
HAL Id: hal-01084612
https://hal.science/hal-01084612v2

Submitted on 16 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Non-overlapping Constraint between Objects
Described by Non-linear Inequalities

Ignacio Salas, Gilles Chabert, Alexandre Goldsztejn

To cite this version:
Ignacio Salas, Gilles Chabert, Alexandre Goldsztejn. The Non-overlapping Constraint between Ob-
jects Described by Non-linear Inequalities. The 20th International Conference on Principles and
Practice of Constraint Programming, Sep 2014, Lyon, France. pp.672 - 687, �10.1007/978-3-319-
10428-7_49�. �hal-01084612v2�

https://hal.science/hal-01084612v2
https://hal.archives-ouvertes.fr


The non-overlapping constraint between objects

described by non-linear inequalities

Ignacio Salas1, Gilles Chabert1, and Alexandre Goldsztejn2

1 Mines de Nantes - LINA (UMR 6241)
{ignacio.salas,gilles.chabert}@mines-nantes.com

2 CNRS - LINA (UMR 6241)
alexandre.goldsztejn@univ-nantes.fr

Abstract. Packing 2D objects in a limited space is an ubiquitous prob-
lem with many academic and industrial variants. In any case, solving
this problem requires the ability to determine where a first object can be
placed so that it does not intersect a second, previously placed, object.
This subproblem is called the non-overlapping constraint. The complex-
ity of this non-overlapping constraint depends on the type of objects
considered. It is simple in the case of rectangles. It has also been studied
in the case of polygons. This paper proposes a numerical approach for
the wide class of objects described by non-linear inequalities. Our goal
here is to calculate the non-overlapping constraint, that is, to describe
the set of all positions and orientations that can be assigned to the first
object so that intersection with the second one is empty. This is done
using a dedicated branch & prune approach. We first show that the non-
overlapping constraint can be cast into a Minkowski sum, even if we take
into account orientation. We derive from this an inner contractor, that is,
an operator that removes from the current domain a subset of positions
and orientations that necessarily violate the non-overlapping constraint.
This inner contractor is then embedded in a sweeping loop, a pruning
technique that was only used with discrete domains so far. We finally
come up with a branch & prune algorithm that outperforms Rsolver,
a generic state-of-the-art solver for continuous quantified constraints.

1 Introduction

The goal of this article is to calculate the set of all positions and orientations
that can be given to an object so that it does not overlap a second one (see
the left graphic in Figure 1, which shows the simpler case where no orientation
is considered). We address the general case of objects described by nonlinear
inequalities. Calculating this set is a key task for solving packing problems, that
consists in placing a set of objects in a bounded space so that they do not overlap
pairwise.

In this introduction, we first define objects in our context and give a precise
statement of the non-overlapping constraint. Then, we explicit the type of objects
we consider and explain what we mean by calculating a set. We finally mention
related works.



Fig. 1. Non-overlapping constraint. Left: two objects SR and SM , the region in
red represents the set of all positions xM for SM that violate the non-overlapping
constraint. Right: two objects SR and −SM and their Minkowski sum, which coincides
with the overlapping constraint (the negation of the non-overlapping constraint).

In Section 2, we show that our problem can be cast into the calculation of a
Minkowski sum. Based on this observation, we propose a branch & bound algo-
rithm in Section 3. Experimental results are shown in Section 4 and a conclusion
follows.

1.1 Object definition

For clarity, let us first assume that the orientation is fixed, that is, objects can
only be translated.

