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Abstract
This paper proposes an extension of the classical Higher Order Singular
Value Decomposition (HOSVD), namely the Alternative Unfolding HOSVD
(AU-HOSVD), in order to exploit the correlated information in
multidimensional data. We show that the properties of the AU-HOSVD are
proven to be the same as those for HOSVD: the orthogonality and the
low-rank (LR) decomposition. We next derive LR-filters and LR-detectors
based on AU-HOSVD for multidimensional data composed of one LR
structure contribution. Finally, we apply our new LR-filters and LR-detectors
in Polarimetric Space Time Adaptive Processing (STAP). In STAP, it is well
known that the response of the background is correlated in time and space
and has a LR structure in space-time. Therefore, our approach based on
AU-HOSVD seems to be appropriate when a dimension (like polarimetry in
this paper) is added. Simulations based on Signal to Interference plus Noise
Ratio (SINR) losses, Probability of Detection (Pd) and Probability of False
Alarm (Pfa) show the interest of our approach: LR-filters and LR-detectors
which can be obtained only from AU-HOSVD outperform the vectorial
approach and those obtained from a single HOSVD.

Keywords: Multilinear algebra; HOSVD; Low-Rank approximation; STAP;
Low-Rank Filter; Low-Rank Detector

1 Introduction
In signal processing, more and more applications deal with multidimensional data whereas
most of the signal processing algorithms are derived based on one or two dimensional
models. Consequently, multidimensional data have to be folded as vector or matrix to be
processed. These operations are not lossless since they involve a loss of structure. Several
issues may arise from this loss: decrease of performances and lack of robustness (see for
instance [1]). The multilinear algebra [2, 3] provides a good framework to exploit these
data by preserving the structure information. In this context, data are represented as mul-
tidimensional arrays called tensor. However, generalizing matrix-based algorithms to the
multilinear algebra framework is not a trivial task. In particular, some multilinear tools do
not retain all the properties of the vectorial and matrix tools. Let us consider the case of the
Singular Value Decomposition (SVD). The SVD decomposes a matrix in a sum of rank one
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matrices and has uniqueness and orthonormality properties. There is no single multilinear
extension of the Singular Value Decomposition (SVD), with exactly the same properties
as the SVD. Depending on which properties are preserved, several extensions of the SVD
have been introduced.

On one hand, CANDECOMP/PARAFAC (CP) [4] decomposes a tensor as a sum of rank-
1 tensors, preserving the classic definition of rank. Due to its properties of identifiability
and uniqueness, this decomposition is relevant for multiple parameter estimation. CP was
first introduced in the signal processing community for Direction Of Arrival (DOA) esti-
mation [5, 6]. New decompositions were then derived from CP. For example, in [7, 8], a
decomposition based on a constrained CP model is applied to MIMO wireless communica-
tion system. These decompositions share a common issue for some applications: they are
not orthogonal.

On the other hand, the Higher Order Singular Value Decomposition (HOSVD) [9, 3] de-
composes a tensor as a product of a core tensor and a unitary matrix for each dimension of
the tensor. In general, HOSVD does not have the properties of identifiability and unique-
ness. Moreover, the core tensor is not necessarily diagonal which implies that each dimen-
sion of the tensor can have a different rank. Orthogonality properties of HOSVD allow to
extend the low rank methods such as [10, 11]. HOSVD has been successfully applied in
many fields such as image processing [12], sonar and seismo-acoustic [13], ESPRIT [14],
ICA [15] and video compression [16].

HOSVD is based on the classic tensor unfolding and in particular on the left matrix of
eigenvectors. This unfolding transforms a tensor into a matrix in order to highlight one
dimension. In other words, HOSVD only considers simple information, which is the infor-
mation contained in each dimension taken separately. The correlated information, which
is the information contained in a combination of dimensions, is neglected. In [17], a new
decomposition, PARATREE[1], based on the Sequential Unfolding SVD (SUSVD) was
proposed. This decomposition considers some correlated information, using the right ma-
trix of the eigenvectors. This approach can be improved, to consider any type of correlated
information. Consequently, we propose to develop a new set of orthogonal decompositions
which will be called Alternative Unfolding HOSVD (AU-HOSVD). In this paper, we will
define this new operator and study its main properties, especially the extension of the low
rank approximation. We will show the link between AU-HOSVD and HOSVD.

