior of (b,) (see equation (5.1)) we conclude
that there is a constant C' > 0 such that for any r» > 1

1 C
- ——| <=
vV br-i—lbr T2

Therefore

SOS ey (o2 (g - S S B R
= =0 Vbprotibprisj bp+30p+1+;

<2CZZ w2 p+3)

p=n j=0
It is easy to show (using k = \/€) that there exists a constant C’ > 0 such that for
any € €0, 1]

_ 1
2022 Qkipﬂ <C’nﬁ.

p=n j=0
We now take
3C’
NG
Denote by B3 the Banach space of bounded sequences on { Ny, No + 1, ...} tending
to zero at infinity and equipped with the sup norm. It is easy to verify from the
above estimate that the affine operator ¥ maps B3 into itself with

Ny >

1
IT©llg, < 5 and [DT©)l, < 5

Here DT denotes the differential of the map. Therefore, by the contraction map-
ping principle (see [20]), the equation § = ¥ (J) has a unique fixed point in Bj
whose norm is at most 1/2. The last two bounds follow from equations (8.27) and
(8.26) using estimates as above. O

- Zone 1, n < N(e).
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Denote by (w!),, the positive solution of Rw! = w! — 1,_1, assumed to exist
from 1-transience of R. In Corollary 23, we showed that (wl)n behaves like n® for
large n but we need here more precise asymptotics.

Proposition 34. There exist an integer ny > 0 and a constant C > 0 such that

for n > ny, wl satisfies

w) = Cn® (1 + Si)

with
sup
n>niy
and
~1 ~1 “1-¢
6n+1—5n <O(1):n .

Proof: We consider the equation Rw = w for large n, and we look for a solution
of the form

wy, =n"(146,).
Using this ansatz (n > 2), we get
(n+1)*(1+8ns1) | (0= D*(1+6, 1)
o 2¢/bpbn—1
This can be rearranged as

14+1/n)e 1-1/n)®
(1+1/n) (Gt — 60) — ﬂ((sn —6n_1) =Tn(1+6,)
bnbn+1 bnbnfl

=n*(1+d,).

with
A+1/n)* (A=1/n)*
bnbn-i-l 2 bnbn—i-l .

We deduce that for n > 1 using equation (8.26) with p = oo,

— « 2/b, by,
hy, = anrl (1 1/”) y gn = el Tn(l + 5n)
bp—1 (14 1/n) (14+1/n)>

T,=1-

we get (assuming lim, o 6, = 0)

br_1bx /Db L1+ 1/5)®
5k1_5k:22 k—1b% b1 Tl(l‘i‘él)HM

by (14+1/0)« i (1—1/5)~
- > br—1bk (L+1/5)
(8.18) Sp_1 5k_22 Trie (H&)Jl;[ki(l*l/j)“'

Observe that from a? —a + 2w =0
IT,| < O@1) -n~27¢,

Therefore

l [e'S)

br_1bg 1+1/] _o_ 2 11—
1)) 1727 —— <01) k¢
S I e = 00 < < om

=k =k
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We choose ni such that

oo

br—1b (1+1
3 3 e L (<

k=n I=k
Define an affine map ¥ (J) in E"O{nl, ny+1,...} by

[e'S) l

br_1byg 1+1/]
(), 1 +1/0)e (1+0) 1[1,1U

k=n+1l=k Jj=k

From the choice of n; we have
[T (0) llese s, nat1,...3 < 1/3, and [[DT(Q) [l gy, ny+1,...3 < 1/3.
Therefore by the contraction mapping principle, the equation
b=2(9)
has a unique solution 51 in £°°{ny, n1 + 1, ...}. This solution satisfies

-1 1
Hé ||l°°{n1,n1+1,...} <=

Using (8.18), and the estimate on T;, we get for any n > ny
10ns1 — 0n| < O(1)n 176,

57

We know from Proposition 22 that any solution of Rw = w which behaves for large

n like n® has to be proportional to w.. Therefore the result follows. O

Proposition 35. There exists a constant C' > 0 such that for any e €]0,1] and for

any

C

8.19 1<n<N; =
( ) SN s 1 \/g

)

the equation Rw = (1 + €)w — 1,1 has a unique (positive) solution (W) given by

W, = wp (1 + 5t n)
with (_51 = 0. This solution satisfies for any 1 <n < Ny
6, <0(1) - €2,
and for any 1 < n < N;
|5n+1 5! Wl <O1)-€e-n.
Proof: We look for a solution w of equation (8.13) of the form
Wy, = W (1 + 0p)-
Using this ansatz in equation (8.13) we get for n > 1
w'rlerl(l +0n+1) | wp(1+30,-1)

Drbni1 2/bnbn_1

This can be rearranged as

oot = wh(14€)(1+6,).