Translating an object means fixing the position of a particular point that
we call the origin. This origin point can be arbitrarily chosen. For instance, in
rectangle packing, the origin of a rectangle can be a vertex or its center point.
Once this convention for the origin is made, the shape of the object is just a
regular constraint. To illustrate this, let us consider again rectangle packing. If
the origin is the lower-left corner, then a rectangle of dimensions l1 and l2 is the
set of all p ∈ R

2 satisfying

c(p) ⇐⇒ 0 ≤ p1 ≤ l1 ∧ 0 ≤ p2 ≤ l2. (1)

Alternatively,

c(p) ⇐⇒ − l1
2

≤ p1 ≤ l1
2
∧ − l2

2
≤ p2 ≤ l2

2
. (2)

defines a rectangle with the center point as origin, which, of course, is just a
shift of the previous constraint. So, the shape of an object can be expressed as a
constraint, the latter containing an implicit convention for the origin. As a last
example, a circle of radius r is the set of all p ∈ R

2 such that

c(p) ⇐⇒ ‖p‖ ≤ r (3)

the origin being, in this case, the center of the circle.



This definition of c(p) corresponds to an object with no translation nor ro-
tation. The general constraint corresponding to an object translated by x and
rotated by α is easily obtained as follows. In the case of translation only, the
part of the plane covered by an object placed at some position x is the set of
all p such that c(p − x) is satisfied. Let us introduce orientation. By a classical
geometric argument, an object placed at x and turned by some angle α is the
constraint

c
(

R−α(p− x)
)

(4)

where Rα is the rotation matrix with angle α:

Rα =

(

cos(α) − sin(α)
sin(α) cos(α)

)

. (5)

Equivalently, we can say that c(p) ≡ c(R0(p−0)) represents the object placed
at 0 and rotated by the angle 0. To conclude:

– an object is a constraint on the plane (i.e., with two variables),
– placing an object means fixing the coordinate of its implicit origin,
– orienting an object means fixing the angle of the rotation around its implicit

origin.

In this paper we consider objects described by nonlinear inequalities c(p) ⇐⇒
f(p) ≤ 0. E.g., a circle of radius 1 which origin is the center point is the set of
all p ∈ R

2 such that f(p) ≤ 0 with f : p 7→ ‖p‖ − 1. For the clarity of presen-
tation, we will assume each object to be described by a single inequality, but
our results can be easily extended to the more general case of objects described
by disjunctions of conjunctions of inequalities. This is possible by introducing
min and max operators. For instance, (f1(x) ≤ 0 ∨ f2(x) ≤ 0) is equivalent
to max{f1(x), f2(x)} ≤ 0. Differentiability is not required by our algorithm. In
fact, there is also no assumption on the functions involved, except that they are
defined by mathematical expressions based on usual operators (+, ×,

√
. , exp,

etc.). In particular, there is no convexity assumption on the input objects.

1.2 The non-overlapping constraint

We can now focus on the non-overlapping constraint. The non-overlapping con-
straint involves two objects, one being fixed, the other representing the unknowns
of the problem. For this reason, we will call “reference object” the first one and
denote by cR its describing constraint. The second one will be called “moving
object” and its constraint denoted by cM .

We will show at the end of this section that the general case, where both
objects are translated and/or rotated, can actually be obtained from the simpler
case where the reference object has no transformation. Intuitively, the frame
where the overlapping constraint is stated can be centered on the reference object
and aligned with its orientation, albeit the exact formula is not so trivial.

So, we shall only introduce in our definition below the position xM and the
rotation angle αM of the moving object. The non-overlapping constraint is the
negation of the overlapping constraint that can be stated as follows.



Definition 1 (Overlapping constraint).
Given two constraints cR and cM , a vector xR ∈ R

2 and αR ∈ [0, 2π]:

overlap(cR,cM )(xM , αM ) ⇐⇒ ∃p ∈ R
2, cR(p) ∧ cM

(

R−αM
(p− xM )

)

. (6)

In the case of translation only, this simplifies to

overlap(cR,cM )(xM ) ⇐⇒ ∃p ∈ R
2cR(p) ∧ cM (p− xM ). (7)

Our goal is to calculate the overlapping constraint. By calculating, we mean
here that an explicit (numerical but verified) representation of the solution set
S ′ := {(xM , αM ), overlap(cR,cM )(xM , αM )} (or S := {xM , overlap(cR,cM )(xM )}
in the case of translation only) has to be returned by our algorithm.