Based on this new decomposition, we derive new Low Rank (LR) filters and LR-detectors
for multidimensional data containing a target embedded in a interference. We assume that
the interference is the sum of two noises: a white Gaussian noise and a low-rank structured
one. In order to illustrate the interest of these new LR-filters and LR-detectors, we will con-
sider the multidimensional Space Time Adaptive Processing (STAP). STAP is a technique
used in airborne phased array radar to detect moving target embedded in an interference
background such as jamming (jammers are not considered in this paper) or strong ground
clutter [21] plus a white Gaussian noise (resulting from the sensors noise). While conven-
tional radars are capable of detecting targets both in the time domain related to target range
and in the frequency domain related to target velocity, STAP uses an additional domain
(space) related to the target angular localization. From the Brennan rule [22], STAP clut-

[1]This new decomposition has similarity with the block terms decomposition introduced
in [18, 19] and [20], which proposes to unify HOSVD and CP.
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ter is shown to have a low rank structure[2]. That means that the clutter response in STAP
is correlated in time and space. Therefore, if we add a dimension, the LR-filter and LR-
detector based on HOSVD will not be interesting. In this paper, we show the interest of
our new LR-filters and LR-detectors based on AU-HOSVD in a particular case of multidi-
mensional STAP: Polarimetric STAP [24]. In this polarimetric configuration, each element
transmits and receives in both H and V polarizations, resulting in three polarimetric chan-
nels (HH, VV, HV/VH). The dimension of the data model is then three. Simulations based
on Signal to Interference plus Noise Ratio (SINR) losses [21], Probability of Detection
(Pd) and Probability of False Alarm (Pfa) show the interest of our approach: LR-filters and
LR-detectors which are obtained using AU-HOSVD outperform the vectorial approach and
those obtained from HOSVD in the general polarimetry model (the channels HH and VV
are not completely correlated). We believe that these results could be extended to more
generalized multidimensional STAP systems like MIMO-STAP [25, 26, 27, 28].

The paper is organized as follows. Section II gives a brief overview of the classical mul-
tilinear algebra tools. In particular the HOSVD and its main properties are presented. In
section III the AU-HOSVD and its properties are derived. Section IV is devoted to the
derivation of the LR-filters and LR-detectors based on AU-HOSVD. Finally, in section V
these new tools are applied to the case of Polarimetric STAP.

The following convention is adopted: scalars are denoted as italic letters, vectors as lower-
case bold-face letters, matrices as bold-face capitals, and tensors are written as bold-face
calligraphic letters. We use the superscripts H for Hermitian transposition and ∗ for com-
plex conjugation. The expectation is denoted by E[.].

2 Some classical multilinear algebra tools
This section contains the main multilinear algebra tools used in this paper. Let H, B ∈
CI1×...×IP , be two P th order tensors and hi1...iP , bi1...iP their elements.

2.1 Basic operators of multilinear algebra
Unfoldings In this paper, three existing unfoldings are used; for a general definition of
tensor unfolding, we refer the reader to [2].

• vector: vec transforms a tensor H into a vector, vec(H) ∈ CI1I2...IP . We denote
vec−1, the inverse operator.

• matrix: this operator transforms the tensor H into a matrix [H]p ∈ CIp×I1...Ip−1Ip+1...IP ,
p = 1 . . . P . For example, [H]1 ∈ CI1×I2...IP . This transformation allows to en-
hance simple information (i.e. information contained in one dimension of the tensor).

• square matrix: this operator transforms the square tensor R ∈ CI1×I2...×IP×I1×I2...×IP

into a square matrix, SqMat(R) ∈ CI1...IP×I1...IP . SqMat−1 is the inverse opera-
tor.

The inverse operators always exist. However, the way the tensor was unfolded must be
known.