1 1
Wy 410041 Wy, _10n—1

1,
bnbn—i-l 2\/ bnbn—l st

w6, = ewl (1 +5,).
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Forn=1wegetif ;1 =0
w!
(820) 52 = 2¢ bgbl—.
wy
For n > 1 we have

Wni1(Ont1 = 0n) Wy 1 (60 — 1) = ewy, (1 + 6,).

brbpt1 2¢/bpbn1

hence

bn 1_ 1
Gt — O = 4| oL En=L (5 6, 0) + 264/bn b= (1+ 6).

bn—l wnJrl n+1
We deduce that for n > 1 using equation (8.24) with p = 1,
w!

b1 wh_
hn = +1 1a gn = \/b bpy1—— (1+5 )

bn—1 Wy 4 Wt
we get
[bpi1b,  wiwd Vni1bn <=, 1.0
Opt1 — O0p = ——=—(62—9¢ 2er—— (1 +65).
i biby w'r11+1w711( ? 1+ ew}lw}lﬂ jz:;(w]) ()

Using equations (8.25) and (8.20), we get for n > 2
n—1

On = 02 + Z(5z+1 —dp)

=2

U [bab Y oty &
:52+Z,/”“ W (5 ) +22 ”“Z 2(144;)
1=2 l+1]2

b1b2 wl-l—lwl

n—1 l
bi1b \/b b
— 9 \/be1 1+5QZ,/;+” wiw; ””Z 2(1+6;)
1 l+1 j=2

ba wl+1wl :2 l

We now consider the affine operator T acting on [*° ({2,3,..., N1}) and defined by
1

T (é)Q = 26\/ bgbl %,

2
and for 2 < n < N;

-1 n—1 l
bi+1b \/bri1b
T(9), = 2¢ \ﬁbgbl H(1402) z,/;“ LI SR UL R R

1—=2 b2 wl+1wl 1—=2 wl wH—l j=2

We can now write the equation for 6
(I-3)(8") =0.
We know from Corollary 23 that there exists a constant C; > 1 such that for
any n > 1

[e3
— <w) < On”.
1
Recall that —1/2 < o < 1/2, and there exists a constant C’ > 1 such that for any

n>1 )
Ugb <.
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We have
DT (Q)lljoe (42,3, Nl})

1 Nl 1
w bl+1bl w1w2 \/bl-i-lbl
§26 \/bgbl L
wl \/ b1bs lewl ; l+1 jZQ

2

Ni—1

)2 Z m Z \/bztllzlz
=2 +1 =2

Ni—1 l Ni—1
=2 Z wV b1 Z 2 <2e0CH Z ﬁzw < 2¢C'C,C N2
j=

since 71/2 <a< 1/2, where C., > 0 is chosen as

!
1" 1
_ -2 20
C, = max il;pgn 1722 mjgzlj , 15 < oo.

Therefore, if N7 is such that

2¢C'CHC N? < 3
the linear map I — DT is invertible with an inverse of norm at most 3/2. In this
case, we define

§'=(I-DT(0)'%(0),

We have also )
1T @l g2,3,..., 1y < 2eC'CICLNY < 3
This implies

<1
o ||l°°({2,3 Ny =

»—[\DI»—!

From equation (8.25) and the above estimates it fol
(1) - €-n?,

and from equation (8.24) we have for 2 <n < N; — 1

ows that for 1 <n < N;

<1

Opy1 =0, SO() €0+ O(1) - e-n<O(1)-€-n. O

Proposition 36. There exists a constant C >0, an integer nqy > 1, and a constant
0 < eo <1 such that for any € €]0, €] and for any

1o
Ve

the solution of equation Rw = (14€)w—1,-1 constructed in Proposition 34 satisfies

W, = Cn(1 +62).

ny <n < Ny =

3

with
sup |6, < O(1)
n1<n<N;
and for any n; <n < Ni

|5n+1 5;| <0Q1)- (e ‘n+ n_l_c) .
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Proof: We take ¢y > 0 small enough such that

>ny+3

C

Ve
where n; is given in Proposition 34. The Proposition follows by combining the
results of propositions 34 and 35. O

- Zone 2, n = N(e).