We show now that the overlapping constraint in the case where the reference
object is given a position xR and an orientation αR can be tested using S ′ (and
hence using its explicit representation). More precisely:

Proposition 1. The moving object with position xM and orientation αM over-
laps the reference object with position xR and orientation αR iff

(R−αR
(xM − xR), αM − αR) ∈ S′ (8)

Proof. By definition, (xM , αM ) satisfies the overlapping constraint with the ref-
erence object at position xR and orientation αR iff exists ∃p ∈ R

2 such that
cR(R−αR

(p − xR)) and cM (R−αM
(p − xM )). This is equivalent to ∃q ∈ R

2,
namely

q = R−αR
(p− xR) ⇐⇒ p = RαR

q + xR, (9)

such that cR(q) and

cM (R−αM
(RαR

q+xR−xM )) ⇐⇒ cM (R−αM+αR
(q+R−αR

(xR−xM ))). (10)

This is equivalent to (8). N

Remark 1. The non-overlapping constraint is usually considered for packing ap-
plications. Its description is easily obtained from the one of the non-overlapping
constraint. The former is preferred here because it simplifies the constraints
expressions and its link with the Minkowski sum presented in Section 2.

1.3 Intervals, Boxes and Paving

The representation we use is called a paving. This representation is a natural
choice in the context of constraint programming where the large majority of
algorithms dedicated to continuous variables, if not to say all, assume domains of
variables to be intervals (see, e.g., [BG06,JKDW01]). In the following definition,
we call box a Cartesian product of d intervals where d is either 2 in the case of
S or 3 in the case of S ′.

Definition 2 (Paving). A paving of a set S ⊂ R
d is a triplet (I,B,O) where I

(for “inside”), O (for “outside”) and B (for “boundary”) are three sets of boxes
verifying

∪I ⊂ S, (∪O) ∩ S = ∅ and ∪ (B ∪ I ∪ O) = R
d. (11)

An example of paving is shown in Figure 2.



Fig. 2. Paving of an ellipsis.The interior red boxes belongs to I, the unknown blue
boxes in the boundary belongs to B and the green outer boxes belongs to O.

1.4 Contribution and Related Works

This paper proposes an algorithm that computes a paving of the overlapping
constraint. One contribution is on the modeling aspect of this problem: we show
that the overlapping constraint can be expressed as a Minkowski sum. On the
one hand, this generalizes the approach and simplifies the description of the
algorithms. On the other hand, it allows handling the simple translation case
and the more involved translation and rotation case homogeneously by cast-
ing the rotation to a translation into an augmented space (see Proposition 2).
The other contribution is algorithmic. We propose an original inner contrac-
tor for this problem, that is, an operator that identifies parts of the solution
set. This operator implements a sweeping loop and exploits the properties of the
Minkowski sum. The second operator is an outer rejection test based on classical
constraint propagation. Both are interleaved in a branch and prune algorithm
that computes the desired paving.

From another point of view, definition 1 means that our problem falls into the
category of existentially-quantified constraints. A state-of-the-art algorithm for
calculating a paving with existentially-quantified inequalities is given in [Rat06]
and is implemented in the Rsolver tool [Rat] (Rsolver implements a general
algorithm, somehow a numerical version of CAD, for solving quantified con-
straints).

General techniques [GJ06,IGJ12] for quantified equality constraints could
also be used: either by adapting [GJ06] to compute an over approximation of
the boundary of the overlapping constraint, or using a necessary condition for the
boundary of the overlapping constraint expressed as an under-constrained system
of equations and using [IGJ12]. However, the overlapping constraint naturally
involves inequality constraints and using costly techniques dedicated to equality
constraints turns out to be counterproductive.

Finally, we shall mention that an exact formula for the overlapping set S has
been given in [BGT01] in the case where objects are polytopes. The set, in this



case, is the convex hull of the points obtained by summing one vertex of the first
polytope to one vertex of the second one.