Products

[2]Using this assumption, a low rank vector STAP filter can be derived based on the projector
onto the subspace orthogonal to the clutter (see [10, 11, 23] for more details).
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• The scalar product <H,B > of two tensors is defined as:

<H,B > =
∑
i1

∑
i2

. . .
∑
iP

b∗i1i2...iP hi1i2...iP

= vec(B)Hvec(H). (1)

It is an extension of the classical scalar product.
• Let E ∈ CJn×In be a matrix, the n-mode product between E and a tensor H is

defined as:

G = H×n E ∈ CI1×...×Jn×...×IP

⇐⇒ (G)i1...jn...iP =
∑

in
hi1...in...iP ejnin

⇐⇒ [G]n = E[H]n (2)

• The outer product between H and B, E = H◦B ∈ CI1×...×IP×I1×...×IP is defined
as:

ei1...iP i1...iP = hi1...iP .bi1...iP (3)

2.2 Higher Order Singular Value Decomposition
This subsection recalls the main results on the HOSVD used in this paper.
Theorem 2.1 The Higher Order Singular Value Decomposition (HOSVD) is particular
case of Tucker decomposition [9] with orthogonality properties. HOSVD decomposes a
tensor H as follows [3]:

H = K×1 U(1) . . .×P U(P ), (4)

where ∀n, U(n) ∈ CIn×In is an orthonormal matrix and K ∈ CI1×...×IP is the core
tensor, which satisfies the all-orthogonality conditions [3]. The matrix U(n) is given by the
Singular Value Decomposition of the n-dimension unfolding, [H]n = U(n)Σ(n)V(n)H .
Using classical unfolding, the HOSVD only considers the simple information.

Remark Le H ∈ CI1×I2...×IP×I1×I2...×IP be a 2P th order Hermitian tensor, i.e
hi1,...,ip,j1,...,jp = h∗j1,...,jp,i1,...,ip . The HOSVD of H is written as [14]:

H = K×1 U(1) . . .×P U(P ) ×P+1 U(1)∗ . . .×2P U(P )∗. (5)

The following result introduces an extension of the vectorial low-rank decomposition.
Proposition 2.1 (Low-rank approximation) Let us introduce H = Hc + H0. Hc is a
(r1, . . . , rP ) low rank tensor[3] where rk = rank([Hc]k) < Ik, for k = 1, . . . , P . An
approximation of H0 is given by [29, 13]:

H0 ≈H×1 U
(1)
0 U

(1)H
0 . . .×P U

(P )
0 U

(P )H
0 , (6)

[3]This definition implies that the rank for each dimension of the tensor is different.
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with U
(n)
0 = [u

(n)
rn+1 . . .u

(n)
In

]. The use of an alternating least squares algorithm is nec-
essary for an optimal result [29] but the truncation is a correct approximation in most
cases.

2.3 Covariance tensor and estimation
Definition Let Z ∈ CI1×...×IP be a random P th order tensor, the covariance tensor,
R ∈ CI1×...×IP×I1...×IP is defined as [30]:

R = E [Z ◦Z∗] (7)

Sample Covariance Matrix Let z ∈ CI1...IP be a zero-mean Gaussian random vector and
R ∈ CI1...IP×I1...IP its covariance matrix. Let zk be K observations of z. The Sample
Covariance Matrix (SCM), R̂ is written as follows:

R̂ =
1

K

K∑
k=1

zkzHk (8)

Sample Covariance Tensor Let Zk ∈ CI1×...×IP be K observations of Z. By analogy
with the Sample Covariance Matrix (SCM), R̂ ∈ CI1...×IP×I1...×IP , the Sample Covari-
ance Tensor (SCT) is defined as [14]:

R̂ =
1

K

K∑
k=1

Zk ◦Z∗
k (9)

Remark If we denote z = vec(Z), then:

R = SqMat(R). (10)

3 Alternative Unfolding HOSVD
Due to proposition 2.1, it is possible to design LR filters based on HOSVD. This approach
does not work when all ranks are full (i.e rp = Ip, p = 1 . . . P ), since no projection could
be done. However the data may still have a LR structure. This is the case of correlated
data where one or more ranks relative to a group of dimensions are deficient. There is no
tensor decomposition which is able to exploit this kind of structure. To fill this gap, we
propose to introduce a new tool which will be able to extract this kind of information. This
section contains the main contribution of this paper: the derivation of the AU-HOSVD and
its principal properties.