First the idea. We look for a function f such that f(n+/€) is almost a solution
of (Rw), = (1 + €)w, for n~ N. We have

1 1

flln+1)Ve) + 5 flln=1)Ve) = (L + ) f(nv/e) =

2\/ bnbn+1 vV bnbn—l
1 1 , I
fnve) (2 b 2 6) Vel (Vo) (2\/bnbn+1 2\/bnbn1>
€ o ! ! 32 g 32y

for some &, € [nye, (n+1)y/€e] and &, _; € [(n — 1)y/€,n\/€]. This is also equal

to
gf,/(n\@) + ef(nve) (—1 + 2 V:L?)
+O(1) - n7* f(nv/e) + O(1) - Ven ™7 ['(n/€) + O(1) - e =2 [ (n/e)

FO(E2) - £ (6npr) + O(E2) - 7 (Enm):
We now choose f asin (8.14) and look for an exact solution of the equation (Rw),, =
(1+ €) wy, for n > N, of the form

Wn = f(n\/g)(l + 5n)a
with the sequence (d,,) small (for n > N). We get

f((n+DVe) A +0n41) | f((n—1)Ve)(L +dn-1) _
> o + SN — (14 o) f(nVe)(1 +6,) =
f((n+1DVe)dns1 | f((n—1)\/€)dn_1 _
N LY~ s (1+e)f(nVe)dn + Ry =
A+ DVt | f((n=DVEdnr [ fl(nt Dve) | fl(n=DVeE) ) o
N 21/bnbn_1 N 2/bpbn |
+(1+ 6,) R,
where

flln+ Ve |, f((n = DVE)
2/brbrs1 2y/bybn—1

R, = — (149 (o).

Since ¢ < 1, we have

N/ €
[Ra| < O(1)- (ﬂ—lf) +el? sup |f’”(§)l> .
n E€l(n—1)Ve,(n+1)Ve)]
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Therefore, after some easy algebra using 0 < { < 1 we get

ne—2-¢ ifn<N
|Rn| < 0(1) : {€1+(/2a/2 e~ V2 if g >N

We now consider the equation for (d,,)

(0 D)VEdnsr | f((1= DV (f((n+ DVE) |, flln = 1)@) .

bnanrl 2 bnbnfl bnanrl 2 V bnbnfl
—(146,)Rn
We can rewrite this as
f((n +1)Ve) f((n —1)Ve)

(6n+1 - 671) -

bnbn+1 2\/ bnbnfl

This can be rewritten

5. fbnt1 f((n— 1)Ve) (G — 1) — 27\/13"1)”“(1 +6,)Rn

(671 - 671—1) = _(1 + 6n)Rn

5n — Un
i b1 f((n +1)V/e) f((n+1)Ve)
e Case n > N.
Forn > N we take 6y = 0 and dy+1 = 0. We apply equation (8.25) with p = N,
— \/bnby,

ot f(n+ Ve " T T (n+ 1)Ve)
Wegetforn>N+2

V/br11bk biprbr f((k+1)Ve)f(kve)
721@;4-1 F((k+1)ve) o) sz b1k f((L+1)VeE) f((1)Ve)

Using the estimates on R,, f and b, it is easy to prove that there exists a constant
C” > 0 such that for any € €]0,1], and any n > N + 2

Z ~ Vbribe bk+lbk Rl Z biprbr f((k+1)Ve) f(kVe)
f((

poen T(E+1)y/e br410k f (l + 1)1/€) f(l\/€)
n-! n-1 n—1
<0()- Z e1+¢/2 Z e2(1—}’6)\/276 <0(1)- el/2+¢/2 Z 62(n—k)\/276
k=N+1 =k k=N-+1

< C//64/262(n—N)\/Z

We define an affine operator ¥ on I ({N,N +1, ... M'}) by
(8.21)

VAZERL biabe f((k 4+ D)VES (kv/E)
2k¥+1f k—l—l\/_ 1+5k sz brr1br [ l+1)\/E)f(l\/E)’

for N+2<n< M, and
TE)Ny=T@)yn41=0

We have
||DS( )”100({]\[ N41, . M) < C”GC/2€2(I\/[ —N)V2e
and

IF O e (nv, N1, . 00y S " C/2p2(M' =N)VZe
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For 0 < € < 1, we choose

log (3C"¢¢/?
M' =N + [—%1 ,
then
O 6/22(M'=N)V2e 1
Note that for € small we have M’ > N. The equatiin
§=2%(9)
has a unique solution §” in I*° ({N, N + 1, ... M'}), and
1