2 Overlapping as a Minkowski Sum

In this section, we show that the overlapping constraint can be reformulated as
a Minkowski sum. This relation underlies our branch & bound solver, that will
be presented further. Let us first recall the definition of the Minkowski sum of
two sets:

Definition 3 (Minkowski sum).
Given two equi-dimensional sets S1, S2 ⊆ R

d, the Minkowski sum is

S1 + S2 = {x1 + x2 ∈ R
d : x1 ∈ S1, x2 ∈ S2}. (12)

The Minkowski difference is defined accordingly by:

S1 − S2 = {x1 − x2 ∈ R
d : x1 ∈ S1, x2 ∈ S2}. (13)

The right graphic of Figure 1 (page 2) shows an example of two sets and
their Minkowski sum.

Considering S1 as a constraint c1 (i.e., x ∈ S1 ⇐⇒ c1(x)) and, similarly, S2

as c2, we have, equivalently:

S1 + S2 = {x ∈ R
d : ∃p ∈ R

d, c1(p) ∧ c2(x− p)}. (14)

where d is the number of variables in the constraints. Comparing (14) and (7),
we immediately see that S = SR − SM , i.e. the overlapping constraint can be
represented as a Minkowski sum in the case of translation only.

We show now that S ′ is also a Minkowski sum, a less trivial result. To this
end, we embed the moving object SM ⊆ R

2 into R
3 encoding its rotation within

the additional dimension:

S ′

M := {(v, β) : cM (Rβ v)} = {(v, β) : Rβ v ∈ SM}. (15)

Now, the following proposition states that the overlapping constraint with rota-
tion S ′ can be written as a Minkowski difference of two such “augmented” sets
(see Figure 3).

Proposition 2.

S ′ = SR × {0} − S′

M . (16)

Proof. By definition, (xM , αM ) ∈ S ′ holds if and only if ∃p ∈ R
2 such that cR(p)

and cM (R−αM
(p − xM )). Equivalently, there exists uR ∈ SR and uM ∈ SM

such that uR = p and uM = R−αM
(uR − xM ) ⇐⇒ xM = uR − RαM

uM .
Finally, the vector (xM , αM ) is proved to be the sum of (uR, 0) ∈ SR × {0} and
(RαM

uM , αM ) ∈ S ′

M . N



Fig. 3. Sets whose Minkowski difference gives the overlapping constraint of two ellipsis,
when rotation is taken into account. Left: the augmented reference ellipsis, with rotation
coordinate set to 0. Right: the augmented moving ellipsis S′

M .

3 Algorithm

From now on, our goal is to calculate a paving (I,B,O) of the sum S of two sets
S1 and S2. According to the previous section, the link with the non-overlapping
constraint is made by setting S1 to either SR or S′

R and S2 to either −SM or
−S′

M .
Algorithm 1 below is based on a classical SIVIA-like branch & contract re-

cursive loop [JW93,CJ09]. The core operation made on a box [x] can be broken
into three steps. First, [x] is contracted to a box [x]′ by an inner contractor Cin,
that is, an operator that guarantees:

[x]′ ⊆ [x] ∧ [x]\[x]′ ⊆ I. (17)

If [x]′ 6= ∅ then [x]′ is contracted to a box [x]′′ by an outer contractor Cout that
guarantees:

[x]′′ ⊆ [x]′ ∧ [x]′\[x]′′ ⊆ O. (18)

Finally, if [x]′′ 6= ∅ then [x]′′ is bisected in two new boxes that are pushed in the
list of boundary boxes B. The recursion stops when the total surface of boxes in
B is less than ε% of the initial box surface (s0), ε being a user-defined parameter.

The originality of our approach lies in the inner contractor that we describe
now. It is dedicated to the handled problem as it makes use of the specific
structure of the quantified constraint (14).

3.1 Inner contractor

Our inner contractor is based on the inner arithmetic and a sweep loop: The
former builds small inner boxes, and the latter makes the union of these boxes
in order to remove slices of the initial box, leading to a so called inner contraction.



