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CRITICAL WETTING FOR A RANDOM LINE IN LONG-RANGE POTENTIAL

We consider a restricted Solid-on-Solid interface in Z + , subject to a potential V (n) behaving at infinity like -w/n 2 . Whenever there is a wetting transition as b 0 ≡ exp V (0) is varied, we prove the following results for the density of returns m (b 0 ) to the origin:

Here the situation is more delicate because the function e

the Gibbs potential is -log ρ. If |V | is bounded we only have to look at the behavior for large N of

By detailed balance, for every p, we have

and the bounds (see also lemma 25)

Therefore, if e -1 2 U(p) is a bounded sequence and

(2.12) lim

the Gibbs potential is equal to -log ρ. This applies to random walks with period one (irreducible) or two.

3. The CASE X n+1 -X n = ±1

For q -p = ±1, the normalization (2.2) is satisfied with W (q, p) = log 2 and V (q) → 0 as q → ∞. Therefore p) and v p = e -U(p)/2 , equation (2.4) reads Qv = ρv with

INTRODUCTION and SUMMARY of RESULTS

We consider a restricted Solid-on-Solid (SOS) interface in 1+1 dimension, pinned at the origin, in a potential V (n) characterized by

b n =: e V (n) = 1 - w n 2 + O 1 n 2+ζ , ζ ∈ (0, 1] , n ∈ Z + == {0, 1, 2, . . . }. A configuration (X i ) N i=0 with X 0 = 0, X i ∈ Z + , |X i+1 -X i | = 1, i = 0, ..., N -1, has probability P SOS (X 1 , ..., X N ) ≈ N i=1 e V (Xi) .
Both the free boundary at the endpoint N and the bridge (X N = 0) are considered. Central to this problem is the matrix R obtained while deleting the first row and column of the matrix Q defined by:

Q p,q = 1 2 √ bpbq , if |p -q| = 1 0, otherwise .
The matrix Q (and R) acts on infinite sequences w = (w 0 , w 1 , ...) (respectively w = (w 1 , w 2 , ...)). We let w 1 (ρ) = inf {w 1 : w > 0 and Rw = ρw -1 p=1 } , with w 1 (ρ) = ∞ if the set is empty. If w 1 (ρ) < ∞, we denote by w the positive sequence (w p ) p≥1 solution of Rw = ρw -1 p=1 , with w 1 = w 1 (ρ). With lim n→∞ (R 2n i,j ) 1/(2n) = ρ * (R) ≥ 1 we define

b c 0 = lim ρցρ * (R)
w 1 (ρ) 4b 1 ρ .

We show that the SOS model exhibits a (wetting) phase transition as b 0 is varied if and only if R is 1-transient (equivalent to w 1 (1) < ∞ as from Vere-Jones [START_REF] Vere-Jones | Ergodic properties of nonnegative matrices I[END_REF]) or equivalently if b c 0 < ∞. This can occur only if w < 1/8. If w > 1/8, there is no phase transition. With Finally, if there is a phase transition, we show that

• if w < -3/8 it is first order: m (b 0 ) has a jump at b c 0 ,

• if -3/8 < w < 1/8, then m (b 0 ) ∼ (b c 0 -b 0 ) θ/(1-θ) as b 0 ր b c 0 , where θ = 1 - √ 1-8w 2 
. This agrees with results by Lipowsky and Nieuwenhuizen [START_REF] Lipowsky | Intermediate fluctuation regime for wetting transitions in two dimensions[END_REF] who do the computation for a Schrödinger equation of the type

- 1 2 
d 2 dz 2 + V (z) φ(z) = Eφ(z) with V (z) = V 0 1 z≤z0 -w/z 2 1 z>z0 .
The paper is organized as follows:

In Section 2, we develop the relation SOS model versus random walk, allowing to derive an expression for the Gibbs potential.

In Section 3, we focus on the restricted SOS model. We derive the phase diagram in terms of the dominant eigenvalue of the matrix R.

Section 4 is devoted to the study of the density of returns to the origin and corresponding order of the phase transition.

In Section 5, we show that, when the phase transition is continuous, the critical indices are universal in that they only depend on w.

In Section 6, we develop exact results for a particular sequence of (b n ) , solved while using Gauss hypergeometric functions.

In Section 7, we develop exact results for a class of sequences (b n ) built from random walks.

Most of the proofs are postponed to the Appendix, Section 8.

GIBBS POTENTIAL and RANDOM WALK

2.1. Background. We consider a random line or directed polymer X 0 , X 1 , . . . , X N with X 0 = 0 and X i ∈ Z + = {0, 1, 2, . . . } with probability distribution (2.1) Xn) ,

P SOS (X 1 , . . . , X N ) = Z -1 N N -1 n=0 e -W (Xn,Xn+1) N n=0 e -V (
where W (q, p) = W (p, q) for all q, p ∈ Z + , and Z N is the partition function normalizing the probability. In SOS model terminology, V (X i ) is the one-body potential.

Here the SOS model represents an interface between two phases at coexistence, interacting with a wall located at X = 0. This interaction typically decreases polynomially with the distance to the wall. The zero of energy can be fixed for all such models by requiring (

2.2) lim

p→∞ q∈Z+ e -W (q,p) e -V (p)/2 = 1, and the sum for each p ∈ Z + is assumed to converge. We will be mostly interested in knowing whether the line (interface) stays in the vicinity of the wall (partial wetting) or escapes to infinity (complete wetting).

In the sequel we will use Landau's notation ∼, namely for two sequences (a n ) and

(b n ), (a n ) ∼ (b n ) means lim n→∞ a n b n = 1.
Similarly, a n ≈ b n is when the limit is any non-zero constant instead of 1.

2.2.

Computation of the Gibbs potential. The Gibbs potential is defined by

(2.3) Φ ((b n )) = lim N →∞ - 1 N log Z N .
In order to represent (2.1) as the probability of a random walk trajectory, possibly weighted at its end-point X N , let us assume for some ρ > 0 the existence of a solution U depending upon ρ to (2.4) q∈Z+ e -U(q)/2 e -W (q,p)-V (q)/2-V (p)/2 = ρ e -U(p)/2 , p ≥ 0 and define a random walk starting at X 0 = 0 with values in Z + by the transition probabilities (2.5) P RW (X n+1 = p | X n = q) = ρ -1 e -W (q,p)-V (q)/2-V (p)/2-U(p)/2+U(q)/2 , q, p ≥ 0.

Note that (2.4) implies that (2.5) is properly normalized. Moreover (2.5) implies that the walk obeys the detailed balance condition with respect to the unnormalized measure exp(-U (q)) over Z + . Also (2.5) gives (2.6) e -W (q,p)-V (p)/2-V (q)/2 = ρ • P RW (p, q)P RW (q, p)

1/2 .
The SOS model and the random walk started at X 0 = 0 are related by (2.7) P SOS (X 1 , . . . , X N ) = Z -1 N ρ N P RW (X 1 , . . . , X N ) e -1 2 U(0)-1 2 V (0)+ 1 2 U(XN )-1 2 V (XN ) , and their marginal (2.8)

P SOS (X N ) = Z -1 N ρ N P RW (X N ) e -1 2 U(0)-1 2 V (0)+ 1 2 U(XN )-1 2 V (XN ) .
P SOS (X N ) and P RW (X N ) may differ strongly due to the factor e 1 2 U(XN ) , but conditioned on the value of X N , the distribution of X 1 , . . . , X N -1 is the same for SOS and for a corresponding random walk. This correspondence between random walk and random line was developed in [START_REF] Littin | R-positivity of nearest neighbor matrices and applications to Gibbs states[END_REF] and [START_REF] De Coninck | Random walk versus random line[END_REF].

2.3. Bridge. For the bridge (X 2N = 0) the partition function is given by

Z 2N = X1,...,X2N-1 2N -2 n=0 e -W (Xn,Xn+1) 2N -1 n=0
e -V (Xn) e -W (X2N-1,0) e -V (0) (2.9) = ρ 2N e -V (0) P RW (X 2N = 0).

Hence if lim

N →∞ 1 2N log P RW (X 2N = 0) = 0, the Gibbs potential is equal to -log ρ.

Remark 1. If the walk has a normalizable invariant measure the above condition is satisfied. If the walk has a non-normalizable invariant measure, it may happen that P RW (X 2N = 0) decay exponentially fast with N . In that case the Gibbs potential is not -log ρ.

2.4. Free boundary condition. Summing over X N in (2.8) we get (2.10)

Z N = ρ N XN P RW (X N ) e -1 2 U(0)-1 2 V (0)+ 1 2 U(XN )-1 2 V (XN ) .
We will sometimes write Q b0 instead of Q in order to emphasize the dependence in b 0 , our main parameter below.

In general there is a continuum of values of ρ such that there exists a positive solution to Qv = ρv, but there is only one Gibbs potential. In the case of the free boundary condition, the other solutions with a ρ = e -Φ leave a non trivial boundary term in the relation (2.10). This gives an exponential correction leading finally to the right Gibbs potential. Assume we have a positive solution of Qv = ρv.

Then v 2 2 √ b 2 b 1 + v 0 2 √ b 0 b 1 = ρv 1 can be rewritten as v 2 2 √ b 2 b 1 = ρv 1 - v 0 2 √ b 0 b 1 ,
which means that (w p ) defined for p ≥ 1 by

w p = 2v p √ b 0 b 1 v 0 is a positive solution of (3.2) Rw = ρw -1 p=1 ,
where R denotes the matrix Q without its first row and first column,

(Rv) p = 1 2 √ b1b2 v 2 , for p = 1 1 2 √ bpbp+1 v p+1 + 1 2 √ bpbp-1 v p-1 , for p > 1 .
Note that R is independent of b 0 .

In the terminology of [START_REF] Vere-Jones | Ergodic properties of nonnegative matrices I[END_REF], the matrix R must be ρ-transient. Indeed, according to Corollary 4. Criterion II in [START_REF] Vere-Jones | Ergodic properties of nonnegative matrices I[END_REF], the matrix R is ρ-transient if and only if equation (3.2) has a positive solution. Else, R is ρ-recurrent.

For convenience we will use {1, 2, . . .} for the indices of R. We also have This condition is thus necessary and sufficient for the equation Qv = ρv to have a positive solution.

As will be seen in detail below, many properties of the model depend on the function w 1 (ρ). We now recall some results by Vere-Jones (see [START_REF] Vere-Jones | Ergodic properties of nonnegative matrices I[END_REF]) adapted to our setting.

Theorem 1. (i) The limit

ρ * = lim n→∞ (R 2n i,j ) 1/(2n)
exists and is independent of (i, j) for all i -j even.

(ii) ρ * = inf {ρ : ∃w ≥ 0, Rw = ρw -1 n=0 } .

(iii) For ρ < ρ * the equation Rw = ρw -1 n=0 has no positive solution.

Proof:

(i) follows from Theorem A in [START_REF] Vere-Jones | Ergodic properties of nonnegative matrices I[END_REF].

(ii) follows from Corollary 4 in [START_REF] Vere-Jones | Ergodic properties of nonnegative matrices I[END_REF].

(iii) follows from Corollary 1 in [START_REF] Vere-Jones | Ergodic properties of nonnegative matrices I[END_REF]. 2

The latter theorem holds under more general conditions. In the case of our Jacobi matrices Q or R we can get the following more precise results which we have not found in the literature.

Theorem 2. (i) lim inf p 1 √ bpbp+1 ≤ ρ * ≤ sup p≥1 1 √ bpbp+1 . (ii) If lim n→∞ b n = 1, then 1 ≤ ρ * < ∞.
(iii) ∀ρ > 0, the equation Qv = ρv has a unique solution modulo a constant factor.

(iv) If there is a positive solution to (3.2), then the equation Rv = ρv has a positive solution.

Proof: The proof is given in Appendix A.1. Note that the v in (iii) is not necessarily positive.

From now on we will assume that

(3.3) ∞ n=1 |1 -b n | < ∞,
which implies of course lim n→∞ b n = 1. We will denote by w the sequence (w p ) p≥1 solution of

(3.4) Rw = ρw -1 p=1 ,
with w 1 = w 1 (ρ). Note that by continuity, (w) is a non-negative sequence and from the recursion, in fact positive.

Lemma 3. We have (i) The function w 1 (ρ) is decreasing and continuous in ρ for ρ ∈ (ρ

* (R), ∞). (ii) The function ρ -1 w 1 (ρ) is decreasing and continuous in ρ for ρ ∈ (ρ * (R), ∞). (iii) lim ρ→∞ w 1 (ρ) ρ = 0. (iv) If ρ * (R) > 1, lim ρցρ * (R) w 1 (ρ) = ∞, hence lim ρցρ * (R) w 1 (ρ) ρ = ∞. (v) If ρ * (R) = 1 and lim ρց1 w 1 (ρ) < ∞, then lim ρց1 w 1 (ρ) = w 1 (1).
Proof: The proof is given in Appendix A.2.

As will be seen below, the existence or not of a phase transition is related to the property that ρ * (R) = 1 and R is one-transient. This corresponds to the situation ρ * (R) = 1 and lim ρց1 w 1 (ρ) < ∞ (see Lemma 3). We have not found a general criterion to decide if this property is true or not for a general sequence (b n ).

Besides the explicit example given later on, we can deal with several cases. 

Proof:

The proof is given in Appendix A.3.

We will be mostly interested later on by sequences (b n ) such that for n ≥ 1 (iii) For any w < 1/8, there exists a positive sequence (b n ) satisfying (3.5) such that the equation Rw = w -1 p=1 has a positive solution.

(3.5) b n = 1 - w n 2 + O 1 n 2+ζ , ζ > 0.
(iv) For the sequence b n = 1 -w n 2 for all n ≥ 1, there exists 0 < w c ≤ 1/8 such that for any w < w c , the equation Rw = w -1 p=1 has a positive solution.

Proof: The proof is given in Appendix A.4. We have performed numerical simulations suggesting that in case (iv), w c = 1/8. 

DENSITY of RETURNS to the ORIGIN and PHASE TRANSITION

Recall (see 2.5) that if the equation Qv = ρv has a positive solution, the walk on Z + reflected at zero given by for n ≥ 1

p n = 1 ρ b n b n+1 v n+1 v n ,
(and p 0 = 1) has a positive invariant measure (π n ) (not necessarily normalizable) given by

π n = v 2 n .
Recall also that v is unique up to a positive factor. When v ∈ ℓ 2 (Z + ), we will denote by (ν n ) the invariant probability measure

ν n = π n ∞ j=0 π j = v 2 n ∞ j=0 v 2 j .
In the sequel, for a given b 0 < b c 0 (and for b

0 = b c 0 if b c 0 < ∞) we will take ρ = ρ(b 0 ). Proposition 7. Assume b 0 < b c
0 in which case the random walk is positive recurrent. Then (i) the following limits (density of returns to the origin) exist

lim N →∞ 1 2N -1 X1,...,X2N-1 P SOS (X 1 , . . . , X 2N -1 | X 2N = 0) 2N -1 l=1 1 X l =0 and lim N →∞ 1 N X1,...,XN P SOS (X 1 , . . . , X N ) N l=1 1 X l =0 .
(ii) Moreover, these two limits are equal to

(4.1) m(b 0 ) = ν 0 = v 2 0 ∞ p=0 v 2 p = 1 1 + (4b 0 b 1 ) -1 ∞ p=1 w p (ρ(b 0 )) 2 .
(iii) The function m(b 0 ) is non-increasing.

(iv) The Gibbs potential Φ ((b n )) has a partial derivative with respect to b 0 equal to m(b 0 )/b 0 .

Note that m (the density of returns to the origin) is equal to zero if the denominator diverges, namely if (π n ) is not normalizable.

Proof: The proof is given in Appendix A.6.

Theorem 8. Assume (3.5).

Then (i) For any b 0 < b c 0 , m (b 0 ) > 0. (ii) Assume b c 0 < ∞ and b 0 > b c 0 , then m (b 0 ) = 0. (iii) Assume b c 0 < ∞, if -3/8 ≤ w < 1/8 then lim b0րb c 0 m(b 0 ) = 0. (iv) Assume b c 0 < ∞, if w < -3/8 then lim b0րb c 0 m(b 0 ) > 0.
Proof: The proof is given in Appendix A.8. We note that, whenever w < -3/8 and b c 0 < ∞, the density of returns m(b 0 ) has a jump at b c 0 .

UNIVERSALITY of CRITICAL INDICES

We show the following

Theorem 9. If the sequence (b n ) satisfies (5.1) b n = 1 - w n 2 + O n -2-ζ for some 1 ≥ ζ > 0 with -3/8 < w < 1/8, and if R is 1-transient, then the sequence (w p (1 + ǫ)) (ǫ > 0) satisfies (5.2) 0 < lim inf ǫր0 ǫ θ ∞ p=1 w p (1 + ǫ) 2 ≤ lim sup ǫր0 ǫ θ ∞ p=1 w p (1 + ǫ) 2 < ∞ where θ = 1 - √ 1-8w 2
.

Remark:

Observe that for -3/8 ≤ w < 1/8, 0 ≤ θ 1 -θ < ∞.
(the transformation w → θ(w)/(1 -θ(w) maps bijectively the interval [-3/8, 1/8[ on R + ). The condition ζ ≤ 1 is of course non restrictive but will be convenient in the estimates later on.

We will use the argument developed in Appendix A.10 to determine the value of the critical index, but now in the general case. Recall indeed that (see Proposition 7.(iv)) Therefore

m(b 0 ) = - b 0 ρ 0 (b 0 ) ∂ b0 ρ 0 (b 0 ).
∂ b0 ρ 0 (b 0 ) = ∂ b0 ǫ ≈ - ρ 0 (b 0 ) b 0 ǫ(b 0 ) θ .
This implies b c 0 -b 0 ≈ ǫ 1-θ and therefore we obtain the Corollary 10. Under the hypothesis of Theorem 9, the density of returns to the origin obeys

m(b 0 ) ≈ (b c 0 -b 0 ) θ/(1-θ) as b 0 ր b c 0 . Remark: In (8.7), s = α + is the "other" solution of (5.3) s 2 -s + 2w = 0, namely s = 1 -α -, and we get 3/2 -s s -1/2 = α -+ 1/2 1/2 -α - = θ 1 -θ ,
as expected from the results for the hypergeometric model developed in the next Section.

The proofs for critical indices are postponed to Appendix A.14.