3.1 Generalization of standard operators
Notation of indices In order to consider correlated information, we introduce a new no-
tation for the indices of a tensor. We consider H ∈ CI1×...×IP , a P th order tensor. We
denote A = {1, . . . , P} the set of the dimensions and A1, . . . ,AL, L subsets of A which
define a partition of A. In other words, A1, . . . ,AL satisfy the following conditions:
• A1 ∪ . . . ∪ AL = A
• They are pairwise disjoint, i.e. ∀i 6= j,Ai ∩ Aj = ∅.

Moreover CI1...IP is denoted CIA . For example, when A1 = {1, 2} and A2 = {3, 4},
CIA1×IA2 means CI1I2×I3I4 .
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A generalization of unfolding in matrices In order to build our new decomposition, we
need a generalized unfolding, adapted from [2]. This operator allows to unfold a tensor
into a matrix whose dimensions could be any combination Al of the tensor dimensions. It
is denoted as [.]Al

and it transforms H into a matrix [H]Al
∈ CIAl×IA\Al .

A new unfolding in tensors We denote asReshape the operator which transforms a tensor
H into a tensor Reshape(H,A1, . . . ,AL) ∈ CIA1×...×IAL and Reshape−1 the inverse
operator.

A new tensor product The n-mode product allows to multiply a tensor with a matrix along
1 dimension. We propose to extend the n-mode product to multiply a tensor with a matrix
along several dimensions, combined in Al. Let D ∈ CIAl×IAl be a square matrix. This new
product, called multimode product is defined as:

B = H×Al
D ⇐⇒ [B]Al

= D[H]Al
, (11)

The following proposition shows the link between multimode product and n-mode product.

Proposition 3.1 (Link between n-mode product and multimode product)

Reshape(H×Al
D,A1, . . . ,AL)

= Reshape(H,A1, . . . ,AL) ×l D (12)

Proof 3.1 The proof of theorem 3.1 relies on the straightforward following result:

∀l ∈ [1, L] , [H]Al
= [Reshape(H,A1, . . . ,AL)]l

This leads to [B]Al
= [Reshape(B,A1, . . . ,AL)]l and [H]Al

= [Reshape(H,A1, . . . ,AL)]l.
Applying these two results on (11), we obtain:

[Reshape(B,A1, . . . ,AL)]l = D[Reshape(H,A1, . . . ,AL)]l, (13)

From equation (2), (13) is equivalent to

Reshape(B,A1, . . . ,AL) = Reshape(H,A1, . . . ,AL)×l D.

Finally, one has

Reshape(H×Al
D,A1, . . . ,AL) =

Reshape(H,A1, . . . ,AL) ×l D

Remark Thanks to the previous proposition and the commutative property of n-mode
product, multimode product is also commutative.



Boizard et al. Page 7 of 19

3.2 AU-HOSVD
With the new tools presented in the previous subsection, we are now able to introduce the
AU-HOSVD. This is the purpose of the following theorem.
Theorem 3.1 (Alternative Unfolding HOSVD) Let H ∈ CI1×...×IP and A1 . . .AL a
partition of A. Then H may be decomposed as follows:

H = KA1/.../AL
×A1

U(A1) . . .×AL
U(AL), (14)

where:
• ∀l ∈ [1, L], U(Al) ∈ CAl×Al is unitary.
• KA1/.../AL

∈ CI1×...×IP is the core tensor. It has the same properties as the HOSVD
core tensor.

Notice that there are several ways to decompose a tensor with the AU-HOSVD. Each
choice of the A1, . . . ,AL gives a different decomposition. For a P th order tensor the num-
ber of different AU-HOSVD is given by the Bell number, BP :

B1 = 1

BP+1 =

P∑
k=1

(
P

k

)
Bk

The proof of theorem 3.1 strongly relies on another result which makes the link between
the AU-HOSVD and the HOSVD. This is the purpose of the following lemma:
Lemma 3.1 (link between AU-HOSVD and HOSVD) Let us consider A1, AL, a parti-
tion of A and the Reshape of the tensor H. Reshape(H,A1 . . .AL) is a Lth order tensor
and may be decomposed using the HOSVD:

Reshape(H,A1, . . . ,AL) = K×1 U(1) . . .×L U(L). (15)

Then, we have the following results:
• ∀l, U(Al) = U(l).
• KA1/.../AL

= Reshape−1(K,A1, . . . ,AL).
Proof 3.2 We first apply Reshape to (14):

Reshape(H,A1, . . . ,AL) =

Reshape(KA1/.../AL
×A1

U(A1) . . .×AL
U(AL),A1, . . . ,AL) (16)

Then, by using theorem 3.1, (16) becomes

Reshape(H,A1, . . . ,AL) =

Reshape(KA1/.../AL
,A1, . . . ,AL)×1 U(A1) . . .×L U(AL) (17)

Comparing equations (17) and (15) we see that
• ∀l, U(Al) = U(l).
• Reshape(KA1/.../AL,A1,...,AL) = K.

This concludes the proof of lemma 3.1.
Using lemma 3.1 and the operator Reshape, theorem 3.1 becomes straightforward.
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Example For a third order tensor H ∈ CI1×I2×I3 with A1 = {1, 3}, A2 = {2} the
AU-HOSVD will be written as follows:

H = KA1/A2
×A1

U(A1) ×A2
U(A2), (18)

with KA1/A2
∈ CI1×I2×I3 , U(A1) ∈ CI1I3×I1I3 and U(A2) ∈ CI2×I2

Remark Let H ∈ CI1×I2...×IP×I1×I2...×IP be a 2P th order Hermitian tensor. We con-
sider 2L subsets of {I1, . . . , IP , I1, . . . , IP } such as:
• A1, . . . ,AL and AL+1, . . . ,A2L are two partitions of {I1, . . . , IP }
• ∀l ∈ [1, L], Al = Al+L

Under these conditions, the AU-HOSVD of H is written:

H = KA1/.../A2L
×A1

U(A1) . . .×AL
U(AL)

×AL+1
U(A1)∗ . . . ×A2L

U(AL)∗.

As discussed previously, the main motivation for introducing the new AU-HOSVD is to
extract the correlated information when processing the low-rank decomposition. This is the
purpose of the following proposition.
Proposition 3.2 (Low-rank approximation) Let H, Hc, H0 be three P th order tensors
such that:

H = Hc + H0, (19)

where Hc is a (rA1 , . . . , rAL
) low rank tensor[4] (rAl

= rank([Hc]Al
)). Then H0 is ap-

proximated by:

H0 ≈H×A1
U

(A1)
0 U

(A1)H
0 . . .×AL

U
(AL)
0 U

(AL)H
0 (20)

where U
(A1)
0 , . . . , U

(AL)
0 minimize the following criterion:

(U
(A1)
0 , . . . ,U

(AL)
0 ) =

argmin||H0 −H×A1
U

(A1)
0 U

(A1)H
0 . . .×AL

U
(AL)
0 U

(AL)H
0 ||2. (21)

In this paper we use a truncation of U(Al) for U
(Al)
0 , i.e. U

(Al)
0 = [u

(Al)
rAl+1 . . .u

(Al)
Al

]. By
analogy with HOSVD [29], we assume that the truncation is a correct approximation. How-
ever, an alternating least squares algorithm is necessary for optimal results. We will develop
this algorithm in a forthcoming paper.
Proof 3.3 By applying Reshape to equation (19), one obtains

Reshape(H,A1, . . . ,AL) =

Reshape(Hc,A1, . . . ,AL) + Reshape(H0,A1, . . . ,AL).

[4]This definition of rank is directly extended from the definition of n-rank.
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Then, Reshape(Hc,A1, . . . ,AL) is a (rA1 , . . . , rAL
) low rank tensor (where rAl

=

rank([Reshape(Hc,A1, . . . ,AL)]l)). Proposition 2.1 can now be applied and this leads
to

Reshape(H0,A1, . . . ,AL) ≈

Reshape(H,A1, . . . ,AL)×1 U
(A1)
0 U

(A1)H
0 . . .×L U

(AL)
0 U

(AL)H
0

Finally, applying Reshape−1 to the previous equation leads to the end of the proof:

H0 ≈H×A1 U
(A1)
0 U

(A1)H
0 . . .×AL

U
(AL)
0 U

(AL)H
0

Discussion on choice of partition and complexity As mentioned previously, the total num-
ber of AU-HOSVD for a P order tensor is equal to BP . Since this number could become
significant, it is important to have a procedure to find good partitions for the AU-HOSVD
computation. We propose a two-steps procedure. Since the AU-HOSVD has been devel-
oped for LR reduction, the most important criterion is to choose the partitions which em-
phasize deficient ranks. For some applications, it is possible to use a priori knowledge
to select some partitions as will be shown in section 5 for Polarimetric STAP. Next, an-
other step is needed if several partitions induce an AU-HOSVD with a deficient rank. At
this point, we propose to maximize a criterion (see subsection 5.3 for examples) over the
remaining partitions.

Concerning the complexity, the number of operation necessary to compute the HOSVD
of a P th order tensor is equal to 4(

∏
p Ip)(

∑
p Ip) [3]. Similarly the complexity of the

AU-HOSVD is equal to 4(
∏

p Ip)(
∑

l IAl
).

4 Low-Rank Filter and Detector for Multidimensional Data
Based on the Alternative-Unfolding HOSVD

We propose in this section to apply this new decomposition to derive a tensorial LR fil-
ter and a tensorial LR detector for multidimensional data. We consider the case of a P -
dimensional data X composed of a target described by its steering tensor S and two addi-
tive noises: N and C. We assume that we have K secondary data Xk containing only the
additive noises. This configuration could be summarized as follows:

X = αS + C + N (22)

Xk = Ck + Nk k ∈ [1,K]. (23)

where X,Xk,C,Ck,N,Nk ∈ CI1×...×IP . We assume that N, Nk ∼ CN (0, σ2SqMat−1(II1...Ip))

and C, Ck ∼ CN (0,Rc) (SqMat−1(II1...Ip),Rc ∈ CI1×...×IP×I1×...×IP ). These
notations mean vec(N), vec(Nk) ∼ CN (0, σ2II1...Ip) and vec(C), vec(Ck) ∼
CN (0, SqMat(Rc)). We denote R = Rc + σ2SqMat−1(II1...Ip) the covariance ten-
sor of the total interference. We assume in the following that the additive noise C (and
hence also Ck) has a low-rank structure.
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4.1 LR-filters
Proposition 4.1 (Optimal tensor filter)
The optimal tensor filter, which maximizes the SINR output is given by:

Wopt = vec−1(SqMat(R)−1vec(S)). (24)

Proof 4.1 See Appendix A

In practical cases, R is unknown. Hence we propose an adaptive version:

Ŵopt = vec−1(SqMat(R̂)−1vec(S)), (25)

where R̂ is the estimation of R given by the SCT from eq. (9). This filter is equivalent
to the classical vector filter. In order to reach correct performance [31], K = 2I1 . . . IP

secondary data are necessary. As with the vectorial approach, it is interesting to use the
low-rank structure of C to reduce this number K.

Proposition 4.2 (Low rank tensor filter)
The low-rank tensor filter based on AU-HOSVD is given by:

Wlr(A1,...,AP ) = S×A1
U

(A1)
0 U

(A1)H
0 . . .

×AL
U

(AL)
0 U

(AL)H
0 (26)

y = | <WA1,...,AP
,X > | (27)

where U
(Al)
0 ’s are given by the AU-HOSVD of R, U

(Al)
0 = [u

(Al)
rAl+1 . . .u

(Al)
Al

]. For a P -
dimensional configuration, BP filters will be obtained.

Proof 4.2 See Appendix B.

In its adaptive version, denoted Ŵlr(A1/.../AL), the matrices U
(A1)
0 , . . . ,U

(AL)
0 are replaced

by their estimates Û
(A1)
0 , . . . , Û

(AL)
0 .

The number of secondary data necessary to reach classical performance is not known.
In the vectorial case, the performance of LR filter depends on the deficient rank [10, 11].
It will be similar for the LR tensor filters. This implies that the choice of the partition
A1, . . . ,AL is critical.