Algorithm 1: (I,B,O) = pave([x], ε)

s0 ← surface([x]); // initial surface1

I ← ∅; O ← ∅; B ← {[x]};2

s← s0; // current surface of B3

while (s > ε× s0) do4

[x]← box of B with the largest surface; // (use a heap structure for that)5

pop [x] from B;6

s← s− surface([x]); // update the surface7

[x]′ ← Cin([x]); I ← I ∪ ([x]\[x]′); // inner contraction8

[x]′′ ← Cout([x]
′); O ← O ∪ ([x]′\[x]′′); // outer contraction9

if ([x]′′ 6= ∅) then10

([x]1, [x]2)← bisect([x]′′);11

push [x]1 and [x]2 in B;12

s← s+surface([x]1)+surface([x]2); // update the surface13

end14

end15

return (I,B,O);16

The inner arithmetic is a variant of the classical interval arithmetic that
allows to build a sub-box of a box [x] that is inside a given set S described
by inequalities. This technique was first introduced in ➜3 of [CB10] and used in
[ATNC14] in the context of global optimization. This inner arithmetic can also
be used with a initial point (or initial box) that is inflated, that is to say, given
a box [x] and x̃ ∈ [x], it produces a box [x̃] such that

x̃ ∈ [x̃] ⊆ [x] ∧ [x̃] ⊆ S, (19)

or an empty box if x̃ 6∈ S. This arithmetic has similar properties to its classical
counterpart: the time complexity is in the length of the constraint expression
and gives an optimal box [x̃] (i.e., of maximal size in every dimension) if no
variable occurs twice in the expression.

Before describing how to contract a box [x] with this new arithmetic, let us
first address a simpler question: how to find a subbox of [x] that is inside S ?

A possible answer is to look for two boxes [x]1 and [x]2 such that

[x]1 ⊆ S1, [x]2 ⊆ S2 and ([x]1 + [x]2) ∩ [x] 6= ∅ (20)

because, in this case, ([x]1+[x]2) ⊆ [x]∩S. To find such boxes, one can calculate
in parallel two pavings, one of S1 and one of S2, and stop the process as soon
as two boxes satisfying (20) are found. By combining boxes of the first paving
with boxes of the second one, this approach amounts to run a branch & bound
in a (2 × d)-dimensional space. Note that this branch & bound is a sub-solver
embedded in the main one, the one for the x variable. Our goal is to reduce the
sub-solver to d dimensions only, which is, by the way, the incompressible price
to pay for handling d existentially-quantified parameters.

To this end, we use the same idea as above, but this time based on Relation
(14) (see Figure 4). To build an inner box in [x], let us first assume that we



Finding an intersection 
point

Inflating inside 

Inflating inside Calculating the box 

Fig. 4. Steps of the inner Contractor.

have picked some point x̃ inside [x] (this point is, in fact, automatically yield by
the sweep loop, as this will be explained in Figure 5). Then we look for another
point p̃ such that

c1(p̃) ∧ c2(x̃− p̃). (21)

Finding this point is the task of the subsolver.3

Once p̃ is found, it is “inflated” to a subbox [x]1 of (p̃+[x]− x̃) that is inside
S1, which is possible with the inner arithmetic. The point (x̃− p̃) is also inflated
to a sub-box [x]2 of ([x]−p̃) that is inside S2. However, if x̃ turns out to be outside
S, the last inflation cannot succeed and the process is interrupted in this case.
Otherwise, the resulting box satisfies ([x]1+[x]2) ⊆ S and ([x]1+[x]2)∩ [x] 6= ∅.

Note that ([x]1 + [x]2) ∩ [x] 6= ∅ is just a consequence of x̃ ∈ [x]. So the
initial boxes used for both inflations are somehow arbitrary, but fixing them as
we did is an heuristic that tends to maximize the surface of the final inner box
([x]1 + [x]2) ∩ [x].