The HYPERGEOMETRIC MODEL: a SOLVABLE CASE

Up to now, in our discussion, we presented rather general results. For a particular choice of the sequence (b n ) n≥1 , one can derive more explicit expressions.

6.1. The sequences (b n ) and (w p ). Let s ≥ 1/2 and a > 3/4 (other parameter ranges are possible). For n ≥ 1 define

b n = (s + n -2 + 2a) Γ(a + n/2 -1/2) Γ(s + a + n/2 -1) 2 Γ(a + n/2) Γ(s + a + n/2 -1/2) . Let V (n) = log b n , then lim n→∞ V (n) = 0 and b n = 1 - w n 2 + O(n -3 ) with w = s -s 2 2 .
Note that w ≤ 1/8, and the half line s ∈ [1/2, ∞) maps to the half line w ∈ (-∞, 1/8].

Theorem 11. It holds that (i)

w p (ρ) = 2(2ρ) -p F (a + (p -1)/2, a + p/2; 2a + p + s -1; ρ -2 ) F (a -1/2, a; 2a + s -1; ρ -2 ) × Γ(s -1 + 2a)Γ(s + 2a)Γ(2a + p -1)Γ(2s + 2a + p -2) Γ(s + p -2 + 2a)Γ(s + p -1 + 2a)Γ(2a)Γ(2s + 2a -1) . (ii) ρ * (R) = 1 (iii) We have b c 0 = w 1 (1) 4b 1 = 1 2 Γ(a + s -1)Γ(a + 1/2) Γ(a)Γ(s + a -1/2) ,
and for 0 < b 0 ≤ b c 0 , ρ(b 0 ) is the unique solution larger than one of the implicit equation

b 0 = w 1 (ρ(b 0 )) 4ρ(b 0 ) b 1 = 1 4ρ(b 0 ) 2 b 1 F (a, a + 1/2; 2a + s; ρ -2 (b 0 )) F (a -1/2, a; 2a + s -1; ρ -2 (b 0 ))
.

(iv)

w 1 (1) ∼ p 1-s .
Here F = 2 F 1 the hypergeometric function. The proof is given in Appendix A.9. F (a+1,a+3/2;2a+s+1;ρ -2 ) F (a,a+1/2;2a+s;ρ -2 )

a(a+1/2) 2a+s -2 ρ 2
F (a+1/2,a+1;2a+s;ρ -2 ) F (a-1/2,a;2a+s-1;ρ -2 ) a(a-1/2) 2a+s-1

.

(ii) For 1/2 < s < 3/2 (-3/8 < w < 1/8) lim b0րb c 0 m (b 0 ) = 0, and 
lim b0րb c 0 m(b 0 , s) (b c 0 -b 0 ) (3/2-s)/(s-1/
2) exists, is finite and non zero. The critical index (3/2 -s)/(s -1/2) can be expressed in terms of w using the relation w = (s -s 2 )/2.

(iii) For s > 3/2 (w < -3/8)

lim b0րb c 0 m(b 0 , s) = 1 2 + 2a s-3/2 .
For the proof, see Appendix A.10 8. In figure 1, with a = 0.97, we plot the critical line

u c := -log (b c 0 ) = -log w 1 (1) 4b 1
as a function of w. In figure 2, we plot the thermodynamic diagram in the plane (m,u), with lines corresponding to various values of w. The red line corresponds to the first order phase transition, namely the inverse function of u → m(exp(-u), w(u)) with w(u) such that ρ(exp(-u), w(u)) = 1. 6.3. Particular values of s. The formulas simplify for s integer, we only treat the cases s = 1 and s = 2. s = 1 (w = 0). In that case it is easy to verify that b n = 1 for any n ≥ 1. Also

w n = 2e -nv for n ≥ 1 with cosh(v) = ρ.
The equation for ρ is

w 1 = 2e -v = 4ρb 0 hence b c 0 = 1/2. For 0 < b 0 < b c 0 we have ρ(b 0 ) = -log 2 - 1 2 (log b 0 + log(1 -b 0 )) , and 
m(b 0 ) = 1/2 -b 0 1 -b 0 .
See Appendix A.11 for the details of the computations. Note that in accordance with Proposition 12,

lim b0ր1/2 m(b 0 ) 1/2 -b 0 = 2.
6.3.1. s = 2 (w = -1). In this case we have

b p = (2a + p) 2 (2a + p) 2 -1 , w p = 2ρ -p (1+ 1 -ρ -2 ) -p (a + p/2 -1/2) 1 -ρ -2 -a -p/2 + 1/2 + ρ -2 (a + p/2) (a + p/2 + 1/2) × a + 1/2 (a -1/2) 1 -ρ -2 -a + 1/2 + a ρ -2 a (2a + p + 1) (2a + p -1) (a + 1) and b c 0 = a 2a + 1 . For 0 < b 0 < b c 0 we have ρ(b 0 ) = - 1 2 log      1 - b c 2 0 (b c 0 -b 0 ) 2 + (b c 0 -b 0 ) (b c 0 -2b c 2 0 ) + b c 0 (b c 0 -b 0 ) 2 b c 2 0      m(b 0 ) = - num den , where num = b c 0 4b 0 b c 3 0 -8b 2 0 + 6b 0 b c 2 0 + 4b 3 0 + 6b 2 0 + 3b 0 b c 0 -3b 2 0 + b c 0 -b 0 b c 2 0 -(b 0 + 2) b c 0 + 1 4b 0 b c 2 0 -4b 2 0 + 2b 0 b c 0 + b 0 , den = b c 0 4b c 4 0 -(12b 0 + 8) b c 3 0 + 12b 2 0 + 16b 0 + 4 b c 2 0 -4b 3 0 + 8b 2 0 + 8b 0 b c 0 + 4b 2 0 + b c 0 -b 0 b c 2 0 -(b 0 + 2) b c 0 + 1 4b c 3 0 -(8b 0 + 4) b c 2 0 + 4b 2 0 + 4b 0 b c 0 -2b 0 and lim b0րb c 0 m(b 0 ) = 1 4a + 2 .
See Appendix A.12 for the details of the computations.

From RANDOM WALK to SOS MODEL

In this Section, we supply a class of interesting random walks on the integers (reflected at the origin) akin to the discrete Bessel model. From the probabilities (p n , q n ) to move up (and down) by one unit given the walker is in state n with p n + q n = 1, n ≥ 1, the sequence (b n ) of corresponding SOS model is given by the recurrence

b n b n+1 = 1 4p n q n+1
, n ≥ 0, allowing to compute (b n ) n≥1 as a function of b 0 . We shall assume p n → 1/2 as n → ∞ (the random walk has zero drift at infinity) and furthermore

p n ∼ 1 2 1 + λ n + A n 2 for some λ as n → ∞, compatible with b n = 1 -w n 2 + O 1 n 2+ζ for w = 1 2 λ (1 -λ).
Letting indeed B k+1 = b 2k+1 and C k = b 2k , we find

B k+1 = B k p 2k-1 q 2k p 2k q 2k+1 =: B k U k+1 , B 0 = 1 4b 0 q 1 = b 1 C k+1 = C k p 2k q 2k+1 p 2k+1 q 2k+2 =: C k V k+1 , C 0 = b 0 where B k C k = b 2k b 2k+1 = 1 4p 2k p 2k+1 → 1 as k → ∞. Thus, B k = B 0 k l=1 U l → k→∞ B 0 u = 1 C k = C 0 k l=1 V l → k→∞ C 0 v = 1 where v = ∞ l=1 p 2l-2 q 2l-1
p 2l-1 q 2l = 1/b 0 and u = 4b 0 q 1 . This shows that there is a unique value of b 0 for which b n → 1 as n → ∞.

More generally, for ρ > 1, we can build the sequence (b n ) of an SOS model corresponding to a random walk while using the recurrence

b n b n+1 = 1 4ρ 2 p n q n+1
, n ≥ 0.

We would conclude proceeding similarly that there is a unique value of b 0 = b 0 (ρ) for which b n = b n (ρ) → 1 as n → ∞. The latter recurrence can be represented by the matrix Q = ρP S where, with P the transition matrix of the (reversible) random walk and π its speed measure solution to π = πP ,

P S = D 1/2 π P D -1/2 π
is the symmetrized version of P. We used D π =diag(π 0 , π 1 , ...) . The matrix Q is the one defined in Section 3 and Qv = ρv with v n = √ π n > 0, n ≥ 0. The speed measure formula for (π k ), for k > 0, is

(7.1) π k = π 0 q k k-1 j=1 p j q j = p k-1 q k π k-1 .
We now come to our special class of random walks.

7.1. Bessel random walks. Let x 0 , d > 0 be parameters. With R n = n + x 0 , n ≥ 0 integer, the radii of balls of dimension d with area and volume

A (R n ) = 2π d/2 Γ (d/2) R d-1 n and V (R n ) = π d/2 Γ (d/2 + 1) R d n ,
we are interested in a random walk in concentric nested balls of radii

R n . Although V (R n ) > V (R n-1 ), always when d > 0, we note that if d > 1, A (R n ) > A (R n-1 ) , while if d < 1, A (R n ) < A (R n-1
) . The domain confined between ball number n and ball number n -1, n ≥ 1, is an annulus with volume

V (R n ) -V (R n-1 ) ; V (R 0 )
is the volume of the central ball.

Negative dimensions can be meaningful as well: indeed, the Euler gamma function Γ (α) is positive when α lies in the intervals α ∈ (-2k, -2k + 1), k ≥ 0. To have both A (R n ) , V (R n ) > 0 forces both d/2 and d/2 + 1 to lie within these intervals, thus d can take any negative value except {..., -6, -4, -2}, the set of even negative integers. When d < 0, both

V (R n ) < V (R n-1 ) and A (R n ) < A (R n-1 ) .
If n ≥ 1, the probability to move outside the annulus number n is

p n = A (R n ) / (A (R n ) + A (R n-1 )) ,
while the probability to move inside this annulus is q n = 1 -p n . If n = 0, we assume that the probability to leave the central ball of radius x 0 is p 0 = 1. See [START_REF] Bender | Spherically symmetric random walks in noninteger dimension[END_REF], [START_REF] Bender | Spherically symmetric random walks. I. Representation in terms of orthogonal polynomials[END_REF].

Note that, if

d > 1, p n > 1/2 if n ≥ 1, while if d < 1, p n < 1/2 if n ≥ 1.
Equivalently, p 0 = 1 and for n ≥ 1

p n = (n + x 0 ) d-1 (n + x 0 ) d-1 + (n -1 + x 0 ) d-1 q n = (n + x 0 -1) d-1 (n + x 0 ) d-1 + (n -1 + x 0 ) d-1 = 1 -p n .
are the transition probabilities of this random walk on Z + = {0, 1, ...} . It is reflected at the origin. Suppose we deal with a random walk with d > 1 (with A (R n ) expanding).

Consider the transformation d

→ d ′ = 2 -d < 1 with A ′ (R n ) = 2π d ′ /2 Γ(d ′ /2) R d ′ -1 n contracting. Then (n ≥ 1) p n → p ′ n = q n = (n + x 0 -1) d-1 (n + x 0 ) d-1 + (n -1 + x 0 ) d-1 q n → q ′ n = p n = (n + x 0 ) d-1 (n + x 0 ) d-1 + (n -1 + x 0 ) d-1 = 1 -p ′ n .
The Markov chain with transition probabilities p ′ 0 = 1 and (p ′ n , q ′ n ) n≥1 is thus the Wall dual to the Markov chain with transition probabilities p 0 = 1 and (p n , q n ) n≥1 , see [START_REF] Dette | Wall and Siegmund duality relations for birth and death chains with reflecting barrier. Dedicated to Murray Rosenblatt[END_REF]. And the random walk model makes sense for all d.

The probability sequence p n , n ≥ 1 is monotone decreasing if d > 1, while it is monotone increasing if d < 1. We have

p n ∼ 1 2 1 + d -1 2 (n + x 0 )
as n → ∞, so p n → 1/2 as n → ∞ either from above (d > 1) or from below (d < 1) and the corrective term is O (1/n). We suppose p 0 = 1 and we look for an homographic model for the transition probabilities

p n = n + x 0 + a 2 (n + x 0 + b) = n + x 0 + a (n + x 0 + a) + (n + x 0 + a + 2 (b -a)) q n = 1 -p n , n ≥ 1,
which are the closer possible to the original ones. Of course the parameters (a, b) will then depend on (x 0 , d) .

To do this, we impose p n ∼ p n as n → ∞ and p 1 = p 1 . This leads to

a = (3 + 2x 0 -d) p 1 -(1 + x 0 ) 1 -2p 1 and b = a - d -1 2 .
Under these hypothesis, the models p n and p n agree fairly well (ranging from 10 -5 to 10 -2 ), for all n ≥ 0 and all x 0 > 0 and d. When d = 1 or d = 2, the two models are even exactly the same (p n = p n = 1/2, n ≥ 1 in the first case, p n = p n = (n + x 0 ) / (2n + 2x 0 -1), n ≥ 1 in the second case, obtained while a = 0 and b = -1 2 ). If x 0 → 0, the model makes sense only if d ≥ 1 and then p 1 → 1 and so a → d-2; as a result,

p n = (n + d -2) / (2n + d -3), n ≥ 1. Note p 1 = 1, see [2].
Suppose d > 1. The homographic model p n may be written as

p n = n + x 0 (n + x 0 ) + (n + x 0 -(d -1)) q n = 1 -p n , n ≥ 1, where x 0 = x 0 + a, a = a (x 0 , d) . Thus, with R n = n + x 0 and R n-1 = n + x 0 - (d -1), p n = A R n / A R n + A R n-1 with A R n = 2πR n , the circumfer- ence of a disk in dimension 2. Equivalently, R n = x 0 + (d -1) n. Under the transformation d → d ′ = 2 -d, we have p n → p ′ n = n + x ′ 0 (n + x ′ 0 ) + (n + x ′ 0 -(d ′ -1)) where x ′ 0 = x ′ 0 + a ′ with x ′ 0 = x 0 + d -1 and a ′ = (3 + 2x ′ 0 -d) p 1 -(1 + x ′ 0 ) 1 -2p 1 ; b ′ = a ′ + d -1 2 . 7.2. Special cases. • a = x 0 and d > 2.
If we impose a = x 0 we get

x 0 (1 -2p 1 ) = (3 + 2x 0 -d) p 1 -(1 + x 0 ) .
This is also

x 0 1 + x 0 d-1 = 1 - d -1 2x 0 + 1 .
There is a x 0 =: x 0 (d) ∈ (0, 1) obeying this equation only if d > 2 and then

p n = n + 2x 0 2 (n + 2x 0 ) -(d -1) = 1 2 1 + d -1 2n + 4x 0 -(d -1)
, n ≥ 1.

• a = -x 0 and d < 2. See [START_REF] De Coninck | Random walk weakly attracted to a wall[END_REF].

If we impose a = -x 0 we get

-x 0 (1 -2p 1 ) = (3 + 2x 0 -d) p 1 -(1 + x 0 ) . This is also p 1 = 1/ (3 -d) . Thus x 0 = 1/ (2 -d) -1/(d-1) -1 which makes sense only if d < 2. In this case, x 0 ∈ (0, 1) if 0 < d < 2 and
p n = n 2 (n + b -a) = 1 2 1 + d -1 2n -(d -1) , n ≥ 1,
which is independent of x 0 . We note that this model is still valid, would dimension d be negative.

• a = -x 0 + d -1 and d > 1. See [START_REF] Karlin | Random walks[END_REF].

If we impose a = -x 0 + d -1, we get

(-x 0 + d -1) (1 -2p 1 ) = (3 + 2x 0 -d) p 1 -(1 + x 0 ) .
This is also

x 0 1 + x 0 d-1 = d -x 0 1 + x 0 .
There is a x 0 =:

x 0 (d) > 0 obeying this equation only if d > 1 with x 0 ∈ (0, 1) if d < 2, x 0 ≥ 1 if d > 2 and then p n = n + d -1 2n + (d -1) = 1 2 1 + d -1 2n + (d -1) , n ≥ 1,
which is independent of x 0 . The latter two models are Wall duals. 

APPENDIX: PROOFS

We now come to the proofs of our statements.

A.1 PROOF of THEOREM 2. 

(R k ) i,j ≥ (R k N ) i,j ≥ (T k ) i-N,j-N
where T is the tridiagonal matrix with zeros on the diagonal and the other nonzero entries equal to (α -ǫ) /2. Since the number of walks of length 2k from i -N to j -N is 2 2k up to a polynomial correction in k, one gets

lim k→∞ (T 2k ) i-N,j-N 1/(2k) = α -ǫ
and the lower bound follows. The proof of the upper bound is left to the reader. (i) ⇒ (ii) (iii) follows immediately from the fact that v 0 determines v 1 , and for n ≥ 2 we have a second order recursion equation for v n as a function of v n-1 and v n-2 .

(iv) Assume there is a positive

w solving (3.2). Let (v n ) be a solution of Rv = ρv with v 1 > 0. It follows that w 1 v 2 -w 2 v 1 = 2v 1 √ b 1 b 2 . It follows from Lemma 14 that ∀n ≥ 2, vn+1 wn+1 > vn wn . Since v 2 = 2ρv 1 √ b 1 b 2 > 0, the result follows by recursion.2 • A.2 PROOF of LEMMA 3.
We start with the following proposition.

Proposition 13. Let 1 ≤ ρ ′ be such that the equation Rw ′ = ρ ′ w ′ -1 p=1 has a positive solution. Then for any ρ > ρ ′ , the equation Rw = ρw -1 p=1 has a positive solution.