Hé2||loo({]\/'7]\/'+1, M} < 9°

From equation (8.24) we have

n+1_6 Z Jk H h]

k=N+1  j=k+1

L Z o ~ Vbkbrgr (14 6) R f[ b1 f((G —1)Ve)

k=N+1 k+1 \/_) j=k+1 bjfl f((j+1)\/g)
VOibii bus b £(( + D)VELS(hVE)
-2 +6r)R )
k;Hf k+1 \/_)( e brsabi f((n+1)V/e) f(ny/e)
Therefore, if N <n < M’
(8.22) |6ns1 — On| < O 1/2+C /2 2(n—N)V2e

e Casen < N +1.
For n < N + 1 we take 5y = 0 and dy41 = 0 as before to obtain the same
solution. We apply equation (8.27) with p = N +1

_ [bnpa f((n = DVe) _ 5V bnbnt1
hn = bp_1 f((n+ 1)\/g)’ gn = 2f((n+1)\/g) (1 +(5n)R

We get for n < N
1

Vbt bebr—1 f(I/€) f((1 +1)/€)
=2 Z A l+1+ (1+0)R Z biyrbr f((k —1)V/e) f(k/e)

Using the estimates on R,,, f and b, it is easy to prove that there exists a constant
C"" > 0 such that for any € €]0,1], and any n < N

l

Vbt bbe—1 f(I\/€) f((1 +1)/€)
Z f l Vb Z kDk—

+1)\e bipabe f((k—1)Ve) f(kve)
- 2 e 1 > 2-¢+2
< O(l) . Z [—2-¢ Z k2_oz < (9(1) . W Z [—2-¢H20 < C///nfg
l=n+1 k=n+1 I=n+1

since —1/2 < v < 1/2.
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We define an affine operator ¥ on [*° ({M,M +1, ... N +1}) by
!

Vb1 brbr—1 f(IV/e) f((L+1)Ve)
-2 Z T z+1+ (L+0)R Z biib (k= D)Vaf(kye)’

fongngN—l,and
S(é)N = S(é)N-i-l =0.
We have
HD‘I( )HZOO({M M+1,... N+1}) < CWM?C?
and

[pA( ||l°°({M M1, Nt1}) S " M~E.
Hence for M > 0 large enough, namely

" — 1
C"M~¢ < 3
the equation
4=%(9)
has a unique solution 6 in 1% ({M, M +1, ... N 4+ 1}), and

10 qararrn, . sap < 5
Using equation (8.26), we get for any M <n < N

02,1 — 02| <o) -nt
We therefore obtain:

Proposition 37. There exist three positive constants C, C' and e €)0, 1] such that
for any € €]0, €[ and for any n € [M, M'] with

(8.23) M=C, M'= [0'6_1/2 1oge_1} ,

the equation Rw = (1+ €)w has a positive solution (F,,) of the form (v=1/2—«)
= f (n/€) (14 62) = /102 /K, (nv/2e) (1 +62)

with 63 = 6%, =0 and |62 < 1/2 and

52 52 O(1) n=1=¢ forn <N,
| n+1 | O(l) 61/2+C/2 e2 (n=N)\V2e forn> N .

Proof: Match the two latter pieces obtained while n > N and n < N + 1, at N
and N+ 1. O

A.15 PROPAGATORS AND WRONSKIANS.

In this last Appendix, we give some supplementary material needed in particular
in Appendix A.14.

e Propagators. For n > p assume

5n+1 - 671 = hn((sn - 671—1) + gn
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We define R,11 = 6py1 — dp, and for n > p

5n+1 - 5n = Rn-l—l H hj-

Jj=p+1
Then
n n—1
Rusr [[ hj=hnRe J] hi+on
Jj=p+1 j=p+1
G
Rn-l—l :Rn +gn H h_j
Jj=p+1
Rpy1=Rypi+ Y (Riyr — Re)
k=p+1
n k 1
Ryt1 =Ry + Z gk‘H h_]
k=p+1  j=p+1
n n n k
1
6n+1_6n:(6p+1_6p) H h; + H h; Z 9k H e
Jj=p+1 J=p+1  k=p+1 j=p+1 7
(8.24) = (0p+1 — 0p) H hj + Z Ik H hy.
Jj=p+1 k=p+1  j=k+1
Forn>p+1,
n—1
On = Opt1 + Z (0141 — 01)
:pJ,»l
S RN O | KR D |
l=p+1 j=p+1 l=p+1 k=p+1 Jj=k+1
n—1 l n—1 l l
=Sp+Oprr =) [T+ > T |+ D Do I W
l=p+1j=p+1 I=p+1k=p+1  j=k+1

n—1 n—1 l
(8.25) =0y + (6pr1 —0p) [ 1+ Z H hil+ > o>, I

l=p+1j=p+1 k=p+1  I=k j=k+1
For 1 < n < p assume
1
57171 - 571 = E(én - 5n+1) + Z_Z