3 This subsolver is implemented with a standard branch & prune based onHc4 [BG06].
Since only one solution is sought, at each node of the search, we check inequalities
with a point p̃ picked randomly in the current domain. If both are satisfied, the
search is interrupted and p̃ is returned. The depth of the search is also controlled
by a precision on the domain width, which ensures that the subsolver terminates
in bounded time. In case of normal termination, no p̃ hence no inner box has been
found.



Now that we have a technique to build an inner box inside [x] that contains a
specific point x̃, we can use this service inside a sweep loop. The sweep loop can
be simply viewed as a way to contract a box by “piling up” boxes until some face
is entirely covered. This is quickly depicted in Figure 5. The interested reader
may refer to [CB10] for further details.

(a) (b) (c)

(d) (e)

Fig. 5. The sweep loop. The sequence of pictures illustrates a contraction for the
lower bound of x1. At each step, the point x̃ to be inflated is the lower-left corner of
the gray box. The inner box [x̃] is painted in white. The lower bound of x1 can be
reduced as soon as the projection of the white boxes on x2 spans the face [x2], which
is the case at step e).

3.2 Outer contractor

The outer contractor is less sophisticated than the inner one and acts as a simple
rejection test: the box is either entirely discarded or kept intact.

Rejecting a box [x] means proving [x] 6⊆ S1 + S2, that is

∀x ∈ [x] ∀p ∈ R
d, ¬(c1(p) ∧ c2(x− p)). (22)

This assertion can be checked by running the same subsolver we used for the
inner contractor, except that the point x̃ is replaced by the current box [x]. If the
subsolver finds no solution, the previous assertion is proven. Note that only the
coordinates of p are bisected, so the subsolver actually proves a stronger assertion
if the contraction with respect to c2 is not optimal (the actual assertion depends
on the consistency level enforced by the contraction with c2). Note also that the
precision used in the subsolver is dynamically set to the width of [x] in order
to have a somewhat uniform time spent by the subsolver throughout the global
search (on x). This dynamic precision also ensures that the outer contractor is
convergent, that is, it rejects any small enough boxes outside S.



One may be surprised by the simplicity of this rejection test and expect a
more elaborated contractor for the outer region, inspired by what we did for the
inner region. But the situation could be interpreted in the other way around.
Since the overlapping constraint is in two dimensions only, an inner satisfiability
test would probably fits, as long as it is fast and convergent. However, such a
test amounts to prove for [x] ⊆ S1 + S2 the following assertion

∀x ∈ [x] ∃p ∈ R
d, (c1(p) ∧ c2(x− p)).

and, contrary to (22), the ∀ and ∃ quantifiers are involved, which means that
the problem is much harder. So, the inner contractor can be seen here as a way
to make up for the lack of inner test.

Our previous argument is only based on running time. It is clear that an
outer contractor could also lead to a more compact paving, but the size of the
paving is anyway conditioned by the representation of the boundary so that a
drastic gain on this aspect is not really expectable.

4 Experimental results

Experimental setup

The algorithm proposed in this article calculates a paving (I,B,O) of the over-
lapping constraint. The difficulty of this task mainly depends on three criteria:

– variable occurrences: the number of times each variable appears in the ex-
pressions of the inequalities directly affects the efficiency of the contractors;
the more occurrences a variable, the less efficient contractors. This is a well-
known drawback of the classical interval arithmetic that carries over the
inner arithmetic (used by the inner contractor).

– convexity: if objects are non-convex, the boundary of the non-overlapping
constraint will be less smooth. So the paving will be more complicated (hence
more time consuming), especially near the boundary.

– degrees of freedom: that is, whether we take into account rotation or not.
Allowing rotation gives a problem of much higher difficulty for multiple rea-
sons. First, the size of the paving is exponential in the number of degrees of
freedom so we cannot expect to get a 3D paving within the time scale of a 2D
paving. Second, the angle in the inequalities creates a lot of multi-occurrences
(see Equations (4) and (5)) and considerably increase non-convexity by the
introduction of trigonometric functions.