Proof:

Let (w ′ n ) be a positive solution of Rw ′ = ρ ′ w ′ -1 p=1 . so that σ 1 (ρ ′ ) := 2 b 1 b 2 ρ ′ - 1 w ′ 1 > 0 and for n ≥ 2, let σ n (ρ ′ ) = w ′ n+1 w ′ n .
Note that this formula also holds for n = 1 with our definition of

σ 1 (ρ ′ ). Let 1 ≤ ρ ′ < ρ. Consider the sequence (σ n ) = (σ n (ρ)) defined by σ 1 (ρ) = σ 1 (ρ ′
), and recursively for n ≥ 2 by

σ n = 2ρ b n b n+1 - b n+1 b n-1 1 σ n-1 .
We have

∂σ n ∂ρ = 2 b n b n+1 + b n+1 b n-1 1 σ 2 n-1 ∂σ n-1 ∂ρ . Hence, since ∂ ρ σ 1 (ρ) = ∂ ρ σ 1 (ρ ′ ) = 0 we conclude recursively that for all n ≥ 2 ∂σ n (ρ) ∂ρ > 0 and σ n (ρ) > σ n (ρ ′ ).
Hence the sequence w n defined by (8.1)

w 1 = 1 ρ -ρ ′ + 1 w ′ 1 > 0, w 2 = 2 b 1 b 2 (ρw 1 -1) = σ 1 (ρ ′ )w 1 > 0,
and for n ≥ 3

w n = w 2 n-1 j=2 σ j (ρ) is positive and satisfies Rw = ρw -1 p=1
completing the proof of the Proposition. 2 Therefore, letting w ′ 1 decrease to w 1 (ρ ′ ), we get w 1 (ρ) < w 1 (ρ ′ ), since from (8.1)

w 1 (ρ) ≤ 1 ρ -ρ ′ + 1 w1(ρ ′ ) < w 1 (ρ ′ ).
This fact proves (i) of Lemma 3 except continuity. (ii) and (iii) follow immediately. The proof of (iv), (v) and continuity in (i) rely on several results of independent interest. 2

The following lemma is essentially due to Josef Hoëné-Wronski.

Lemma 14. If v and w satisfy (Rv) n = ρv n , (Rw) n = ρw n , for n ≥ k ≥ 2, then for n ≥ k v n+1 w n -w n+1 v n = b n+1 b n-1 (v n w n-1 -w n v n-1 ) .
Hence

v n+1 w n -w n+1 v n =   n j=k b j+1 b j-1   1/2 (v k w k-1 -w k v k-1 ) . Proof: From (Rv) n = ρv n , it holds that v n+1 v n + b n+1 b n-1 v n-1 v n = 2ρ b n b n+1
and similarly for w n . The difference between the two identities gives the result. 2

For ρ > 1, we will denote by

x + ≥ x -(x + (ρ) ≥ x -(ρ)) the two (real) solutions of (8.2) x 2 -2ρx + 1 = 0. Note that 0 < x -< 1 < x + .
Proposition 15. For ρ > 1, the equation

(Rw) n = ρw n
for all n ≥ 2 has two independent solutions w ± such that

w ± n ∼ x n ± .
Any other solution is a linear combination of these two solutions.

Note that these solutions may not be positive. Remark. The heuristics is clear: one tries an ansatz w n = x n and one chooses the value of x such that the equation (Rw) n = ρw n is satisfied for large n at dominant order.

Proof: The equation (Rw) n = ρw n for n ≥ 2 is a linear recursion of order two, therefore the set of solutions is a vector space of dimension two. We first construct a solution w -using an idea of Levinson [START_REF] Levinson | The asymptotic nature of solutions of linear systems of differential equations[END_REF].

For n > 1 we have

w n+1 2 b n b n+1 + w n-1 2 b n b n-1 = ρw n
which can be rewritten (with p = n -1)

w p = 2ρ b p+1 b p w p+1 - b p b p+2 w p+2 .
Let u p = w p /x p -, we get

u p = 2ρx -b p+1 b p u p+1 -x 2 - b p b p+2 u p+2 .
Let δ p = u p -1, we get

δ p = r p + 2ρx -b p+1 b p δ p+1 -x 2 - b p b p+2 δ p+2 .
with

r p = 2ρx -b p+1 b p -x 2 - b p b p+2 -1.
This can be rewritten

(8.3) δ p -2ρx -δ p+1 + x 2 -δ p+2 = r p + T (δ) p
where T is the operator defined by

T (δ) p = 2ρx - b p+1 b p -1 δ p+1 -x 2 - b p b p+2 -1 δ p+2 .
We now consider the operator defined by

U (s) p = x -2p - ∞ j=p s j 1 -x 2(j+1) - 1 -x 2 - .
Using hypothesis (3.3) it is easy to verify that there exists N > 4 large enough such that the linear operator

U • T is bounded with norm less than 1/2 in the Banach space c 0 ([N, ∞)), c 0 ([N, ∞)) = (u) n≥N : lim n→∞ |u n | = 0 .
It is well known that equipped with the sup norm, c 0 ([N, ∞)) is a Banach space (see for example [START_REF] Yosida | Functional Analysis[END_REF]). Similarly, using

r p = 2ρx - b p+1 b p -1 -x 2 - b p b p+2 -1 ,
and hypothesis (3.3) we deduce U (r) ∈ c 0 ([N, ∞)). Taking N larger if necessary, we can also assume that

U (r) c 0 ([N,∞)) < 1/4. Therefore the sequence ( δ) [N,∞) defined by δ = (I -U • T ) -1 U (r) has norm at most 1/2 in c 0 ([N, ∞)).
It is easy to verify that for any p ≥ N , this sequence satisfies equation (8.3). For p ≥ N we define

w - p = x p -(1 + δp ). For 1 ≤ p < N , w - p is defined recursively (downward) using again (8.3). We obviously have, since δ ∈ c 0 ([N, ∞)), lim n→∞ w - n x n - = 1 and (Rw -) p = ρw - p for p ≥ 2.
For n ≥ N define (the idea comes from the Wronskian, see Lemma 14)

w + n = Cw - n n-1 j=4 1 w - j w - j-1 j l=2 b l+1 b l-1 1/2
, where C is a positive constant. For n < N , we define w + n recursively downward. It is easy to verify (using 0 < x -= 1/x + < 1) that one can choose the positive constant C such that for some c > 0 and any n ≥ 1. From the same Proposition 15 we conclude that there exists a number Γ > 0 such that for any n ≥ 1 0 ≤ v n ≤ Γx n + . Therefore, the sequence (w) defined for n ≥ 1 by

w n = w n - c 2Γ v n is a positive solution of Rw = ρw -1 n=1 which satisfies w 1 = w 1 - c 2Γ < w 1
which is a contradiction. Therefore A = 0 and this proves the first part of the statement. For the second part, applying again Proposition 15, we have to exclude that v n ∼ x n -. Assume this is the case. Using Lemma 14 for w and v, and the asymptotic of w n we would get 

  n j=1 b j+1 b j-1   1/2 ∼ x 2n
v n ∼ x + (ρ) n .
Then there exists ǫ > 0 such that for any ρ ′ ∈ [ρ -ǫ, ρ + ǫ], the equation

Rv = ρ ′ v has a positive solution such that v n (ρ ′ ) ∼ x + (ρ ′ ) n . Proof: The sequence σ n (ρ) = v n+1 (ρ)/v n (ρ) (defined for n ≥ 1) satisfies for n ≥ 2 σ n (ρ) = 2ρ b n b n+1 - b n+1 b n-1 1 σ n-1 (ρ)
.

Moreover, by Lemma 16, this sequence converges to x + (ρ) when n tends to infinity. For ρ > 1 since x + (ρ) > 1 we can choose δ > 0 such that δ < x + (ρ)/2, and

0 < δ < x + (ρ) - 1 x + (ρ) . Note that 0 < δ x + (ρ) (x + (ρ) -δ) < δ. Choose 0 < δ ′ < δ such that 0 < δ ′ < δ - δ x + (ρ) (x + (ρ) -δ)
.

Since (b n ) converges to 1, and σ n (ρ) converges x + (ρ) > 1, one can find N large enough such that inf

n>N σ n-1 (ρ) > δ and (8.4) sup n>N 2δ ′ b n b n+1 + b n+1 b n-1 δ σ n-1 (ρ) (σ n-1 (ρ) -δ) ≤ δ.
By continuity, for any ρ ′ with |ρ ′ -ρ| small enough and any σ ′

1 with |σ ′ 1 -σ 1 | small enough we can define recursively a sequence (σ ′ 1≤n≤N ) such that inf 1≤n≤N σ ′ n > 0, |σ ′ N -σ N | < δ,
and for any 2

≤ n ≤ N (8.5) σ ′ n = 2ρ ′ b n b n+1 - b n+1 b n-1 1 σ ′ n-1 . We now observe that if |ρ ′ -ρ| < δ ′ and if for some n ≥ N + 1, σ ′ n-1 is defined and satisfies |σ ′ n-1 -σ n-1 | < δ, then σ ′ n defined by (8.5) satisfies also |σ ′ n -σ n | < δ since |σ ′ n -σ n | = 2(ρ ′ -ρ) b n b n+1 + b n+1 b n-1 σ ′ n-1 -σ n-1 σ ′ n-1 σ n-1 ≤ 2δ ′ b n b n+1 + b n+1 b n-1 δ (σ n-1 -δ)σ n-1 < δ,
by condition (8.4). This implies in particular σ ′ n > 0. Therefore we can define recursively for all n ≥ 1 a sequence (σ ′ n ) > 0 satisfying (8.5). We leave to the reader to prove that (σ ′ n ) converges exponentially fast to x + (ρ ′ ). It then follows that the sequence v ′ n defined recursively by v ′ 0 = 1 and

v ′ n+1 = σ ′ n v ′ n is a positive solution of Rv ′ = ρ ′ v ′ with v ′ n ∼ x + (ρ ′ ) n . The Lemma is proved by taking ǫ = δ ′ . 2
Lemma 18. Assume that for some ρ > 1, the equation Rv = ρv has a positive solution v which satisfies v 1 = 1, and

v n ∼ x + (ρ) n .

Then the equation

Rw = ρw -1 n=1 has a positive solution. Moreover

lim n→∞ w n+1 w n = x -(ρ) .
Proof: Let w be a solution of the equation

Rw = ρw -1 n=1 ,
and v a solution of Rv = ρv, with v 1 = 1. We have

w 2 v 1 -v 2 w 1 = 2 b 1 b 2 (ρw 1 -1) -2 b 1 b 2 ρw 1 = -2 b 1 b 2 .
Therefore from Lemma 14 (with k = 2) we get for any n ≥ 2

w n v n-1 -v n w n-1 = -2 b 1 b 2   n j=3 b j+1 b j-1   1/2 .
This implies for any n ≥ 2

w n v n = w n-1 v n-1 -2 √ b 1 b 2 v n v n-1   n j=3 b j+1 b j-1   1/2 . Therefore for n ≥ 2 w n v n = w 1 -2 n q=2 √ b 1 b 2 v q v q-1   q j=3 b j+1 b j-1   1/2 .
We now take v = v. We conclude that for

w 1 ≥ 2 ∞ q=2 √ b 1 b 2 v q v q-1   q j=3 b j+1 b j-1   1/2
we have a positive solution (w).

It is easy to verify that for

w 1 = 2 ∞ q=2 √ b 1 b 2 v q v q-1   q j=3 b j+1 b j-1   1/2 , we have lim p→∞ w p+1 w p = x -.
It follows from Proposition 15 that w = w.

We now give the proof of (iv) in Lemma 3. Assume ρ * (R) > 1 and

lim ρցρ * (R) w 1 (ρ) < ∞.
It follows from Lemma 16 that v n ∼ x n + (ρ). We can now apply Lemma 17 and then Lemma 18 to conclude that for some 1 < ρ ′ < ρ * (R), the equation Rw = ρ ′ w-1 n=1 has a positive solution which contradicts the definition of ρ * (R). 2

Proposition 19. For any n ≥ 1, the function w n (ρ) is monotone decreasing in ρ ∈ (ρ * , ∞) if either ρ * > 1 or ρ * = 1 and R is 1-recurrent. w n (ρ) is monotone decreasing in ρ ∈ [1, ∞) if ρ * = 1 and R is 1-transient. Proof: Let ρ ′ > ρ > ρ * if either ρ * > 1 or ρ * = 1 and R is 1-transient or ρ ′ > ρ ≥ 1 if ρ * = 1 and R is 1-transient. Let w = w(ρ) and w ′ = w(ρ ′ ).
From Rw = ρw -1 p=1 and Rw ′ = ρ ′ w ′ -1 p=1 , we conclude that

R(w -w ′ ) = ρ(w -w ′ ) -(ρ ′ -ρ)w ′ .
The sequence

s n = (w n -w ′ n )/w n satisfies 1 w n (R(ws)) n -ρs n = -(ρ ′ -ρ)w ′ n /w n
where (ws) n = w n s n . Assume the sequence s n = (w n -w ′ n )/w n takes negative values. We now derive a contradiction using the so called negative minimum principle. Using Lemma 3.(i) we have w 1 -w ′ 1 ≥ 0. From Lemma 16 if ρ > 1 and Corollary 23 below if ρ = 1, we conclude that for any n large enough w n -w ′ n > 0. Therefore there can be only a finite number of indices n such that s n < 0. Let n * be an index (there may be several) such that

s n * = inf n s n < 0. Note that n * > 1. Since s n * +1 ≥ s n * and s n * -1 ≥ s n * we conclude that 0 > -(ρ ′ -ρ)w ′ n * /w n * = w n * +1 s n * +1 2w n * b n * b n * +1 + w n * -1 s n * -1 2w n * b n * b n * -1 -ρs n * ≥ s n * w n * +1 2w n * b n * b n * +1 + w n * -1 2 w n * b n * b n * -1 -ρ = 0,
a contradiction which proves the announced monotonicity. 2

We now give the proof of continuity stated in (i) of Lemma 3 for ρ > ρ * . The proof is by contradiction. Assume there exists ρ > ρ * such that

lim ρրρ w 1 (ρ) > lim ρցρ w 1 (ρ).
Here we used the monotonicity of w 1 (ρ) proved earlier. By continuity, it follows that the two sequences defined for n ≥ 1 by

w n = lim ρրρ w n (ρ) and w n = lim ρցρ w n (ρ)
satisfy the equation Rw = ρw -1 n=1 . From Proposition 19, we conclude that for any ρ > ρ ′ > ρ * we have for all n ≥ 1

w n (ρ ′ ) ≥ w n ≥ w n ≥ 0. Therefore lim n→∞ w n = lim n→∞ w n = 0.
We get a contradiction from Proposition 15 and Lemma 16 since the two sequences (w n ) and (w n ) must be linearly independent.

Finally we give the proof of (v) in Lemma 3. Monotonicity has already been proved in Proposition 19. Let

w1 = lim ρց1 w 1 (ρ).
By continuity, w = lim ρց1 w is a solution of R w = w-1 n=0 . Therefore w 1 (1) < ∞. By Proposition 19, we have for any n, wn ≤ w n (1), hence equality follows by the minimality in the definition of w. 2

• A.3 PROOF of PROPOSITION 4. Proof: It is easy to verify that if b n = 1 for all n ≥ 1, then w n = 2 satisfies Rw = w -1 n=1 , so that ρ * = 1. Recall that in [19], R is called 1-transient if n (R n ) 1,1 < ∞.
The left hand side is obviously a decreasing function in each b n , and ρ * (R) ≤ 1. The proof follows using (ii) of Theorem 2 and (i) of Theorem 1. 2

• A.4 PROOF of PROPOSITION 5.
Before we start the proof we need some preliminary results. The first goal is to obtain an analog of Lemma 16 when ρ * (R) = 1. We define a family of Banach spaces B n0,γ which depend on an integer n 0 > 1 and a positive number γ by

B n0,γ = (u) n≥n0 : sup n≥n0 |u n | • n γ < ∞ .
It is easy to verify that B n0,γ is a Banach space when equipped with norm

(u n ) n0,γ = sup n≥n0 |u n | • n γ .
Lemma 20. For α ∈ C (R (α) ≤ 1/2), there exists N 0 = N 0 (α) such that the operator S defined by

(Sh) n = ∞ m=n ∞ p=m+1 h p 1 -α p • p-1 j=m+1 j + α j -α
is a bounded operator from B N,γ to B N -1,γ-2 for any γ > 2 and N > N 0 with a norm uniformly bounded in N .

The proof is left to the reader. Lemma 21. For any α ∈ C (R (α) ≤ 1/2), let T be the operator defined by

(T u) n = u n+1 + u n-1 -2u n + α n (u n+1 -u n-1 ) .
There exists N 0 = N 0 (α) > 0 such that for any N > N 0 (α) and γ > 2, T is a bounded operator from B N -1,γ to B N,γ with norm uniformly bounded in N . Moreover S • T is the canonical injection from

B N -1,γ to B N -1,γ-2 .
Proof: The first part of the statement is obvious. Let u ∈ B N -1,γ , and let

g = T u ∈ B N,γ . Letting (8.6) z n = u n -u n-1 ,
we have

z n+1 -z n + α n (z n+1 + z n ) = g n .
In other words

z n+1 1 + α n = z n 1 - α n + g n ,
which can be rewritten

z n = 1 + α n 1 -α n z n+1 - g n 1 -α n .
We will use this relation only for n > α + 1. We use the solution

z n = - ∞ p=n g p 1 -α p p-1 j=n j + α j -α ,
where for p = n the product is equal to one. Note that this is well defined from the assumption on the decay of g p and ℜα ≤ 1/2. From this sequence we can recover u n by solving (8.6). We get

u n = ∞ m=n ∞ p=m+1 g p 1 -α p p-1 j=m+1 j + α j -α = (Sg) n .
The result follows from Lemma 20. 2 For w < 1/8, let α + > α -be the two solutions of the equation

(8.7) α 2 -α + 2w = 0.
Note that α -< 1/2 < α + . For w > 1/8, the two solutions of α 2 -α + 2 w = 0 have real part equal to 1/2 and we denote by α -the solution with negative imaginary part. For w = 1/8 we define α -= 1/2.

Proposition 22. Assume b n = 1 - w n 2 + O(1)n -2-ζ ,
for some ζ > 0 and w = 1/8. Then, the equation

(Rv) n = v n has two independent solutions v ± such that for large n v ± n = n α ± (1 + o(1)
) . For w = 1/8, we have

v - n = n 1/2 • (1 + o(1)) , v + n = n 1/2 log n • (1 + o(1)
) . Any solution of (Rv) n = v n for large n is a linear combination of v ± .

Note that these solutions may not be positive. Remark. The heuristics is clear: one tries an ansatz v n = n α and one chooses the value of α such that the equation (Rv) n = v n is satisfied for large n at dominant order.