We define R,_1 = 6,—1 — dp, and for n < p

p—1 1

671—1 - 671 =R, H h_j
Jj=n

Then
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p—1
Rnfl = Rn + gn H hj

j=n+1

p—1
R,—1=Rp_1+ 2(31—1 - Ry)

l=n

p—1 p—1
:Rp—1+zgl H h]

l=n j=l+1
For k<p
p—1 1 p—1 1 p—1 p—1
Sk—1— 0k = (Op—1 — 0p) H B + H h—ngl H h;
ji=k ji=k =k j=l+1
p—1 1 p—1 l 1
(8.26) = (6p—1 — 6p) he + g H e
j=k 7 =k j=k
and forn <p—1
p—1
On=0p14+ > (6h-1—0k)
k=n-+1

p—1 p—1 1 p—1 p—1

!
=0p—1+ (6p—1—6p) Z HEjL Z ZQZH%

k=n+1j=k 7  k=n+li=k j=k 7

p—1 p—1 1 p—1 p—1 l 1
=0t @ =d) {1+ 3 [T+ > > all
k=n+1j=k 7 k=n+1l=k j=k 7

e Cancellation of Wronskians. Let
Xp=an(1407), Yo =yn(1+0Y).
Then
(8.28) W(X,Y), =W (,y), (L+ 0, + 0y +056,,1)+
Hyn@nrr (041 — 03) (L +0%) — (6541 — 07) (1 +47)) -
Another version of this fact is as follows. Let
Xpn = TnpUn, Yn = Yntn.

Then

w (Xa Y)n =W (:C) y)n UnUn+1 + YnTn+1 ((Un-i-l - un)vn - ('Un—i-l - Un)un) .

65
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e Other solutions and Wronskians. Let (z,) and (y,) satisfy
Ln+1 + Ln—1 Yn+1 Yn—1 — pYn.
2¢/bubpt1 24/bubp1 2¢/bubpt1  24/bubp—1
for M <n < M'. Let p €]M, M'[, and assume y, and yp,+1 are given. We have

= px, and

bn lbn
W('Tay)n = +—W(‘Tay)n71
bnbnfl
and (see Lemma 14)
bn+1bn
W (z,y), = | 222" W (2,4). .
(Z,Y), byerby (z,9),
Then
Yn+1 _ y_n + W(y,ZC)n
Tn+1 In TnTn+1
and for n > p
n—1 n—1
n w , L
y_z<yl+1ﬂ>+&z (y )l+y_20
In Ti+1 x] Tp TiT14+1 Tp

l=p l=p

(8.29) _w, W), = Voah
Tp v/ bp+1bp = TITi4+1

hence )
Yp W(y,x)p — v/ bi+1b;
Yn = —Tp + Ty, .
Tp vV bp+1bp =y T+
Forn <p

-1 -1
y_n:_pz: Yi+1 Y _’_&:_pz:W(yax)l_’_&
Tn,

X X X | X
I—n 1+1 ! p I—n IL]+1 p

W (y, @), 222 /breib
(8.30) _ Y (y )p 1+101

Tp v/ bpt1bp = T4

-1
S S W (z,9), "~ Vbis1bi
T T by, & iz

If we define a sequence (gy,) by

. prl v bet1be

hence

l=n "7y zery ifn<p
Un =140 ifn=p
n—1 v/bey1be .
Zl:p T ifn>p
we have in all cases W )
Yy, x
Yn = &xn + x4y L

———n-
Lp Vbpt1by

For two sequences () and (u,) denote by zu the Hadamard product sequence

(xU)p, = Tplp.
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Then
w (Z, xu)n = Zn4+1TnUn — 2nTp41Un41 = (Zn-i-lxn _znxn—i-l)un _ann-i-l(un—i-l _Un)
=W (2,2), Unt+1 — ZnTns1 (Uns1 — Up)-
In particular with y = zu and
Uy = Y + L/ (y,x)pgn
Tp  \/bpt1by
vy W(y,z), Wi(y,z), N
W (z, =Wiz,x 4 — — ZnTpt] ——— -
( y)n ( )n , \/myn-i-l nLn+1 \/m (yn+1 yn)
Yp + W(yaz>pg ) o 1W(y,1')p \/bn-i-lbn
—_ - 4/ Yn+ — “ndn+ 3
Lp vV bp—‘,—lbp \/ bp+1bp TnLn+1

& + W(yaz)pg 1 _ W(y,l’)p \/bn+1bn.
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