Our benchmark is based on these criteria. We have made two types of exper-
iments. The first one is with translation only. We have considered three objects
of increasing difficulty. Object ➏1 is a simple ellipsis:

Object ➏1 : (p1/2)
2 + p22 ≤ 1. (23)

Object ➏2 is an ellipsis rotated by some fixed angle. Objects ➏1 and ➏2
are obviously of equal complexity if rotation is a degree of freedom, but not if



Fig. 6. Objects of increasing complexity. From left to right: objects ➏1, 2 and 3.

we limit ourselves to translation. This is because the rotated object introduces
multi-occurrences for p1 and p2:

Object ➏2 : 1.5× p21 + 1.5× p22 − p1 × p2 − 0.2 ≤ 0. (24)

Finally, the third object has a “peanut” shape. It cumulates multiple occur-
rences and non-convexity, as depicted in Figure 6:

Object ➏3 : (p21 + p22)
2 − 2× (p1 × p2)− 0.02 ≤ 0. (25)

The non-overlapping constraint involves two objects: the “reference” one
(which coordinates are fixed at the origin of the frame) and the “moving” one
that represents the unknowns. We have considered all possible combinations with
the three types of objects above, that is, the 6 first cases in Table 1.

Case Reference object Moving object Rotation

1 1 1 no
2 1 2 no
3 1 3 no
4 2 2 no
5 2 3 no
6 3 3 no

7 1 1 yes
8 3 3 yes

Table 1. Cases of study.

In the second set of experiments, we have introduced rotation and tested
with two ellipsis and two “peanuts” (cases 7 and 8).

In each experiment, the paving process is interrupted when the total surface
of the boundary B is less than ε% the surface of the initial box (initial domain
for the variables), where ε is a user-defined precision parameter. We have applied
the same policy with Rsolver, the tool we are comparing to.

Since the precision is in proportion of the initial domain surface, it should
be noted that the quality of the paving depends also on the width of the initial



enclosure. The larger the initial domain, the less precise the resulting paving.
For this reason, to give ε a meaningful value, we have set in the experiments the
initial box to a fairly accurate enclosure of the overlapping set S or S ′ (as it can
be seen in Figure 7 and subsequent).

Results (without rotation)

We first compare in Table 2 the running times obtained by Rsolver and our al-
gorithm for the 6 first cases, with a precision ε set each time to 3.25%. This choice
for ε corresponds to the minimal value that gives no timeout with Rsolver. The
pavings obtained are depicted in Figure 7.

We then provide in Figures 8 a more detailed analysis for the two extreme
cases (case 1 and 6), where ε varies from 10% downto 1%. They show some
significant absolute performance gain, as well as some better asymptotic behavior
with respect to RSolver.

Case Rsolver Our algorithm

1 4,07 0,37
2 51,55 2,67
3 611,85 7,90
4 132,46 5,58
5 656,11 12,00
6 771,00 26,82

Table 2. Running time (in s) for the 6 first cases (the precision is set to 3.25%).

The results first confirm the presumed complexity levels of the different cases,
since the “harder” instances indeed require more time to be solved. They also
show that our algorithm is more competitive than Rsolver. But, of course,
Rsolver is a generic solver that does not take advantage of the specific structure
of the handled problem. It should also be noted from the graphics that the gap
between our approach and RSolver, in a given case, increases as we use smaller
values for the precision.

Results (with rotation)

We only present here preliminary results with rotation.
Figures 9 and 10 show 2D sections of the 3D pavings we have obtained in

cases 7 and 8 with a precision set to 3.25%. A 2D section is obtained by fixing
the angle to some value and selecting the boxes in the 3D pavings for which
the dimension of the angle contains this value. The two other dimensions are
plotted.

We have set the domain of the angle to the interval [0, 0.7] for the case 7,
and to the interval [0, 0.3] for the case 8. The only paving that was possible to



Fig. 7. Pavings obtained for cases 3-6. The precision is set to 3.25%. Left: with
RSolver. Right: with our algorithm.