Proof: For α = α -, we look for a solution of Rv = v of the form

v n = n α (1 + u n )
with u n small for large n. Using Proposition 34 below, it follows that there is a solution of

Rv = v satisfying v - n = n α-(1 + o (1)
) . Let (w n ) be a solution of Rw = w independent of v -. From Lemma 14 we have

w n+1 v - n+1 - w n v - n = C n v - n v - n+1 .
where C n is a sequence converging to a non zero limit. Therefore, for n > N + 1

w n v - n = w N v - N + n-1 p=N C p v - p v - p+1 . Since v - p = p α-(1 + o(1)
) with ℜα -≤ 1/2, the sum on the right hand side diverges or oscillates, and we get if α -= 1/2 0 < lim n→∞ w n n α + < ∞, and the result follows for w = 1/8 since

0 < lim n→∞ n α --α+ n p=1 1 p 2α-< ∞.
The same argument can be used for w = 1/8 since lim n→∞

1 log n n p=1 1 p = C, Euler's constant.
Finally, since the equation Rv = v can be solved by a recursion of order 2, its set of solution is a linear space of dimension two. 2 

v n ∼ n α + .
Proof: The proof is similar to the proof of Lemma 16 and left to the reader.

We now start proving Proposition 5.

• Proof of (i) in Proposition 5.

If ρ * (R) > 1 this follows from (iii) in Theorem 1. If ρ * (R) = 1 and w > 1/8, assume there exists a positive solution to

Rw = w -1 p=1 .
For n ≥ 2 we have (Rw) n = w n and Proposition 22 implies that there exist two constants A and B such that for σ = ℑα +

w n = Av + n + Bv - n = n 1/2 An iσ + Bn -iσ + o n 1/2 .
It is easy to verify that there is no choice of (complex) A and B such that the right hand side is positive for any n. 2

• Proof of (ii) in Proposition 5. For w < 1/8, let

b n = 1 - w n 2 , ∀n ≥ 3. Choose b 1 > 0 and b 2 > 0 such that 4b 1 b 2 < 1.
Assume R is 1-transient, namely there exists a (w n ) n≥1 positive such that

Rw = w -1 n=1 .
We have

w 2 2 √ b 1 b 2 = w 1 -1 w 3 2 √ b 3 b 2 + w 1 2 √ b 1 b 2 = w 2 hence w 3 2 √ b 3 b 2 + 1 2 √ b 1 b 2 = w 2 1 - 1 4b 1 b 2 < 0, a contradiction. 2 • Proof of (iii) in Proposition 5.
An example is given by the hypergeometric solution of Section 6.

• Proof of (iv) in Proposition 5. For w < 0, the matrix R is 1-transient by Lemma 4.

For 0 ≤ w < 1/8, we will use a continued fraction result. We will use Henrici's notation

∞ Φ n=1 f j g j for the continued fraction f 1 g 1 + f2 g2+...
. We have (for example from [START_REF] Henrici | Applied and computational complex analysis[END_REF] formula 12.1-11)

∞ Φ n=1 -b j+2 /b j -2 b j+1 b j+2 ≈ ∞ Φ j=1 a j 1
where

a 1 = 1 2 √ b 1 b 2 and for j > 1 a j = - 1 4b j b j+1 .
For w > 0 small enough we have for all j ≥ 2

a j + 1 4 ≤ 1 4(4j 2 -1)
.

By a result of Pringsheim (see for example [START_REF] Jacobsen | On the convergence of limit periodic continued fractions K(an/1) when an → -1/4. Part III[END_REF]), this implies convergence of

∞ Φ j=2 a j 1 .
This implies that for w > 0 small enough, the sequence (σ p ) p≥1 defined for p ≥ 1 by

σ p = ∞ Φ j=p a j 1 = ∞ Φ j=p -b j+2 /b j -2 b j+1 b j+2
is well defined and continuous in w. Since it is nonnegative at w = 0, by continuity it is nonnegative in a neighborhood of w = 0.

By continuity in w we also have that for w > 0 small enough,

σ 1 < 2 b 1 b 2 .
We now define recursively a positive sequence (w n ) n≥1 by

w 1 = 1 1 -σ1 2 √ b1b2
and for n > 1

w n = w n-1 σ n-1 .
It is easy to verify that the sequence (σ n ) n≥1 obeys the same recursion as in Appendix A.2 and that the positive sequence (w n ) n≥1 is a solution of Rw = w -1 n=0 and the result follows. 2

• A.5 PROOF of LEMMA 6. We start by a preliminary lemma.

Lemma 24. Assume lim n→∞ b n = 1. Then for both the free and zero boundary conditions the Gibbs potential defined in (2.1), (2.3) and (3.1) is nonpositive.

Proof: It is enough to prove the result in the case of the bridge since the partition function in the case of free boundary condition is larger. We denote by (B n ) the standard random walk reflected at zero. It is easy to verify that in the case of zero boundary condition

Z 2N = P(B 2N = 0) • E e 2N j=0 log bB j | B 2N =0 .
Using Jensen's inequality we get

Z 2N ≥ P(B 2N = 0)e 2N j=0 E(log bB j | B2N=0) .
By the Markov property and symmetry, we have

E(log b Bj | B 2N =0 ) = p P (B j = p) P(B 2N -j = p) log b p .
Let ǫ > 0 be fixed and let K = K(ǫ) be such that

sup p≥K |log b p | ≤ ǫ.
We have

E(log b Bj | B 2N =0 ) = K p=0 P (B j = p) P(B 2N -j = p) log b p + R ǫ with |R ǫ | ≤ ǫ.
The result follows from the well known result that for any fixed K

lim j→∞ P(B j ≤ K) = 0. 2
We now give the proof of Lemma 6. The existence and uniqueness of ρ(b 0 ) follow from the results of Lemma 3. Note also that ρ(b 0 ) > ρ * (R) ≥ 1 (see Theorem 2). In order to finish the proof of (i), according to formula (2.9) or (2.12) we only need to prove that lim

N →∞ 1 2N log P RW (X 2N = 0) = 0.
For b 0 < b c 0 , we have a positive solution of Q b0 v = ρ(b 0 )v, unique modulo a multiplicative constant, given by

v 1 = 2ρ(b 0 ) b 0 b 1 v 0 and for p > 1 v p = v 1 w p 4ρ(b 0 )b 0 b 1 which can also be written for any p ≥ 1 v p = v 0 w p 2 √ b 0 b 1 . It follows from Lemma 18 that lim p→∞ v p+1 v p = x -.
Therefore using formula (2.5), (recall that exp V (n) = b n and exp(-U (n)/2) = v n ), we get, with ρ = ρ(b 0 )

p n = P RW (X 1 = n + 1 | X 0 = n) = ρ -1 e -log 2-V (n)/2-V (n+1)/2-U(n+1)/2+U(n)/2 = 1 2ρ b n b n+1 v n+1 v n .
This implies since ρ > 1 (see equation (8.2))

lim n→∞ p n = x -(ρ) 2 ρ < 1/2.
It follows (by positive recurrence of the corresponding RW) that inf

N >0 P RW (X 2N = 0) > 0,
hence for b 0 < b c 0 the Gibbs potential is equal to -log ρ(b 0 ). We now consider the case b 0 > b c 0 . It is easy to verify that the Gibbs potential is not decreasing in b 0 . Moreover, since b c 0 < ∞ it follows that lim

b0րb c 0 -log ρ(b 0 ) ≥ 0.
By Lemma 24 we have

0 ≤ lim b0րb c 0 -log ρ(b 0 ) ≤ Φ ((b n )) ≤ 0. 2 • A.6 PROOF of PROPOSITION 7.
The positive recurrence of the random walk was just proved above. In the sequel we will need the following mixing results valid for any p ∈ Z + , under the positive recurrence of X n (see Appendix A.7):

(8.8) lim N →∞ P RW (X 2N = 0 | X 0 = 2p) = 2ν 0 , lim N →∞ P RW (X 2N +1 = 0 | X 0 = 2p + 1) = 2ν 0 .
We start with a preliminary lemma

Lemma 25. Assume b 0 < b c 0 . Then 0 < lim K→∞ p P RW (X 2K = p| X 0 = 0)e 1 2 U(p)-1 2 V (p) < ∞, and 0 < lim K→∞ p P RW (X 2K+1 = p| X 0 = 0)e 1 2 U(p)-1 2 V (p) < ∞.
The two limits may be different.

Proof: As for the proof of (2.11), using detailed balance we get

p P RW (X N = p| X 0 = 0)e 1 2 U(p)-1 2 V (p) = e U(0) p P RW (X N = 0 | X 0 = p)e -1 2 U(p)-1 2 V (p) .
For N even, the sum only runs over the even p's while for N odd the sum only runs over the odd p's. Since b 0 < b c 0 we have by Lemma 16 that exp(-U (p)/2) = v p = v 1 w p (ρ)/(4ρb 0 b 1 ) behaves like x p -. The result follows from (8.8) and Lebesgue's dominated convergence theorem. 2 Lemma 26. Assume the mixing condition (8.8). Then the two limits

lim N →∞ 1 N X1,...,XN P SOS (X 1 , . . . , X N ) N l=1 1 X l =0 and lim N →∞ 1 2N -1 X1,...,X2N-1 P SOS (X 1 , . . . , X 2N -1 | X 2N = 0) 2N -1 l=1 1 X l =0
exist and are equal to ν 0

Proof: In the first case (free boundary condition) we have X1,...,XN

P SOS (X 1 , . . . , X N ) N l=1 1 X l =0 = N l=1 X1,.
..,X l-1 ,X l+1 ,...,XN P SOS (X 1 , . . . , X l-1 , 0, X l+1 , . . . , X N ) .

For l < N we have using equality (2.7), the Markov property and equality (2.10)

P SOS (X 1 , . . . , X l-1 , 0, X l+1 , . . . , X N ) = Z -1 N ρ N P RW (X 1 , . . . , X l-1 , 0, X l+1 , . . . , X N ) e -1 2 U(0)-1 2 V (0)+ 1 2 U(XN )-1 2 V (XN ) = Z -1 N ρ N P RW (X 1 , . . . , X l-1 , X l = 0) P RW (X l+1 , . . . , X N ) e -1 2 U(0)-1 2 V (0)+ 1 2 U(XN )-1 2 V (XN )
. This implies SOS X1,...,X l-1 ,X l+1 ,...,XN P (X 1 , . . . , X l-1 , 0, X l+1 , . . . , X N ) = Z -1 N ρ N P RW (X l = 0)

X N -l P RW (X N -l ) e -1 2 U(0)-1 2 V (0)+ 1 2 U(X N -l )-1 2 V (X N -l ) = P RW (X l = 0) X N -l P RW (X N -l ) e -1 2 U(0)-1 2 V (0)+ 1 2 U(X N -l )-1 2 V (X N -l ) XN P RW (X N )e -1 2 U(0)-1 2 V (0)+ 1 2 U(XN )-1 2 V (XN )
Using Lemma 25, the mixing condition (8.8) and Lebesgue's dominated convergence theorem the result follows. Note that P RW (X l = 0) = 0 if l is odd.

In the case of the bridge (zero boundary condition) we get X1,...,X2N-1

P SOS (X 1 , . . . , X 2N -1 | X 2N = 0) 2N -1 l=1 1 X l =0 = 2N -1 l=1 SOS X 1 ,...,X l-1 , X l+1 ,...,X2N-1 P (X 1 , . . . , X l-1 , 0, X l+1 , . . . , X 2N -1 | X 2N = 0) .
For l ≤ 2N -1 we have using equality (2.7), the Markov property and equality (2.10)

P SOS (X 1 , . . . , X l-1 , 0, X l+1 , . . . , X 2N -1 | X 2N = 0) = P RW (X 1 , . . . , X l-1 , 0, X l+1 , . . . , X 2N -1 | X 2N = 0) = P RW (X 1 , . . . , X l-1 , X l = 0) P RW (X l+1 , . . . , X 2N -1 | X 2N = 0) .
This implies X 1 ,...,X l-1 , X l+1 ,...,X2N-1

P SOS (X 1 , . . . , X l-1 , 0, X l+1 , . . . , X 2N -1 | X 2N = 0) = P RW (X l = 0 | X 2N = 0) .
The result follows from the mixing condition (8.8). 2

Proposition 27. Assume lim n→∞ b n = 1. (i) Then for any b 0 > 0, the operator Q b0 has an essential spectral radius in l p (Z + ) equal to one, for any 1 ≤ p ≤ ∞.

(ii) All its eigenvalues are simple.

(iii) The operator Q b0 is self adjoint in l 2 (Z + ). (iv) For b 0 < b c 0 , ρ(b 0 ) := ρ * (Q b0 ) is the largest eigenvalue of Q b0 in l 2 (Z + ). (v) For b 0 < b c 0 , ρ(b 0 ) is real analytic in b 0 , and 
∂ b0 ρ(b 0 ) = - ρ(b 0 )v 2 0 b 0 ∞ j=0 v 2 j .
Proof:

(i) Given ǫ > 0, let N be such that sup n≥N |1 -b n | ≤ ǫ.
Define the infinite matrix

Q (N ) b0 by Q (N ) b0 (i, j) = Q b0 (i, j) • 1 i≥N • 1 j≥N . It is easy to verify that Q (N ) b0 l p (Z+) ≤ 1 + ǫ.
Therefore its essential spectral radius is at most 1 + ǫ.

Since Q b0 -Q (N )
b0 is a finite rank operator, we conclude by Nussbaum's Theorem (see [START_REF] Nussbaum | The radius of the essential spectrum[END_REF]) that the essential spectral radius of Q b0 is also at most 1 + ǫ. Since this is true for any ǫ > 0, the result follows.

(ii) This follows from the fact that if Q b0 v = ρ v, then v 2 is determined by v 1 and then recursively for all v n with n ≥ 2 since the equation is a recursion of order two.

(iii) Q b0 is real-symmetric and bounded.

(iv) Assume the largest eigenvalue in ℓ 2 (Z + ) is ρ > ρ(b 0 ). Let ṽ denote the corresponding normalized eigenvector, and denote by v the positive eigenvector corresponding to ρ b0 . We first claim that v n > 0 for all n. Indeed if v n = 0 for some n ≥ 1, we have (by the positivity of the sequence and the equation (Q b0 v) n = 0) v n±1 = 0. This implies v = 0. If v 0 = 0, it follows that v 1 = 0, and this implies by a recursive argument v = 0. For any positive h ∈ ℓ 2 (Z + ), and for any integer n, Q n h is a positive sequence, moreover

lim n→∞ ρ-n Q n h = ṽ , h • ṽ
where v , h denotes the scalar product in ℓ 2 (Z + ). Since any complex sequence can be obtained by a linear combination of at most four positive sequences, we conclude that there exists a positive h ∈ ℓ 2 (Z + ) such that ṽ , h = 0. This implies that all the ṽn have the same sign. However this contradicts the well known fact that if ρ = ρ(b 0 ), then ṽ , v = 0. (v) Follows from analytic perturbation theory of a simple eigenvalue, see for example [START_REF] Kato | Perturbation Theory of Linear Operators[END_REF].

The formula displayed in (v) can also be written as:

- ∂ log ρ(b 0 ) ∂ log(b 0 ) = ∂Φ((b n )) ∂ log(b 0 ) = v 2 0 ∞ j=0 v 2 j
, when b 0 < b c 0 , in agreement with Lemma 26.

We now give the proof of Proposition 7.

(i) Follows from Lemma 26.

(ii) Follows from Lemma 26 and the following computation. We have

v 1 = 2ρ b 0 b 1 v 0 and for p ≥ 1 v p = v 1 4 ρ b 0 b 1 w p (ρ) = v 0 2 √ b 0 b 1 w p (ρ). Hence v 2 0 ∞ p=0 v 2 p = v 2 0 v 2 0 + ∞ p=1 v 2 p = 1 1 + (4 b 0 b 1 ) -1 ∞
p=1 w p (ρ) 2 . (iii) Follows by a standard convexity argument. (iv) Follows from Proposition 27 and Lemma 6.

• A.7 ANOTHER APPROACH to Z N and a PROOF of (4.1). We now come back to the factor 2 in equation (8.8) and make some more comments.

One can express the partition function Z N in terms of the infinite matrix Q b0 . It is easy to verify that in the case of the bridge

Z N = e -V (0) 0 | Q N b0 |0 where |0 is the sequence |0 n = 1 n=0 .
In the free boundary case one has

Z N = e -V (0)/2 e -V /2 | Q N b0 |0 where |e -V /2 is the sequence |e -V /2
n = e -V (n)/2 . These expressions lead to another proof of part (i) in Lemma 6 using the spectral theory of Q b0 (in l 2 (Z + ) and l 1 (Z + ) respectively).

Let S denote the involution acting on sequences by

(Sh) n = (-1) n h n It is easy to verify that SQ b0 S = -Q b0 .
This implies that the spectrum of Q b0 is invariant by multiplication by -1. In particular, -ρ(b 0 ) is also an eigenvalue with eigenvector Sv. Since S|0 = |0 , we find that for any integer

N 0 | Q 2N +1 b0 |0 = 0 and lim N →∞ ρ(b 0 ) -2N 0 | Q 2N b0 |0 = 2 v 2 0 v 2 ℓ 2 (Z+)
.

The same result holds for the Markov operator P b0 associated to the walk which is conjugated to Q b0 , namely with obvious (Hadamard) notation

P b0 h = 1 ρ(b 0 )v Q b0 (v h). Since P 2N b0 (0, 2p) = P RW (X 2N = 2p) = v 2p v 0 ρ(b 0 ) 2N • 0 | Q 2N b0 |2p we get lim N →∞ P RW (X 2N = 2p) = 2v 2 2p v 2 ℓ 2 (Z+)
.

which implies the first statement in (8.8). One proves similarly that lim

N →∞ P RW (X 2N +1 = 2p + 1) = 2v 2 2p+1 v 2 ℓ 2 (Z+)
.

Finally, since for all

N ∞ p=0 P RW (X 2N = 2p) = 1 we get ∞ p=0 v 2 2p = 1 2 ∞ p=0 v 2 p .
• A.8 PROOF of THEOREM 8.

-Proof of Theorem 8.(i).

It follows from Lemma 18 that for large p, v p which is proportional to w p behaves like ∼ x p -. Since this sequence belongs to l 2 and v 0 > 0, from (4.1), we get m > 0.

-Proof of Theorem 8.(ii). Let b 0 > β > b c 0 , and denote the number of returns to zeros between 1 and K by

N K = K j=1 1 Xj =1 .
By Jensen's inequality

Z 2N (β) = Z 2N (b 0 ) e N2N-1(log b0-log β) b0,2N ≥ Z 2N (b 0 )e (log b0-log β) <N2N-1> b 0 ,2N and lim sup N →∞ < N 2N -1 > b0, 2N 2N ≤ 1 log b 0 -log β lim N →∞ log Z 2N (β) 2N -lim N →∞ log Z 2N (b 0 ) 2N = 0,
by Lemma 6.(ii). The result follows since N N ≥ 0.

-Proof of Theorem 8.(iii).

In this case using Corollary 23 we have

p w p (1) 2 = ∞.
For any K > 0, let N (K) > 1 be an integer such that

N (K) p=1 w p (1) 2 > K.
By Lemma 3.(v) we have lim

ρր1 p w p (ρ) 2 ≥ lim ρր1 N (K) p=1 w p (ρ) 2 > K.
Since this holds for any K we conclude that lim • A.9 PROOF of THEOREM 11. We start with several preliminary lemmas.

Lemma 28. For u and s real

z (u + 1/2)(-u -s) (2u + s)(2u + s + 1) F (u + 1, u + 3/2; 2u + 2 + s; z) = F (u, u + 1/2; 2u + s; z) -F (u + 1/2, u + 1; 2u + 1 + s; z).
Proof: We first observe that

F (u + 1/2, u + 1; 2u + 1 + s; z) = F (u + 1, u + 1/2; 2u + 1 + s; z).
Therefore we need to prove that

z (u + 1/2)(-u -s) (2u + s)(2u + s + 1) F (u + 1, u + 3/2; 2u + 2 + s; z) = F (u, u + 1/2; 2u + s; z) -F (u + 1, u + 1/2; 2u + 1 + s; z)
This follows from formula 9.137.16 in [START_REF] Gradshteyn | Table of Integrals, Series and Products[END_REF] by taking

α = u, β = u + 1/2, γ = 2u + s. 2
Lemma 29. Let a real, define for all n ≥ -1

P n (z) = F (a + n/2, a + (n + 1)/2; 2a + n + s; z).

Then

P n (z) = 4 z (2a + n + s -2)(2a + n + s -1) (2a + n -1)(2a + n -2 + 2s) (P n-1 (z) -P n-2 (z)) .
Proof: Apply Lemma 28 with u = a + n/2 -1. 2

Lemma 30. For n ≥ 1, and ρ ≥ 1, define

w n = C(2ρ) -n P n-1 (ρ -2 ) Γ(s -1 + 2a)Γ(s + 2a)Γ(2a + n -1)Γ(2s + 2a + n -2) Γ(s + n -2 + 2a)Γ(s + n -1 + 2a)Γ(2a)Γ(2s + 2a -1)
where C is a constant, and the P n (•) are defined in Lemma 29. Then for any n > 1 we have

(Rw) n = ρw n . Moreover, if C = 2 F (a -1/2, a; 2a -1 + s; ρ -2 ) , then (Rw) 1 = ρw 1 -1.
Proof: For n ≥ 0, denote by T n the product

T n = Γ(s -1 + 2a)Γ(s + 2a)Γ(2a + n -1)Γ(2s + 2a + n -2) Γ(s + n -2 + 2a)Γ(s + n -1 + 2a)Γ(2a)Γ(2s + 2a -1)
.

For n ≥ 0 we have (8.9)

T n+1 = (s + n -2 + 2a)(s + n -1 + 2a) (2a + n -1)(2s + 2a + n -2) -1/2
T n .

Observe that for n ≥ 1 (8.10)

b n b n+1 = (s + n -2 + 2a)(s + n + 2a -1) 4(a + n/2 -1/2)(s + a + n/2 -1) = (s + n -2 + 2a)(s + n -1 + 2a) (2a + n -1)(2s + 2a + n -2) . Since w n = C(2ρ) -n P n-1 (ρ -2 )T n ,
we have for any n ≥ 1 using Lemma 29 and equation (8.9)

w n+1 2 b n b n+1 -ρw n = C(2ρ) -n-1 P n T n+1 2 b n b n+1 -ρC(2ρ) -n P n-1 T n = Cρ(2ρ) -n T n P n 4ρ 2 b n b n+1 -P n-1 = -Cρ(2ρ) -n T n P n-2 = - 1 2 (s + n -3 + 2a)(s + n -2 + 2a) (2a + n -2)(2s + 2a + n -3) -1/2 C(2ρ) -n+1 T n-1 P n-2 .
The right hand side is equal to w n-1 /(2 b n b n-1 if n > 1 from (8.10) and the definition of w n-1 . We now choose

C = 2 (s -2 + 2a)(s -1 + 2a) (2a -1)(2s + 2a -2) 1/2 1 T 0 P -1 (ρ -2 ) = 2 F (a -1/2, a; 2a -1 + s; ρ -2 ) since T 2 0 = Γ(s -1 + 2a)Γ(s + 2a)Γ(2a -1)Γ(2s + 2a -2) Γ(s -2 + 2a)Γ(s -1 + 2a)Γ(2a)Γ(2s + 2a -1) = (s -2 + 2a)(s -1 + 2a) (2a -1)(2s + 2a -2) .
With this choice of C, we get

(Rw) 1 = ρw 1 -1. 2
For large n, using Watson's asymptotics (see [START_REF] Erdélyi | Higher Transcendental Functions Vol I[END_REF] for example), or directly by steepest descent form the integral representation 2.12.1 in [START_REF] Erdélyi | Higher Transcendental Functions Vol I[END_REF], one gets that for ρ > 1

w n ∼ (ρ -ρ 2 -1) n .
From Lemma 16 since w > 0, we get w = w > 0 for ρ > 1. In particular this implies that ρ * (R) = 1. This proves (i) and (ii) of Theorem 11.

For ρ = 1, using Lemma 30, we have for any p ≥ 1

w p (1) = 2(2) -p F (a + (p -1)/2, a + p/2; 2a + p + s -1; 1) F (a -1/2, a; 2a + s -1; 1) × Γ(s -1 + 2a)Γ(s + 2a)Γ(2a + p -1)Γ(2s + 2a + p -2) Γ(s + p -2 + 2a)Γ(s + p -1 + 2a)Γ(2a)Γ(2s + 2a -1) = 2(2) -p Γ(2a + p + s -1)Γ(s -1/2) Γ(a + s + p/2 -1/2)Γ(a + s + p/2 -1) Γ(a + s -1/2)Γ(a + s -1) Γ(2a + s -1)Γ(s -1/2) × Γ(s -1 + 2a)Γ(s + 2a) Γ(2a)Γ(2s + 2a -1) Γ(2a + p -1)Γ(2s + 2a + p -2) Γ(s + p -2 + 2a)Γ(s + p -1 + 2a)
.

By the duplication formula for the Γ function (see for example [START_REF] Erdélyi | Higher Transcendental Functions Vol I[END_REF])

w p (1) = 2(2) -p 2 p Γ(2a + p + s -1) Γ(2a + 2s + p -2) Γ(2a + 2s -2) Γ(2a + s -1) × Γ(s -1 + 2a)Γ(s + 2a) Γ(2a)Γ(2s + 2a -1) Γ(2a + p -1)Γ(2s + 2a + p -2) Γ(s + p -2 + 2a)Γ(s + p -1 + 2a) = 2 Γ(2a + 2s -2) Γ(2a + s -1) Γ(s -1 + 2a)Γ(s + 2a) Γ(2a)Γ(2s + 2a -1) × Γ(2a + p + s -1) Γ(2a + 2s + p -2) Γ(2a + p -1)Γ(2s + 2a + p -2) Γ(s + p -2 + 2a)Γ(s + p -1 + 2a) = 2 2a + s -1 2a + 2s -2 Γ(2a + 2s -1) Γ(2a + s) Γ(s -1 + 2a)Γ(s + 2a) Γ(2a)Γ(2s + 2a -1) × Γ(2a + p + s -1) Γ(2a + 2s + p -2) Γ(2a + p -1)Γ(2s + 2a + p -2) Γ(s + p -2 + 2a)Γ(s + p -1 + 2a) = 2 2a + s -1 2a + 2s -2 Γ(s -1 + 2a)Γ(2a + 2s -1) Γ(2a)Γ(s + 2a) Γ(2a + p -1)Γ(2a + p + s -1) Γ(s + p -2 + 2a)Γ(2a + 2s + p -2) = 1 a + s -1 (2a + p + s -2)(2a + s -1) Γ(2a + 2s -1) Γ(2a) Γ(2a + p -1) Γ(2a + 2s + p -2)
.

This gives the critical w p (1) for all p ≥ 1, with, by Stirling's formula

w p (1) = O(1) • p (1-s) for large p.
We also have

b 1 = (s + 2a -1)Γ(a)Γ(s + a -1/2) 2Γ(a + 1/2)Γ(s + a) ,
hence from the expression of w 1 (1) In order to compute ∂ b0 ρ(b 0 ), we use

b c 0 = w 1 (1) 4b 1 = 1 2 Γ(a + s -1)Γ(a + 1/2) Γ(a)Γ(s + a -1/2) , proving ( 
w 1 (ρ) = F (a, a + 1/2; 2a + s; ρ -2 ) ρF (a -1/2, a; 2a + s -1; ρ -2 )
and we take the derivative with respect to b 0 of the implicit equation for ρ(b 0 ) given in Lemma 6: (8.11)

F (a, a + 1/2; 2a + s; ρ -2 (b 0 )) -4ρ(b 0 ) 2 b 0 b 1 F (a -1/2, a; 2a + s -1; ρ -2 (b 0 )) = 0. We get -2F (a+1, a+3/2; 2a+s+1; ρ -2 ) a(a + 1/2) 2a + s ∂ b0 ρ ρ 3 -8ρ (∂ b0 ρ) b 1 b 0 F (a-1/2, a; 2a+s-1; ρ -2 ) -4ρ(b 0 ) 2 b 1 F (a -1/2, a; 2a + s -1; ρ -2 (b 0 )) +8b 1 b 0 F (a + 1/2, a + 1; 2a + s; ρ -2 (b 0 )) a(a -1/2) 2a + s -1 ∂ b0 ρ ρ = 0,
which is also

-2 F (a + 1, a + 3/2; 2a + s + 1; ρ -2 ) F (a -1/2, a; 2a + s -1; ρ -2 ) a(a + 1/2) 2a + s ∂ b0 ρ ρ 3 -8ρ (∂ b0 ρ) b 1 b 0 -4ρ 2 b 1 + 8b 1 b 0 F (a + 1/2, a + 1; 2a + s; ρ -2 ) F (a -1/2, a; 2a + s -1; ρ -2 ) a(a -1/2) 2a + s -1 ∂ b0 ρ ρ = 0.
From (see Proposition 7.(iv))

∂ b0 ρ = - mρ b 0 , we get 1 2ρ 2 b 1 F (a + 1, a + 3/2; 2a + s + 1; ρ -2 ) F (a -1/2, a; 2a + s -1; ρ -2 ) a(a + 1/2) 2a + s m b 0 ρ 2 + 2m -1 - 2 ρ 2 F (a + 1/2, a + 1; 2a + s; ρ -2 ) F (a -1/2, a; 2a + s -1; ρ -2 ) a(a -1/2) 2a + s -1 m = 0.
We can now use again equation (8.11) to get

2 ρ 2 F (a + 1, a + 3/2; 2a + s + 1; ρ -2 ) F (a, a + 1/2; 2a + s; ρ -2 ) a(a + 1/2) 2a + s m + 2m -1 - 2 ρ 2 F (a + 1/2, a + 1; 2a + s; ρ -2 ) F (a -1/2, a; 2a + s -1; ρ -2 ) a(a -1/2) 2a + s -1 m = 0,
and we get the claimed expression (6.1) for m.

We have to estimate the denominator of equation ( 6.1) for ρ(b 0 ) near one.

We first consider the case 1/2 < s < 3/2. Recall that if γ > 0 and γ > α + β

lim zր1 F (α, β; γ; z) = Γ(γ)Γ(γ -α -β) Γ(γ -α)Γ(γ -β) . Therefore lim zր1 F (a -1/2, a; 2 a + s -1; z) = Γ(2a + s -1)Γ(s -1/2) Γ(a + s -1/2)Γ(a + s -1) (since in that case γ -β -α = s -1/2 > 0). Similarly lim zր1 F (a, a + 1/2; 2 a + s; z) = Γ(2a + s)Γ(s -1/2) Γ(a + s)Γ(a + s -1/2)
.

If γ > 0 and γ < α + β, the limit is infinite. More precisely, it follows from formula 2.10.

1 in [7] that if -1 < γ -α -β < 0 F (α, β; γ; z) = (1 -z) γ-β-α Γ(γ)Γ(α + β -γ) Γ(α)Γ(β) + O(1).
Therefore for 1/2 < s < 3/2 we get (8.12) F (a+1, a+3/2;

2 a+s+1; z) = (1-z) s-3/2 Γ(2 a + s + 1)Γ(3/2 -s) Γ(a + 1)Γ(a + 3/2) +O(1), and 
F (a + 1/2, a + 1; 2 a + s; z) = (1 -z) s-3/2 Γ(2 a + s)Γ(3/2 -s) Γ(a + 1/2)Γ(a + 1) + O(1).
Therefore, after simple algebraic manipulations, we get F (a + 1, a + 3/2; 2a + s + 1; z) F (a, a + 1/2; 2a + s; z)

(a + 1/2) 2a + s - F (a + 1/2, a + 1; 2a + s; z) F (a -1/2, a; 2a + s -1; z) (a -1/2) 2a + s -1 = (1 -z) s-3/2 Γ(2 a + s -1)Γ(3/2 -s) Γ(a + 1/2)Γ(a + 1) (a + s -1) + O(1).
From (6.1), this implies that for 1/2 < s < 3/2

m(b 0 ) = 1 -ρ(b 0 ) -2 3/2-s Γ(a + 1/2) Γ(a + 1) 2a(a + s -1)Γ(2a + s -1)Γ(3/2 -s) 1 + O 1 -ρ(b 0 ) -2 3/2-s .
In particular, we see again that for 1/2 < s < 3/2

lim b0րb c 0 m(b 0 ) = 0.
In order to be able to compute the critical indices, we need to know how

ρ(b 0 ) -1 vanishes as a function of b 0 -b c 0 when b 0 ր b c 0 . We have b 0 -b c 0 = w 1 (ρ(b 0 )) 4ρ(b 0 )b 1 - w 1 (1) 4b 1 = 1 4ρ(b 0 ) 2 b 1 F (a, a + 1/2; 2a + s; ρ(b 0 ) -2 ) F (a -1/2, a; 2a + s -1; ρ(b 0 ) -2 ) - 1 4b 1 
F (a, a + 1/2; 2a + s; 1)

F (a -1/2, a; 2a + s -1; 1)
.

For any 0 < z < ξ < 1, we can write, using formula 2.8.20 in [START_REF] Erdélyi | Higher Transcendental Functions Vol I[END_REF] F (a, a + 1/2; 2a + s; ξ) -F (a, a + 1/2; 2a + s; z) = ξ z dF (a, a + 1/2; 2a + s; t) dt dt

= a(a + 1/2) 2a + s ξ z F (a + 1, a + 3/2; 2a + s + 1; t)dt.
Using the identity (8.12) this is equal to

a(a + 1/2) 2a + s ξ z (1 -t) s-3/2 Γ(2 a + s + 1) Γ(3/2 -s) Γ(a + 1)Γ(a + 3/2) + O(1) dt = - Γ(2a + s)Γ(3/2 -s) Γ(a)Γ(a + 1/2) 1 s -1/2 (1 -ξ) s-1/2 -(1 -z) s-1/2 + O(ξ -z).
We can now let ξ tend to one and get F (a, a + 1/2; 2a + s; 1) -F (a, a + 1/2; 2a + s; z)

= Γ(2a + s) Γ(3/2 -s) Γ(a)Γ(a + 1/2) 1 s -1/2 (1 -z) s-1/2 + O(1 -z).
In other words F (a, a + 1/2; 2a + s; z)

= Γ(2a + s)Γ(s -1/2) Γ(a + s)Γ(a + s -1/2) - Γ(2 a + s)Γ(3/2 -s) Γ(a)Γ(a + 1/2) 1 s -1/2 (1 -z) s-1/2 + O(1 -z) = Γ(2a + s)Γ(s -1/2) Γ(a + s)Γ(a + s -1/2) 1 - Γ(a + s)Γ(a + s -1/2) Γ(a)Γ(a + 1/2) 1 (s -1/2) 2 (1 -z) s-1/2 +O(1-z).
Replacing a by a -1/2 we get

F (a -1/2, a; 2a + s -1; 1) -F (a -1/2, a; 2a + s -1; z) = Γ(2 a + s -1)Γ(3/2 -s) Γ(a -1/2)Γ(a) 1 s -1/2 (1 -z) s-1/2 + O(1 -z).
In other words

F (a -1/2, a; 2a + s -1; z) = Γ(2a + s -1)Γ(s -1/2) Γ(a + s -1/2)Γ(a + s -1) - Γ(2 a + s -1)Γ(3/2 -s) Γ(a -1/2)Γ(a) 1 s -1/2 (1-z) s-1/2 +O(1-z) = Γ(2a + s -1)Γ(s -1/2) Γ(a + s -1/2)Γ(a + s -1) 1 - Γ(a + s -1/2)Γ(a + s -1) Γ(a -1/2)Γ(a) 1 (s -1/2) 2 (1 -z) s-1/2 +O(1-z) We obtain the following estimate of b 0 -b c 0 (near z = ρ(b 0 ) -2 = 1) 1 4b 1 F (a, a + 1/2; 2a + s; ρ(b 0 ) -2 ) F (a -1/2, a; 2a + s -1; ρ(b 0 ) -2 )
-F (a, a + 1/2; 2a + s; 1)

F (a -1/2, a; 2a + s -1; 1) + O(1 -z) = 1 4b 1 Γ(2a + s)Γ(s -1/2) Γ(a + s)Γ(a + s -1/2) Γ(a + s -1/2)Γ(a + s -1) Γ(2a + s -1)Γ(s -1/2) 1 (s -1/2) 2 (1 -z) s-1/2 × Γ(a + s -1/2)Γ(a + s -1) Γ(a -1/2)Γ(a) - Γ(a + s)Γ(a + s -1/2) Γ(a)Γ(a + 1/2) = 1 4b 1 2a + s -1 a + s -1 1 (s -1/2) 2 (1-z) s-1/2 Γ(a + s -1/2) Γ(a + s -1) Γ(a -1/2) Γ(a) 1 - a + s -1 a -1/2 = - 1 4b 1 2a + s -1 a + s -1 1 (s -1/2)(a -1/2) (1 -z) s-1/2 Γ(a + s -1/2)Γ(a + s -1) Γ(a -1/2)Γ(a) . Therefore, for b < b c 0 and 1/2 < s < 3/2 m(b 0 ) = C(b c 0 -b 0 ) (3/2-s)/(s-1/2) (1 + o(1)
) where C is a positive constant that can be explicitly computed.