Fig. 8. Time vs Precision (left: case 1; right: case 6). Each curve represents the
paving time (vertical axis) with respect to the precision ε (horizontal axis). Both axis
are in logarithmic scale. The blue curve is RSolver and the red curve is our method.

obtain within the time limit was with our algorithm and for the case 7. This
paving has been calculated in 9 minutes whereas RSolver does not return after
80 minutes. Both algorithm do not terminate after 100 minutes in the case 8.

When a program timeouts, only a partial result is displayed. A partial result
means that the surface of B exceeds ε% the initial width.

The main purpose of this experiment is to show that our approach is still
valid in the case where rotations are taken into account. Rotations only transform
the expressions that describes the objects, without requiring any change in the
algorithm itself. It is clear however that calculating a full 3D paving is a heavy
task, whatever the algorithm is.



Fig. 9. 2D section of the 3D paving obtained for the case 7. From left to right:
the rotation angle are 0, 0.4 and 0.7. Top: with Rsolver. Bottom: with our algorithm.

Fig. 10. 2D section of the 3D paving obtained for the case 8. From left to right,
the rotation angle are 0, 0.1 and 0.3. This paving is calculated with our algorithm.

5 Conclusion

In the case of objects defined by non-linear inequalities, the non-overlapping
constraint can only be handled numerically. In this paper, we have given an
efficient way to generate verified pavings approximations for this constraint.
These pavings represent explicitly the constraint, that is, the set of all acceptable
positions and orientations of an object with respect to another. Our preliminary
experiments have shown strong efficiency gains with respect to the state of the
art solver for quantified numerical constraints RSolver, in particular in the case
where the orientation of the objects is taken into account. In our future work,
these pre-computed pavings will be incorporated within a packing algorithm, as
explicit descriptions of the overlapping constraints. However, with rotation, we
have seen that full 3D pavings are clearly too big so that a more adaptative
approach will probably have to be considered as well. The idea would be to
calculate on-the-fly sub-sets of the overlapping constraint, depending on the
actual domains of the objects positions assigned by the packing solver.



References

[ATNC14] I. Araya, G. Trombettoni, B. Neveu, and G. Chabert. Upper Bounding in
Inner Regions for Global Optimization under Inequality Constraints. Jour-
nal of Global Optimization, page (to appear), 2014.

[BG06] F. Benhamou and L. Granvilliers. Continuous and interval constraints. In
Handbook of Constraint Programming, chapter 16, pages 571–604. Elsevier,
2006.

[BGT01] N. Beldiceanu, Q. Guo, and S. Thiel. Non-Overlapping Constraints between
Convex Polytopes. In 7th International Conference on Principles and Prac-
tice of Constraint Programming (CP’01), volume 2239 of Lecture Notes in
Computer Science, pages 392–407. Springer-Verlag, 2001.

[CB10] G. Chabert and N. Beldiceanu. Sweeping with Continous Domains. In
D. Cohen, editor, 16th International Conference on Principles and Practice
of Constraint Programming (CP’10), volume 6308 of Lecture Notes in Com-
puter Science, pages 137–151, St Andrews, Scotland, 2010. Springer-Verlag.

[CJ09] G. Chabert and L. Jaulin. Contractor Programming. Artificial Intelligence,
173(11):1079–1100, 2009.

[GJ06] A. Goldsztejn and L. Jaulin. Inner and Outer Approximations of Existen-
tially Quantified Equality Constraints. In CP, pages 198–212. Springer,
2006.

[IGJ12] D. Ishii, A. Goldsztejn, and C. Jermann. Interval-Based Projection Method
for Under-Constrained Numerical Systems. Constraints, 17(4):432–460,
2012.

[JKDW01] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis.
Springer, 2001.

[JW93] L. Jaulin and E. Walter. Set Inversion via Interval Analysis for Nonlinear
Bounded-Error Estimation. Automatica, 29(4):1053–1064, 1993.

[Rat] S. Ratschan. RSolver.
[Rat06] S. Ratschan. Efficient Solving of Quantified Inequality Constraints over the

Real Numbers. ACM Transactions on Computational Logic, 7(4):723–748,
2006.