Finally for s > 3/2 lim zր1 F (a + 1, a + 3/2; 2a + s + 1; z) F (a, a + 1/2; 2a + s; z)

= Γ(2a + s + 1)Γ(s -3/2) Γ(a + s)Γ(a + s -1/2) Γ(a + s)Γ(a + s -1/2) Γ(2a + s)Γ(s -1/2) = 2a + s s -3/2 . lim zր1 F (a + 1/2, a + 1; 2a + s; z) F (a -1/2, a; 2a + s -1; z) = Γ(2a + s)Γ(s -3/2) Γ(a + s -1/2)Γ(a + s -1) Γ(a + s -1/2)Γ(a + s -1) Γ(2a + s -1)Γ(s -1/2) = 2a + s -1 s -3/2 . We get for s > 3/2 lim b0րb c 0 m(b 0 ) = 1 2 + 2a 2a+s s-3/2 (a+1/2) 2a+s -2a+s-1 s-3/2 (a-1/2) 2a+s-1 = 1 2 + 2a (s-3/2)
. This completes the proof of Proposition 12. 2

Remark: The form of the critical index can be guessed by the following argument. We have the relation

w 1 (ρ) 4ρb 1 = b 0 ,
and taking the partial derivative with respect to ρ we get

w ′ 1 (ρ) 4ρb 1 - w 1 (ρ) 4ρ 2 b 1 = db 0 dρ .
Assume we know (as we saw before) that

1 m = db 0 dρ = O(1) • (ρ -1) α , then b c 0 -b 0 = 1 ρ(b0) db 0 dρ dρ = 1 ρ(b0) w ′ 1 (ρ) 4ρb 1 - w 1 (ρ) 4ρ 2 b 1 dρ = O(1) • (ρ -1) α-1 ,
and we get

m = O(1) • (ρ -1) -α/(α-1) ,
which is our result if we replace α by 3/2 -s.

• A.11 COMPUTATIONS OF SECTION 6.3. We can eliminate ρ form the two relations cosh(v) = ρ, w 1 = 2e -v = 4ρb 0 , and we get

2b 0 cosh(v) = e -v or b 0 = 1 1 + e 2v . Hence e v = 1 b 0 -1 = 1 -b 0 b 0 , and 
ρ(b 0 ) = 1 2 1 -b 0 b 0 + b 0 1 -b 0
From this follows (after some computations)

m = -b 0 ∂ b0 Φ = -b 0 ρ -1 dρ db 0 = 2b 0 -1 2b 0 -2 .
We also have

∞ p=1 w 2 p = 4 ∞ p=1 e -2pv = 4 e -2v 1 -e -2v = 4 e 2v -1 = 4 1/b 0 -2 = 4b 0 1 -2b 0 , hence 1 + 1 4b 0 b 1 ∞ p=1 w 2 p = 1 + 1 1 -2b 0 = 2 -2b 0 1 -2b 0
and, as expected m = (1 -2b 0 ) / (2 -2b 0 ) . 2

• A.12 COMPUTATIONS OF SUBSECTION 6.3.1. We have

b p b p+1 = (p + 2a)(p + 2a + 1) (p + 2a -1)(p + 2a + 2)
.

Using formulas 15.1.13, 15.1.14, and 15.2.12 in [1] one gets

F (a + p/2 -1/2, a + p/2; 2a + p + 1; z) = 2 2a+p (1 + √ 1 -z) -2a-p+1 (a + p/2 -1/2) √ 1 -z -a -p/2 + 1/2 + z(a + p/2) (a + p/2 + 1/2)z .
Thus, from Theorem 11

w p (ρ) = 2ρ -p (1+ 1 -ρ -2 ) -p (a + p/2 -1/2) 1 -ρ -2 -a -p/2 + 1/2 + ρ -2 (a + p/2) (a + p/2 + 1/2) × a + 1/2 (a -1/2) 1 -ρ -2 -a + 1/2 + aρ -2 a(2a + p + 1) (2a + p -1)(a + 1) =: As p αp + β (2a + p -1)(2a + p + 1)
where

A := 4 a + 1/2 (a -1/2) 1 -ρ -2 -a + 1/2 + aρ -2 a a + 1 α := 1 2 1 -ρ -2 -1 + ρ -2 ; β := a - 1 2 1 -ρ -2 -a + 1/2 + aρ -2
and s =: 1

ρ(1 + 1 -ρ -2
) .

Therefore b c 0 = w 1 (1)/ (4b 1 ) = a/ (2a + 1), and, with C 1 , C 2 some explicit constants 2 + a(a+1/2)F (a+1,a+3/2;2a+3;ρ -2 ) (2a+2)2ρ 4 b0b1F (a-1/2,a;2a+1;ρ -2 ) -2a(a-1/2)F (a+1/2,a+1;2a+2;ρ -2 )

∞ p=1 w p (ρ) 2 = A 2 ∞ p=1 s 2p (αp + β) 2 (2a + p + 1)(2a + p -1) = A 2 2 ∞ p=1 s 2p α 2 p + C 1 2a + p + 1 + α 2 p + C 2 2a + p -1 . Putting x = s 2 , v = 2a ± 1 and using ∞ p=0 x p v + p = ∞ p=0 x p Γ(v + p)Γ(p + 1) Γ(v + p + 1)p! = Γ(v) Γ(v + 1) ∞ p=0 x p (1) p (v) p (v + 1) p p! = Γ(v) Γ(v + 1) F (1, v; v + 1; x), and 
∞ p=1 px p v + p = Γ(v + 1) Γ(v + 2) xF (2, v + 1; v + 2; x),
ρ 2 (2a+1)F (a-1/2,a;2a+1;ρ -2 ) . • A.13 VERIFICATION OF (4.1) FOR b 0 = b c 0 IN THE HYPERGEOMETRIC MODEL. -Let 1/2 < s < 3/2.
In that case, it follows from the asymptotic w p (1) = O(1) • p 1-s that m = 0 as expected.

-Let s > 3/2. We have

∞ p=1 (2a + p + s -2) Γ(2a + p -1) Γ(2a + 2s + p -2) = ∞ p=1 (2a + p -1) Γ(2a + p -1) Γ(2a + 2s + p -2) + (s -1) ∞ p=1 Γ(2a + p -1) Γ(2a + 2s + p -2) = ∞ p=1 Γ(2a + p) Γ(2a + 2s + p -2) + (s -1) ∞ p=1 Γ(2a + p -1) Γ(2a + 2s + p -2) . 1 + 1 4b c 0 b 1 ∞ p=1 w p (1) 2 = 1 + 4a + 2s -3 2s -3 = 2 + 2a s -3/2 .
We finally get

m = 1/ 2 + 2a (s -3/2) ,
which is precisely the expression of Proposition12.(iii), derived in Appendix A.10 using a direct application of the formula. 2

• A.14 PROOF of the UNIVERSALITY of CRITICAL INDICES.

-Sketch of the Proof of Theorem 9.

We want to find the minimal positive solution of (8.13)

Rw = (1 + ǫ)w -1 n=1 where (Rw) n = w n+1 2 b n b n+1 + w n-1 2 b n b n-1 1 n>1 .
For ǫ > 0, we define the integer N = N (ǫ) by

N (ǫ) = 1 √ ǫ .
The proof of Theorem 9 uses three zones. Zone 1. We first consider n ≪ N (ǫ). In that case we start by neglecting ǫ in equation (8.13). Note that indeed in that regime |1 -b n | ≫ ǫ. We prove that w n is well approximated by w 0 n = w n . Recall (see Proposition 15) that w n (1) behaves like C 1 n α for large n, with C 1 a constant independent of n and α = α - the solution smaller than 1/2 of (5.3). Recall that for -3/8 < w < 1/8 we have -1/2 < α -< 1/2. Zone 3. For n ≫ N (ǫ), we will use a refined version of Lemma 16 to prove that w n is well approximated by C 3 ǫ -α/2 e -nk , where C 3 is some constant independent of n and ǫ to be fixed later on, and k = cosh -1 (1 + ǫ) ∼ √ 2ǫ. Zone 2. For n ≈ N (ǫ), we introduce the scaled variable x = n √ ǫ. We then look in this range for a solution w n of the form f (n √ ǫ). Using this ansatz in equation (8.13) and expanding, we get (at dominant order) for f the equation

f ′′ (x) + 2w x 2 -2 f (x) = 0.
See below for the details in zone 2. According to formula 8.491.5 in [START_REF] Gradshteyn | Table of Integrals, Series and Products[END_REF], (taken at a purely imaginary argument) we get

f (x) = A √ xK ν ( √ 2x) + B √ xI ν ( √ 2x)
for some constants A, B, and ν given by

ν = √ 1 -8w 2 = 1 2 -α.
Note that since α = α -and -1/2 < α -< 1/2, we have 0 < ν < 1. We look for a solution which tends to zero at infinity exponentially fast. In the sequel we will therefore take B = 0, and A = ǫ -α/2 for the homogeneity of the matching, leading to

(8.14) f (x) = ǫ -α/2 √ xK ν ( √ 2x).
Recall that (see for example [1].9.7.2 and [1].9.6.9) K ν (x) = K -ν (x) and for ν > 0

K ν (x) = 2 ν-1 Γ(ν) x -ν (1 + o(x)) for 0 < x ≤ 1 , π/2 x -1/2 e -x (1 + o(1/x)) for x ≥ 1 . Therefore, f (x) = O(1) ǫ -α/2 x α for 0 < x ≤ 1 , O(1) ǫ -α/2 e -x √ 2 for x ≥ 1 .
or equivalently

f n √ ǫ = O(1) n α for 1 ≤ n ≤ N , O(1) ǫ -α/2 e -n √ 2ǫ
for n ≥ N .

These two asymptotic estimates allow the matching at the dominant order. The complete proof of the matching is done using estimates on the remainders.

-Matching equations.

We define V as the unique solution of the equation

RV = (1 + ǫ)V satisfying V 1 = 1.
This solution is unique since the recursion is of order two except for n = 1. We define (G) n≥2 as the unique solution of the equation

RG = (1 + ǫ)G, satisfying (recalling N = N (ǫ)) G N = N 1-α , G N +1 = (N + 1) 1-α .
This solution is unique since the recursion is of order two. The solutions W , F and H of

RX = (1 + ǫ)X -1 n=1
and the numbers 1 < M < N 1 < N < N 2 < M ′ < ∞ are given in Propositions 36, 37, 33; see (8.23), (8.19) and (8.17). Within each zone, we will construct solutions W i n , i = 1, ..., 3 as follows (for some constants A, B, C, D):

• Zone 1 : n ≤ N 1 , solution W 1 n = W n + AV n . • Zone 2 : M ≤ n ≤ M ′ , solution W 2 n = BF n + CG n . • Zone 3 : n ≥ N 2 , solution W 3 n = DH n . • The matching points are L and L + 1, L ′ and L ′ + 1, with M < L < N 1 < N < N 2 < L ′ < M ′ where M = O (1) , L = ǫ -1/2 log (ǫ -1 ) , N 1 = Cǫ -1/2 , N = ǫ -1/2 , N 2 = 1 + 3C ′ Cǫ -1/2 , L ′ = N (1 + γ log ǫ -1 2 √ 2 and M ′ = N + ζǫ -1/2 2 √ 2 log ǫ -1 .
This is summarized in figure 3. The matching conditions therefore are

L N L ′ N 1 N 2 M M ′ 1 (W, V) (H) (F, G)
W L + AV L = BF L + CG L , W L+1 + AV L+1 = BF L+1 + CG L+1 , BF L ′ + CG L ′ = DH L ′ , BF L ′ +1 + CG L ′ +1 = DH L ′ +1 .
These matching conditions can be written in matrix form, namely

    -V L F L G L 0 -V L+1 F L+1 G L+1 0 0 F L ′ G L ′ -H L ′ 0 F L ′ +1 G L ′ +1 -H L ′ +1         A B C D     =     W L W L+1 0 0     .
Define the discrete Wronskian sequence (after Josef Hoëné-Wronski and Casorati)

W (X, Y ) n by W (X, Y ) n = X n+1 Y n -X n Y n+1 .
After some computations using Cramer's rule, one gets

(8.15) A = W (G, H) L ′ W (F, W ) L -W (F, H) L ′ W (G, W ) L W (G, H) L ′ W (V, F ) L + W (F, H) L ′ W (G, V ) L B = W (G, H) L ′ W (V, W ) L W (G, H) L ′ W (V, F ) L + W (F, H) L ′ W (G, V ) L , C B = - W (F, H) L ′ W (G, H) L ′ and D = - W (F, G) L ′ W (V, W ) L W (G, H) L ′ W (V, F ) L + W (F, H) L ′ W (G, V ) L .

We have:

Theorem 31. There exist constants c > 1 and ǫ 0 > 0, such that for any ǫ ∈]0, ǫ 0 ],

for any L = ǫ -1/2 log(ǫ -1 ) and for

L ′ = N (1 + γ log(ǫ -1 ) 2 √ 2
) , with

γ = inf ζ/2, 2 √ 2 C′ ,
(see Proposition 37 for the definition of C′ ), we have

1 c ≤ W (G, H) L ′ , W (V, F ) L , W (V, W ) L , W (G, F ) L ′ ≤ c and |W (G, W ) L | ≤ c. Moreover |W (G, V ) L | ≤ O(1) • ǫ α-1/2 , |W (F, W ) L | ≤ O(1) • ǫ 1/2-α , |W (F, H) L ′ | ≤ O(1) • ǫ 1/2-α+γ . Proof: Estimate of W (V, W ) L . Note that (since V 1 = 1) V 2 = 2 b 1 b 2 (1 + ǫ) and W 2 = 2 b 1 b 2 (1 + ǫ)W 1 -2 b 1 b 2 . Therefore W (V, W ) 1 = V 2 W 1 -W 2 V 1 = 2 b 1 b 2 .
The bound on W (V, W ) L follows from Lemma 14 and

0 < ∞ j=1 b j < ∞.
Estimate of W (G, F ) L ′ . Using Lemma 14, we get

W (G, F ) L ′ ≈ W (G, F ) N .
We use equation (8.28) with x n = n 1-α , δ x n = 0 (since n = N or N + 1), y n = f (n √ ǫ). We obtain using Proposition 37

W (G, F ) N = W (G, y) N (1 + δ y N ) + O(1) • N ǫ 1/2+ζ/2 . W (G, y) N = (N + 1) 1-α f (N √ ǫ) -N 1-α f ((N + 1) √ ǫ) = N 1-α 1 + 1 N 1-α f (N √ ǫ) -f ((N + 1) √ ǫ) = N 1-α 1 -α N f (N √ ǫ) + f (N √ ǫ) -f ((N + 1) √ ǫ) + O(1) • N -2 f (N √ ǫ) = N 1-α 1 -α N f (N √ ǫ) - √ 2ǫf ′ (N √ ǫ) - ǫ 2 f ′′ (ξ) + O(1) • N -2 f (N √ ǫ) for some ξ ∈ [N √ ǫ, (N + 1) √ ǫ]. This implies W (G, y) N = N -α (1 -α)f (N √ ǫ) - √ ǫN f ′ (N √ ǫ) + O(1) • ǫ 1/2 .
Using formula 8.472.2 in [START_REF] Gradshteyn | Table of Integrals, Series and Products[END_REF] and α = 1/2 -ν, we have

(1 -α)f (x) -xf ′ (x) = ǫ -α/2 x 3/2 K ν+1 (x). Therefore W (G, y) N = N -α ǫ -α/2 (N √ 2ǫ) 3/2 K ν+1 (N √ 2ǫ) = 2 3/4 K ν+1 ( √ 2) + O(1) • ǫ 1/2 .
We obtain (8.16)

W (G, F ) N = 2 3/4 K ν+1 ( √ 2) + o(1)
and the bound on W (G, F ) L ′ follows.

Estimate of W (F, H) L ′ . We use equation (8.28) with

x n = ǫ 1/4-α/2 √ nK ν (n √ 2ǫ) = f (n √ ǫ)
and y n = ǫ -α/2 e -kn . We get using Propositions 37 and 33

W (F, H) L ′ = W (x, y) L ′ 1 + δ 2 L ′ + δ 3 L ′ + δ 2 L ′ δ 3 L ′ + R F,H L ′ with |R F,H L ′ | ≤ O(1) • ǫ -α e -(L ′ -N )(k+ √ 2ǫ) ǫ -1/2 L ′ -2 + ǫ 1/2+ζ/2 e 2(L ′ -N ) √ 2ǫ ≤ O(1) • ǫ 1/2-α e -2(L ′ -N ) √ 2ǫ + ǫ ζ/2 for L ′ ≤ O(1) • N log ǫ -1 . Since |δ x | ≤ 1/2 and |δ y | ≤ 1/2, we have - 3 4 ≤ δ x + δ y + δ x δ y ≤ 5 4 . 
Finally

W (x, y) L ′ = ǫ -α/2 e -k(L ′ -N ) f ((L ′ + 1) √ ǫ) -e -k f (L ′ √ ǫ) . f ((L ′ + 1) √ ǫ) -e -k f (L ′ √ ǫ) ≤ 1 -e -k f (L ′ √ ǫ) + O(1) • √ ǫ |f ′ (ξ)| ≤ O(1) • ǫ 1/2-α e -2(L ′ -N ) √ 2ǫ .
We get

|W (F, H) L ′ | ≤ O(1) • ǫ 1/2-α e -2(L ′ -N ) √ 2ǫ + ǫ ζ/2 + e -2(L ′ -N ) √ 2ǫ .
With our choice of L ′ , for ǫ small enough we get

|W (F, H) L ′ | ≤ O(1) • ǫ 1/2-α+γ . Estimate of W (G, H) L ′ .
We use equation (8.31) with x n = F n , y n = G n , and z n = H n and p = N . We get

W (H, G) L ′ = W (H, F ) L ′ G p F p + W (G, F ) p b p+1 b p GL ′ +1 -H L ′ W (G, F ) p b p+1 b p b L ′ +1 b L ′ F L ′ , GL ′ +1 = L ′ l=N b l+1 b l F l F l+1 ≤ O(1) • ǫ α-1/2 , G N F N = O(1) • N 1-α N α = O(1) • ǫ α-1/2 .
Using (8.16), Propositions 33 and 37 and the bound on W L ′ and H L ′ /F L ′ = 1+o (1), we get

W (H, G) L ′ = - 2 π 2 3/4 K ν+1 ( √ 2) + o(1).
Estimate of W (F, W ) L . We use equation (8.28) with x n = f (n √ ǫ) and y n = n α . We have

W (x, y) L = f ((L + 1) √ ǫ)L α -(L + 1) α f (L √ ǫ) = L α √ ǫf ′ (L √ ǫ) - α L f (L √ ǫ) +L α O(1) L 2 f (L √ ǫ) + ǫf ′′ (ξ) for some ξ ∈ [L √ ǫ, (L + 1) √ ǫ]. L α √ ǫf ′ (L √ ǫ) - α L f (L √ ǫ) = L α-1 L √ ǫf ′ (L √ ǫ) - 1 2 -ν f (L √ ǫ) = x=L √ ǫ L α-1 xf ′ (x) - 1 2 -ν f (x) = L α-1 ǫ -α/2 √ x 2 K ν ( √ 2x) + √ 2x 3/2 K ′ ν ( √ 2x) - 1 2 -ν √ xK ν ( √ 2x) = L α-1 ǫ -α/2 √ x √ 2xK ′ ν ( √ 2x) + νK ν ( √ 2x) = √ 2L α-1 ǫ -α/2 x 3/2 K ν-1 ( √ 2x) = O(1) • L α+1/2 ǫ 3/4-α/2 K 1-ν (L √ 2ǫ) = O(1) • L α+1/2 ǫ 3/4-α/2 L ν-1 ǫ ν/2-1/2 = O(1) • L α+1/2 ǫ 3/4-α/2 L -α-1/2 ǫ -1/4-α/2 = O(1)
• ǫ 1/2-α by 8.472.1 in [START_REF] Gradshteyn | Table of Integrals, Series and Products[END_REF]. We have

L α O(1) L 2 f (L √ ǫ) + ǫf ′′ (ξ) ≤ O(1) • L 2α-2 .
Using 36 and 37 we get for the second term in (8.28)

y L x L+1 (δ x L+1 -δ x L )(1 + δ y L ) -(δ y L+1 -δ y L )(1 + δ x L ) = O(1) • L 2α ǫL + L -1-ζ ≤ O(1) • ǫ 1/2-α .
Collecting all the terms we get

|W (F, W ) L | ≤ O(1) • ǫ 1/2-α .
Estimate of W (G, W ) L . We will use (8.31) with z = W , y = G, x = F, p = N and n = L. We have

y p x p = G N F N = O (1) • N 1-2α = O (1) • ǫ -1/2+α .
Next W (y, x) p =W (G, F ) N =O (1) as seen from the estimation of W (G, F ) L and

y n+1 = - N l=L b l+1 b l F l F l+1 = O (1) • N 1-2α = O (1) • ǫ -1/2+α .
We also have Estimate of W (V, F ) L .

z n x n = W L F L = O ( 
We use equation (8.31) with x n = W n , y n = V n , z n = F n and p = 1. We get

W (F, V ) L = W (F, W ) L V 1 W 1 + W (V, W ) 1 √ b 2 b 1 ṼL+1 -F L W (V, W ) 1 √ b 2 b 1 b L+1 b L W L . ṼL+1 = L l=1 b l+1 b l W l W l+1 = O(1) • L 1-2α , W (V, W ) 1 = 2 b 1 b 2 .
Using the above estimate of W (F, W ) L , Propositions 36 and 37, we get

W (V, F ) L = 2 ǫ -α/2 L √ ǫK ν (L √ 2ǫ) CL α + O(1) • ǫ 1/2-α L 1-2α + L -2 + ǫ 1/2-α = 2 ν/2 Γ(ν) C (1 + o(1)) . Estimate of W (G, V ) L .
We first use equation (8.31) with x n = F n , y n = G, z n = V n and p = N . We obtain

W (V, G) L = W (V, F ) L G N F N + W (G, F ) N b N +1 b N GL+1 -V L W (G, F ) N b N +1 b N b L+1 b L F L .
We have the estimate

G N F N - W (G, F ) N b N +1 b N N -1 l=L+1 b l+1 b l F l F l+1 = O(1) • ǫ α-1/2 .
We also have

V L F L = W L F L
V L W L and use (8.29) with y n = V n , x n = W n and p = 1. We obtain

V L W L = V 1 W 1 + W (V, W ) 1 √ b 2 b 1 L-1 l=1 b l+1 b l W l W l+1 = O(1) • L 1-2α .
Combining the above estimates we get

|W (G, V ) L | ≤ O(1) • ǫ α-1/2 . 2
Corollary 32. Under the hypotheses and notation of Theorem 31, we have

w n (1 + ǫ) =      W n + A V n for 1 ≤ n ≤ L + 1 B F n + C G n for L ≤ n ≤ L ′ + 1 D H n for L ′ ≤ n ,
with A, B, C, D given by 8.15.

Proof: We define a sequence (w n ) by

w n =      W n + A V n for 1 ≤ n ≤ L + 1 B F n + C G n for L ≤ n ≤ L ′ + 1 D H n for L ′ ≤ n .
Using Propositions 36, 37, 33, and the fact that A, B, C, D solve the matching conditions, we deduce that (w n ) satisfies Rw = (1 + ǫ) w -1 n=1 . From Proposition 33, we also know that this sequence has the right asymptotics at infinity. It remains to prove that w n > 0 for all n ≥ 1 and the result w n = w n (1 + ǫ) will follow from (3.4).

Using Theorem 31 we get

|W (F, H) L ′ W (G, V ) L | ≤ O(1) • ǫ γ .
therefore D > 0 and for ǫ > 0 small enough

B ≥ c -2 + O(1) • ǫ γ > 0.
From D > 0 we have w n > 0 for n ≥ L ′ . From equation (8.29) we have (with p = 1)

V n W n ≤ O(1) • n 1-2α .
Using Theorem 31, this implies that for L < O(1) • ǫ -1/2 and ǫ > 0 small enough

sup 1≤n≤L A V n W n ≤ 1 2 .
From the positivity of W n , this implies w n > 0 for 1 ≤ n ≤ L.

For L ≤ n ≤ N , we use equation (8.30) (with p = N ) giving

G n F n ≤ O(1) • N 1-2α ≤ O(1) • ǫ α-1/2 .
For N ≤ n ≤ L ′ , we use equation (8.29) with p = N also giving

G n F n ≤ O(1) • ǫ α-1/2 .
This implies using Theorem 31 sup

L≤n≤L ′ C B G n F n ≤ O(1) • ǫ γ .
Therefore for ǫ > 0 small enough, we conclude that w n > 0 for any L ≤ n ≤ L ′ . 2

-Proof of the main result (equation (5.2)).

We can split the sum

∞ p=1 w p (1 + ǫ) 2 = L p=1 w p (1 + ǫ) 2 + L ′ p=L+1 w p (1 + ǫ) 2 + ∞ p=L ′ w p (1 + ǫ) 2 .
The result follows from Corollary 32 using Propositions 36, 37 and 33. Note that each of the three terms of the sum contribute an order ǫ -θ . 2

We now come to the construction of the solutions in the 3 different zones that were just used in the proof of equation (5.2) from the matching conditions.

-Zone 3, n ≫ N (ǫ).

Proposition 33. There exists a constant C ′ > 0, such that for any ǫ ∈]0, 1], and for any

(8.17) n ≥ N 2 = 1 + 3C ′ √ ǫ , the equation Rw = (1 + ǫ)w, a unique (positive) solution (H n ) such that H n = ǫ -α/2 e -kn (1 + δ 3 n ), with k = cosh -1 (1 + ǫ), and lim n→∞ δ 3 n = 0. Moreover sup n≥N2 |δ 3 n | ≤ 1 2 ,
and for any n ≥ N 2

|δ 3 n | ≤ O(1) n √ ǫ , and 
|δ 3 n -δ 3 n+1 | ≤ O(1) n 2 √ ǫ .
Proof: We look for a solution of equation (8.13) of the form

w n = ǫ -α/2 e -kn (1 + δ n ).
The factor ǫ -α/2 in front is to ensure the homogeneity in the matching. Inserting this ansatz into equation (8.13), we get a recursive equation for δ n (see [START_REF] Levinson | The asymptotic nature of solutions of linear systems of differential equations[END_REF]). We get

ǫ -α/2 e -k(n+1) (1 + δ n+1 ) 2 b n+1 b n + ǫ -α/2 e -k(n-1) (1 + δ n-1 ) 2 b n-1 b n = ǫ -α/2 (1 + ǫ)e -kn (1 + δ n ).
This can be rearranged as follows.

e -k (1 + δ n+1 ) 2 + e k (1 + δ n-1 ) 2 -(1 + ǫ) (1 + δ n ) = e -k (1 + δ n+1 ) 1 2 - 1 2 b n+1 b n + e k (1 + δ n-1 ) 1 2 - 1 2 b n-1 b n .
This can also be rewritten (using 1 + ǫ = cosh (k))

e -k (δ n+1 -δ n ) -e k (δ n -δ n-1 ) = 2e -k (1 + δ n+1 ) 1 2 - 1 2 b n+1 b n + 2e k (1 + δ n-1 ) 1 2 - 1 2 b n-1 b n . or δ n -δ n-1 = e -2k (δ n+1 -δ n ) -2e -2k (1 + δ n+1 ) 1 2 - 1 2 b n+1 b n -2(1 + δ n-1 ) 1 2 - 1 2 b n-1 b n .
Assuming the sequence (δ n ) converges to zero when n tends to infinity, we get using equation

(8.26) with p = ∞ δ n -δ n-1 = - ∞ j=0 e -2k(j+1) e -2k (1 + δ n+1+j ) 1 - 1 b n+1+j b n+j + (1 + δ n-1+j ) 1 - 1 b n-1+j b n+j .
Finally, assuming lim n→∞ δ n = 0 we get using equation (8.27) with p = ∞

δ n = - ∞ p=n ∞ j=0 e -2k(j+1) [e -2k (1 + δ p+2+j ) 1 - 1 b p+2+j b p+1+j + (1 + δ p+j ) 1 - 1 b p+j b p+1+j
].

Observe that the right hand side is the action of an affine operator on δ, denoted by T (δ). From the asymptotic behavior of (b n ) (see equation (5.1)) we conclude that there is a constant C > 0 such that for any r ≥ 1

1 - 1 b r+1 b r ≤ C r 2 . Therefore ∞ p=n ∞ j=0 e -2k(j+1) e -2k 1 - 1 b p+2+j b p+1+j + 1 - 1 b p+j b p+1+j ≤ 2C ∞ p=n ∞ j=0 e -2kj 1 (p + j) 2 .
It is easy to show (using k ≈ √ ǫ) that there exists a constant C ′ > 0 such that for

any ǫ ∈]0, 1] 2C ∞ p=n ∞ j=0 e -2kj 1 (p + j) 2 ≤ C ′ 1 n √ ǫ .
We now take

N 2 > 3C ′ √ ǫ .
Denote by B 3 the Banach space of bounded sequences on {N 2 , N 2 + 1, . . .} tending to zero at infinity and equipped with the sup norm. It is easy to verify from the above estimate that the affine operator T maps B 3 into itself with

T (0) B3 ≤ 1 3 and DT (0) B3 ≤ 1 3 .
Here DT denotes the differential of the map. Therefore, by the contraction mapping principle (see [START_REF] Palais | A simple proof of the Banach contraction principle[END_REF]), the equation δ = T (δ) has a unique fixed point in B 3 whose norm is at most 1/2. The last two bounds follow from equations (8.27) and (8.26) using estimates as above. 2

-Zone 1, n ≪ N (ǫ).

Denote by (w 1 ) n the positive solution of Rw 1 = w 1 -1 n=1 , assumed to exist from 1-transience of R. In Corollary 23, we showed that w 1 n behaves like n α for large n but we need here more precise asymptotics.

Proposition 34. There exist an integer n 1 > 0 and a constant C > 0 such that for n > n 1 , w 1 n satisfies w

1 n = Cn α 1 + δ1 n with sup n>n1 δ1 n < 1/2 and δ1 n+1 - δ1 n ≤ O(1) • n -1-ζ .
Proof: We consider the equation Rw = w for large n, and we look for a solution of the form

w n = n α (1 + δ n ) .
Using this ansatz (n > 2), we get

(n + 1) α (1 + δ n+1 ) 2 b n b n+1 + (n -1) α (1 + δ n-1 ) 2 b n b n-1 = n α (1 + δ n ).
This can be rearranged as

(1 + 1/n) α 2 b n b n+1 (δ n+1 -δ n ) - (1 -1/n) α 2 b n b n-1 (δ n -δ n-1 ) = T n (1 + δ n ) with T n = 1 - (1 + 1/n) α 2 b n b n+1 - (1 -1/n) α 2 b n b n+1 .
We deduce that for n > 1 using equation (8.26) with p = ∞,

h n = b n+1 b n-1 (1 -1/n) α (1 + 1/n) α , g n = 2 b n b n+1 (1 + 1/n) α T n (1 + δ n )
we get (assuming lim n→∞ δ n = 0)

δ k-1 -δ k = 2 ∞ l=k b k-1 b k b l+1 b l b l b l+1 (1 + 1/l) α T l (1 + δ l ) l j=k (1 + 1/j) α (1 -1/j) α (8.18) δ k-1 -δ k = 2 ∞ l=k b k-1 b k (1 + 1/l) α T l (1 + δ l ) l j=k (1 + 1/j) α (1 -1/j) α . Observe that from α 2 -α + 2w = 0 |T n | ≤ O(1) • n -2-ζ . Therefore ∞ l=k b k-1 b k (1 + 1/l) α |T l | l j=k (1 + 1/j) α (1 -1/j) α ≤ O(1) • ∞ l=k l -2-ζ l 2α k 2α ≤ O(1) • k -1-ζ . For n = 1 we get if δ 1 = 0 (8.20) δ 2 = 2ǫ b 2 b 1 w 1 1 w 1 2 .
For n > 1 we have

w 1 n+1 (δ n+1 -δ n ) 2 b n b n+1 - w 1 n-1 (δ n -δ n-1 ) 2 b n b n-1 = ǫw 1 n (1 + δ n ). hence δ n+1 -δ n = b n+1 b n-1 w 1 n-1 w 1 n+1 (δ n -δ n-1 ) + 2ǫ b n b n+1 w 1 n w 1 n+1 (1 + δ n ).
We deduce that for n > 1 using equation (8.24) with p = 1,

h n = b n+1 b n-1 w 1 n-1 w 1 n+1 , g n = 2ǫ b n b n+1 w 1 n w 1 n+1 (1 + δ n ) we get δ n+1 -δ n = b n+1 b n b 1 b 2 w 1 1 w 1 2 w 1 n+1 w 1 n (δ 2 -δ 1 ) + 2ǫ b n+1 b n w 1 n w 1 n+1 n j=2 (w 1 j ) 2 (1 + δ j ).
Using equations (8.25) and (8.20), we get for n > 2

δ n = δ 2 + n-1 l=2 (δ l+1 -δ l ) = δ 2 + n-1 l=2 b l+1 b l b 1 b 2 w 1 1 w 1 2 w 1 l+1 w 1 l (δ 2 -δ 1 ) + 2ǫ n-1 l=2 b l+1 b l w 1 l w 1 l+1 l j=2 (w 1 j ) 2 (1 + δ j ) = 2ǫ   b 2 b 1 w 1 1 w 1 2 (1 + δ 2 ) n-1 l=1 b l+1 b l b 1 b 2 w 1 1 w 1 2 w 1 l+1 w 1 l + n-1 l=2 b l+1 b l w 1 l w 1 l+1 l j=2 (w 1 j ) 2 (1 + δ j )   .
We now consider the affine operator T acting on l ∞ ({2, 3, . . . , N 1 }) and defined by

T (δ) 2 = 2ǫ b 2 b 1 w 1 1 w 1 2 , and for 2 < n < N 1 T (δ) n = 2ǫ   b 2 b 1 w 1 1 w 1 2 (1 + δ 2 ) n-1 l=2 b l+1 b l b 1 b 2 w 1 1 w 1 2 w 1 l+1 w 1 l + n-1 l=2 b l+1 b l w 1 l w 1 l+1 l j=2 (w 1 j ) 2 (1 + δ j )   .
We can now write the equation for δ 1

(I -T)(δ 1 ) = 0.

We know from Corollary 23 that there exists a constant

C 1 > 1 such that for any n ≥ 1 n α C 1 ≤ w 1 n ≤ C 1 n α . Recall that -1/2 < α < 1/2,
and there exists a constant C ′ > 1 such that for any

n ≥ 1 1 C ′ ≤ b n ≤ C ′ .
Proof: We take ǫ 0 > 0 small enough such that

C √ ǫ 0 > n 1 + 3
where n 1 is given in Proposition 34. The Proposition follows by combining the results of propositions 34 and 35. 2

-Zone 2, n ≈ N (ǫ).
First the idea. We look for a function

f such that f (n √ ǫ) is almost a solution of (Rw) n = (1 + ǫ)w n for n ≈ N . We have 1 2 b n b n+1 f ((n + 1) √ ǫ) + 1 2 b n b n-1 f ((n -1) √ ǫ) -(1 + ǫ)f (n √ ǫ) = f (n √ ǫ) 1 2 b n b n+1 + 1 2 b n b n-1 -1 -ǫ + √ ǫf ′ (n √ ǫ) 1 2 b n b n+1 - 1 2 b n b n-1 + ǫ 2 f ′′ (n √ ǫ) 1 2 b n b n+1 + 1 2 b n b n-1 + O(ǫ 3/2 ) • f ′′′ (ξ n+1 ) + O(ǫ 3/2 ) • f ′′′ (ξ n-1 ) for some ξ n+1 ∈ [n √ ǫ, (n + 1) √ ǫ] and ξ n-1 ∈ [(n -1) √ ǫ, n √ ǫ]. This is also equal to ǫ 2 f ′′ (n √ ǫ) + ǫf (n √ ǫ) -1 + w ǫ • n 2 +O(1) • n -2-ζ f (n √ ǫ) + O(1) • √ ǫn -2-ζ f ′ (n √ ǫ) + O(1) • ǫ • n -2 f ′′ (n √ ǫ) +O(ǫ 3/2 ) • f ′′′ (ξ n+1 ) + O(ǫ 3/2 ) • f ′′′ (ξ n-1 ).
We now choose f as in (8.14) and look for an exact solution of the equation (Rw) n = (1 + ǫ) w n for n ≥ N , of the form

w n = f (n √ ǫ)(1 + δ n ),
with the sequence (δ n ) small (for n ≥ N ). We get

f ((n + 1) √ ǫ)(1 + δ n+1 ) 2 b n b n+1 + f ((n -1) √ ǫ)(1 + δ n-1 ) 2 b n b n-1 -(1 + ǫ)f (n √ ǫ)(1 + δ n ) = f ((n + 1) √ ǫ)δ n+1 2 b n b n+1 + f ((n -1) √ ǫ)δ n-1 2 b n b n-1 -(1 + ǫ)f (n √ ǫ)δ n + R n = f ((n + 1) √ ǫ)δ n+1 2 b n b n+1 + f ((n -1) √ ǫ)δ n-1 2 b n b n-1 - f ((n + 1) √ ǫ) 2 b n b n+1 + f ((n -1) √ ǫ) 2 b n b n-1 δ n +(1 + δ n )R n ,
where

R n = f ((n + 1) √ ǫ) 2 b n b n+1 + f ((n -1) √ ǫ) 2 b n b n-1 -(1 + ǫ)f (n √ ǫ).
Since ζ ≤ 1, we have

|R n | ≤ O(1) • f (n √ ǫ) n 2+ζ + ǫ 3/2 sup ξ∈[(n-1) √ ǫ,(n+1) √ ǫ)]
|f ′′′ (ξ)| .

Therefore, after some easy algebra using 0 < ζ ≤ 1 we get

|R n | ≤ O(1) • n α-2-ζ if n ≤ N ǫ 1+ζ/2-α/2 e -n √ 2ǫ
if n ≥ N

We now consider the equation for (δ n )

f ((n + 1) √ ǫ)δ n+1 2 b n b n+1 + f ((n -1) √ ǫ)δ n-1 2 b n b n-1 - f ((n + 1) √ ǫ) 2 b n b n+1 + f ((n -1) √ ǫ) 2 b n b n-1 δ n = -(1 + δ n )R n . We can rewrite this as f ((n + 1) √ ǫ) 2 b n b n+1 (δ n+1 -δ n ) - f ((n -1) √ ǫ) 2 b n b n-1 (δ n -δ n-1 ) = -(1 + δ n )R n .
This can be rewritten

δ n+1 -δ n = b n+1 b n-1 f ((n -1) √ ǫ) f ((n + 1) √ ǫ) (δ n -δ n-1 ) -2 b n b n+1 f ((n + 1) √ ǫ) (1 + δ n )R n .
• Case n ≥ N.

For n ≥ N we take δ N = 0 and δ N +1 = 0. We apply equation (8.25) with p = N ,

h n = b n+1 b n-1 f ((n -1) √ ǫ) f ((n + 1) √ ǫ) , g n = -2 b n b n+1 f ((n + 1) √ ǫ) (1 + δ n )R n .
We get for n ≥ N + 2

δ n = -2 n-1 k=N +1 b k+1 b k f ((k + 1) √ ǫ) (1 + δ k )R k n-1 l=k b l+1 b l b k+1 b k f ((k + 1) √ ǫ)f (k √ ǫ) f ((l + 1) √ ǫ)f ((l) √ ǫ)
Using the estimates on R n , f and b, it is easy to prove that there exists a constant C ′′ > 0 such that for any ǫ ∈]0, 1], and any n ≥ N + 2 We define an affine operator T on l ∞ ({N, N + 1, . . . M ′ }) by (8.21) From equation (8.24) we have

T (δ) n = -2 n-1 k=N +1 b k+1 b k f ((k + 1) √ ǫ) (1 + δ k )R k n-1 l=k b l+1 b l b k+1 b k f ((k + 1) √ ǫ)f (k √ ǫ) f ((l + 1) √ ǫ)f (l √ ǫ) , for N + 2 ≤ n ≤ M ′ ,
δ n+1 -δ n = n k=N +1 g k n j=k+1 h j = -2 n k=N +1 b k b k+1 f ((k + 1) √ ǫ) (1 + δ k )R k n j=k+1 b j+1 b j-1 f ((j -1) √ ǫ) f ((j + 1) √ ǫ) = -2 n k=N +1 b k b k+1 f ((k + 1) √ ǫ) (1 + δ k )R k b n+1 b n b k+1 b k f ((k + 1) √ ǫ)f (k √ ǫ) f ((n + 1) √ ǫ)f (n √ ǫ) .
Therefore, if N ≤ n ≤ M ′ • Case n ≤ N + 1.

For n ≤ N + 1 we take δ N = 0 and δ N +1 = 0 as before to obtain the same solution. We apply equation (8.27) with p = N + 1

h n = b n+1 b n-1 f ((n -1) √ ǫ) f ((n + 1) √ ǫ) , g n = -2 b n b n+1 f ((n + 1) √ ǫ) (1 + δ n )R n .
We get for n < N

δ n = -2 N l=n+1 b l b l+1 f ((l + 1) √ ǫ) (1 + δ l )R l l k=n+1 b k b k-1 b l+1 b l f (l √ ǫ)f ((l + 1) √ ǫ) f ((k -1) √ ǫ) f (k √ ǫ)
Using the estimates on R n , f and b, it is easy to prove that there exists a constant C ′′′ > 0 such that for any ǫ ∈]0, 1], and any n < N 

  w 1 (ρ (b 0 )) = 4ρ (b 0 ) b 0 b 1 defining ρ (b 0 ), we show that the 1 Gibbs potential per site is -log ρ (b 0 ) if b 0 ≤ b c 0 and equal to 0 if b 0 ≥ b c 0 . If m (b 0 ) is the density of returns to the origin, we show that b 0 < b c 0 ⇒ m (b 0 ) > 0 b 0 > b c 0 ⇒ m (b 0 ) = 0 .

v 1 2 √ b 0 b 1 = ρv 0 , hence w p = 4ρv p b 0 b 1 v 1

 211 and in particularw 1 = 4ρb 0 b 1 . Let w 1 (ρ) = inf {w 1 : w > 0 and Rw = ρw -1 p=1 } , with w 1 (ρ) = ∞ if the condition leads to an empty set. Then 4ρb 0 b 1 ≥ w 1 (ρ)or in other words w 1 (ρ) 4ρb 1 ≤ b 0 .

Proposition 4 .

 4 If b n ≥ 1 for all n ≥ 1 and lim n→∞ b n = 1, then ρ * (R) = 1 and R is one-transient.

Proposition 5 .

 5 Assume the sequence (b n ) satisfies (3.5). Then (i) For w > 1/8 the equation Rw = w -1 p=1 has no positive solution. (ii) For any w < 1/8, there exists a positive sequence (b n ) satisfying (3.5) such that the equation Rw = w -1 p=1 has no positive solution.

3. 1 .Lemma 6 .

 16 Gibbs potential revisited. We define b c 0 = lim ρցρ * (R) w 1 (ρ) 4b 1 ρ . Note that b c 0 > 0 may be infinite, and by Lemma 3, b c 0 < ∞ implies ρ * (R) = 1. In this case w 1 (1) < ∞ (R is 1-transient). Assume lim n→∞ b n = 1. Consider both the free and zero boundary condition (bridge). (i) If b 0 < b c 0 , there is a unique ρ(b 0 ) (which is larger than one) such that w 1 (ρ(b 0 )) 4ρ(b 0 )b 1 = b 0 , and ρ(b 0 ) = ρ * (Q b0 ) and the Gibbs potential coincides with -log ρ(b 0 ). (ii) Assume b c 0 < ∞ and b 0 > b c 0 , then the Gibbs potential is equal to zero. Proof: The proof is given in Appendix A.5. When b c 0 < ∞, this result is a hint for the existence of a phase transition.

From ( 5 . 2 )

 52 and Proposition 7.(ii), if ρ(b 0 ) = 1 + ǫ(b 0 ) we have m(b 0 ) ≈ ǫ(b 0 ) θ .

8 Figure 1 . 6 . 2 .

 8162 Figure 1. The critical line u c = -log( w1(1) 4 b1 ). 6.2. Thermodynamics of the hypergeometric model. One can think of w as some normalized inverse temperature and u := -log b 0 = -V (0) (or better u/w) as pressure. Because u and m are intensive variables, -log ρ is a Gibbs potential. Proposition 12. (i) For any 0 < b 0 < b c 0 , with ρ = ρ (b 0 ) (6.1) m = 1 2 + 2 ρ 2

Figure 2 .

 2 Figure 2. The thermodynamic diagram in the plane (m,u).

7. 3 .

 3 Thermodynamics. In both cases of the Bessel random walk and the homographic random walk, we have λ = (d -1) /2 leading to w = (d -1) (3 -d) /8. The random walk is positive recurrent if d < 0 or d > 4 (corresponding to w < -3/8) and null recurrent if 0 < d < 4 (corresponding to -3/8 < w < 1/8),[START_REF] Lamperti | Criteria for the Recurrence or Transience of Stochastic Process[END_REF].In such random walk models, one can compute explicitly the b n solving the recurrence b n b n+1 = 1 4pnqn+1 , n ≥ 0, together with the unique critical value of b 0 leading to b n → 1. Clearly the Pochhammer symbols are involved and making use of Stirling formula. We skip the details.

1 √ bnbn+1 > 0 .

 1bnbn+10 (i) Assume α := lim inf n→∞ Let α > ǫ > 0 and N an integer such that for any n ≥ N , 1 √ bnbn+1 ≥ α -ǫ. Let R N be the matrix R without its N first rows and N first columns. For i, j > N we have for any integer k,

  have (Rw + ) p = ρw + p for p ≥ 2. 2 Lemma 16. If ρ > 1 and the equation Rw = ρw -1 p=1 has a positive solution, then for p large, the positive solution defined in (3.4) obeys w p ∼ x p and for v the positive solution of Rv = ρv with v 1 = 1 we have v n ∼ x n + . Proof: From Proposition 15 we have for some constants A and B and for n ≥ 2 w n = Aw + n + Bw - n . Assume A = 0 (otherwise the result follows from Proposition 15). From the positivity of w we have if A = 0 w n > cx n +

- 2 Lemma 17 .

 217 which is a contradiction since x -< 1 and (b n ) converges to one. Assume that for some ρ > 1, the equation Rv = ρv has a positive solution v which satisfies v 1 = 1, and

Corollary 23 .

 23 Assume (3.5) holds with w < 1/8. Assume that ρ = 1 and the equation Rw = ρw -1 p=1 has a positive solution. Then for p large w p ∼ p α- and for v the positive solution of Rv = ρv with v 1 = 1 we have

2 -

 2 ρր1 p w p (ρ) 2 = ∞. The result follows from formula 4.1. Proof of Theorem 8.(iv). From Corollary 23 we have p w p (1) 2 < ∞ if and only if α -< -1/2 which gives w < -3/8. If w < -3/8, we have by Proposition 19 for any ρ ≥ 1 p w p (ρ) 2 ≤ p w p (1) 2 < ∞ and the result follows from formula (4.1). 2

  iii) of Theorem 11. For b 0 < b c 0 , the equation for ρ(b) is given in Lemma 6.(i) and we can replace w 1 (ρ) by its explicit expression. • A.10 PROOF of PROPOSITION 12. Recall that for b 0 ≤ b c 0 , from Proposition 7.(iv) we have m(b 0 ) = -b 0 ∂ b0 ρ(b 0 ) ρ(b 0 ) .

∞

  p=1 w p (ρ) 2 in terms of Gauss hypergeometric functions, consistently with (4.1) and m(ρ, b 0 ) = 1

Figure 3 .

 3 Figure 3. Domains of solutions and matching points.

  1) , using Proposition 36 and Lemma 14. The estimate |W (G, W ) L | = O (1) follows using the above estimates and the estimate of W (W, F ) L .

≤

  C ′′ ǫ ζ/2 e 2(n-N ) √ 2ǫ

< 1 3 .

 3 andT (δ) N = T (δ) N +1 = 0 We have DT (0) l ∞ ({N,N +1, ... M ′ }) ≤ C ′′ ǫ ζ/2 e 2(M ′ -N ) √ 2ǫ and T (0) l ∞ ({N,N +1, ... M ′ }) ≤ C ′′ ǫ ζ/2 e 2(M ′ -N ) √ 2 ǫ .For 0 < ǫ < 1, we chooseM ′ = N + -log 3C ′′ ǫ ζ/2 √ 2ǫ , then C ′′ ǫ ζ/2 e 2(M ′ -N ) √ 2ǫNote that for ǫ small we have M ′ ≫ N . The equationδ = T (δ)has a unique solution δ 2 in l ∞ ({N, N + 1, . . . M ′ }), andδ 2 l ∞ ({N,N +1, ... M ′ }) ≤ 1 2 .

(8. 22 )

 22 |δ n+1 -δ n | ≤ C ′′ ǫ 1/2+ζ/2 e 2(n-N ) √ 2ǫ

R=For 1 For k < p δ k- 1 - 1 k=n+1(δ k- 1 -=•bb

 1111 ζ+2α ≤ C ′′′ n -ζ since -1/2 < α < 1/2.We define R p+1 = δ p+1 -δ p , and for n > pδ n+1 -δ n = R n+1 = R p+1 + n k=p+1 (R k+1 -R k ) R n+1 = R p+1 + n+1 -δ n = (δ p+1 -δ p ) -δ l ) = δ p+1 + (δ p+1 -δ p ) δ p + (δ p+1 -δ p ) = δ p + (δ p+1 -δ p ) < n < p assume δ n-1 -δ n = 1 h n (δ n -δ n+1 ) + g n h n We define R p-1 = δ p-1 -δ p , and for n < p δ n-1 -δ n = R nδ k = (δ p-1 -δ p ) for n < p -1 δ n = δ p-1 + pδ k ) = δ p-1 + (δ p-1 -δ p ) δ p + (δ p-1 -δ p ) Cancellation of Wronskians. Let X n = x n (1 + δ x n ), Y n = y n (1 + δ y n ). Then (8.28) W (X, Y ) n = W (x, y) n (1 + δ x n + δ y n+1 + δ x n δ y n+1 )+ +y n x n+1 (δ x n+1 -δ x n )(1 + δ y n ) -(δ y n+1 -δ y n )(1 + δ x n ). Another version of this fact is as follows. LetX n = x n u n , Y n = y n v n . Then W (X, Y ) n = W (x, y) n u n v n+1 + y n x n+1 ((u n+1 -u n )v n -(v n+1 -v n )u n ) .• Other solutions and Wronskians. Let (x n ) and (y n ) satisfyx n+1 2 b n b n+1 + x n-1 2 b n b n-1 = ρx n and y n+1 2 b n b n+1 + y n-1 2 b n b n-1 = ρy n .for M ≤ n ≤ M ′ . Let p ∈]M, M ′ [, and assume y p and y p+1 are given. We haveW (x, y) n = b n+1 b n b n b n-1 W (x, y) n-1and (see Lemma14)W (x, y) n = b n+1 b n b p+1 b p W (x, y) p . l+1 b l x l x l+1 hence y n = y p x p x n -x n W (x, y) p b p+1 b p p-1 l=n b l+1 b l x l x l+1 .If we define a sequence (ỹn ℓ+1 b ℓ x ℓ x ℓ+1 if n > pwe have in all casesy n = y p x p x n + x n W (y, x) p b p+1 b p ỹn .For two sequences (x n ) and (u n ) denote by xu the Hadamard product sequence(xu) n = x n u n . Then W (z, xu) n = z n+1 x n u n -z n x n+1 u n+1 = (z n+1 x n -z n x n+1 )u n -z n x n+1 (u n+1 -u n ) = W (z, x) n u n+1 -z n x n+1 (u n+1 -u n ).In particular with y = xu andu n = y p x p + W (y, x) p b p+1 b p ỹn W (z, y) n = W (z, x) n y p x p + W (y, x) p b p+1 b p ỹn+1 -z n x n+1 W (y, x) p b p+1 b p (ỹ n+1 -ỹn ) = W (z, x) n y p x p + W (y, x) p b p+1 b p ỹn+1 -z n x n+1 W (y,x) p b p+1 b p b n+1 b n x n x n+1 , and finally (8.31) W (z, y) n = W (z, x) n y p x p + W (y, x) p b p+1 b p ỹn+1 -z n W (y, x) p b p+1 b p b n+1 b n x n .

On one hand

.

Hence,

Therefore, from the expression of w p (1) given at the end of the Proof of Theorem 11

From the choice of n 1 we have

Therefore by the contraction mapping principle, the equation

Using (8.18), and the estimate on T n we get for any n > n 1

We know from Proposition 22 that any solution of Rw = w which behaves for large n like n α has to be proportional to w 1 n . Therefore the result follows. 2 Proposition 35. There exists a constant C > 0 such that for any ǫ ∈]0, 1] and for any

the equation Rw = (1 + ǫ)w -1 n=1 has a unique (positive) solution (W n ) given by

We look for a solution w of equation (8.13) of the form

Using this ansatz in equation (8.13) we get for n > 1

This can be rearranged as

We have

the linear map I -DT is invertible with an inverse of norm at most 3/2. In this case, we define δ1 = (I -DT (0))

We have also

From equation (8.25) and the above estimates it follows that for 1

, and from equation (8.24) we have for 2

Proposition 36. There exists a constant C > 0, an integer n 1 > 1, and a constant 0 < ǫ 0 ≤ 1 such that for any ǫ ∈]0, ǫ 0 ] and for any

the solution of equation Rw = (1+ǫ)w-1 n=1 constructed in Proposition 34 satisfies

and for any

We define an affine operator T on l ∞ ({M, M + 1, . . . N + 1}) by

for M ≤ n ≤ N -1, and T (δ) N = T (δ) N +1 = 0.

We have

Hence for M > 0 large enough, namely

has a unique solution δ 2 in l ∞ ({M, M + 1, . . . N + 1}), and

Using equation (8.26), we get for any

We therefore obtain: for n ≥ N .

Proof: Match the two latter pieces obtained while n ≥ N and n ≤ N + 1, at N and N + 1. 2 A.15 PROPAGATORS AND WRONSKIANS. In this last Appendix, we give some supplementary material needed in particular in Appendix A.14.

• Propagators. For n ≥ p assume δ n+1 -δ n = h n (δ n -δ n-1 ) + g n