4.2 LR-Detectors
In a detection point of view, the problem can also be stated as the following binary hypoth-
esis test:{

H0 : X = C + N, Xk = Ck + Nk, k ∈ [1,K]

H1 : X = αS + C + N, Xk = Ck + Nk, k ∈ [1,K]
(28)

Proposition 4.3 (Low rank tensor detector)
The low-rank tensor detector based on AU-HOSVD is given by:

ΛA1...AL
=

| < SA1...AL
,XA1...AL

> |2

< SA1...AL
,SA1...AL

>< XA1...AL
,XA1...AL

>
(29)
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where

XA1...AL
= X×A1

U
(A1)
0 U

(A1)H
0 . . .×AL

U
(AL)
0 U

(AL)H
0

SA1...AL
= S×A1

U
(A1)
0 U

(A1)H
0 . . .×AL

U
(AL)
0 U

(AL)H
0

(30)

where U
(Al)
0 ’s are given by the AU-HOSVD of R, U

(Al)
0 = [u

(Al)
rAl+1 . . .u

(Al)
Al

].
Proof 4.3 See Appendix C.

In its adaptive version, denoted as Λ̂A1...AL
, the matrices U

(A1)
0 , . . . ,U

(AL)
0 are replaced

by their estimates Û
(A1)
0 , . . . , Û

(AL)
0 .

4.3 Particular case
When the partition A1 = {1, . . . , P} is chosen, the filter and the detector obtained by
the AU-HOSVD are equal to the vectorial one. In other words, it is equivalent to apply
the operator vec on eqs. (22) and (23) and use the classic vectorial method. We denote
m = I1 . . . IP , x = vec(X) and s = vec(S). We obtain the basis of the orthogonal clutter
subspace U0 by taking the last (m − r) columns of U which is computed by the SVD of
SqMat(R) = UΣVH . From this basis, the low-rank filter is then equal to [10, 11]:

wlr = U0U
H
0 s, (31)

ylr = | < wlr,x > | (32)

In its adaptive version, denoted ŵlr, the matrix U0 is replaced by its estimate Û0.
Similarly the detector is equal to the Low Rank Normalized Matched Filter proposed

in [32, 33]:

ΛLR−NMF =
|sHU0U

H
0 x|2

(sHU0UH
0 s)(xHU0UH

0 x)
(33)

In its adaptive version, denoted Λ̂LR−NMF , the matrix U0 is replaced by its estimate Û0.

5 Application to Polarimetric STAP
5.1 Model
We propose to apply the LR-filters and the LR-detectors derived in the previous section to
polarimetric STAP. STAP is applied to airborne radar in order to detect moving targets [21].
Typically, the radar receiver consists of an array of N antenna elements processing M

pulses in a coherent processing interval. In polarimetric configuration, each element trans-
mits and receives in both H and V polarizations, resulting in three polarimetric channels
(HH, VV, HV/VH). The dimension of data are then 3.

We are in the data configuration proposed in eqs. (22) and (23) which is recalled in the
following equations:

X = αS + C + N (34)

Xk = Ck + Nk k ∈ [1,K], (35)

where X, Xk ∈ CM×N×3. The steering tensor S and the responses of the background C

and Ck, called clutter in STAP, are obtained from the model proposed in [24]. N and Nk,
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which arise from the electrical components of the radar, are distributed as a white Gaussian
noise.

The steering tensor, S is formed as follows:

S(θ, v) = vec−1

 sHH(θ, v)

αV V sHH(θ, v)

αV HsHH(θ, v)

 , (36)

where sHH(θ, v) is the 2D classic steering vector [21] and αV V , αV H two complex coef-
ficients. These coefficients are assumed to be known. This is the classical case when the
detection process concerns a particular target (surface, double-bounds, volume, ...). The
covariance tensor, denoted as R ∈ CM×N×3×M×N×3, of the two noises (C + N and
Ck + Nk) is given by:

R = SqMat−1(Rpc + σ2I3MN ), (37)

where σ2 is the power of the white noise. Rpc is built as follows:

Rpc =

 Rc ρ
√
γV V Rc 0

ρ∗
√
γV V Rc γV V Rc 0

0 0 γV H Rc

 , (38)

where Rc ∈ CMN×MN is the covariance matrix of the HH channel clutter, built as the
2D classic clutter, which is known to have a LR structure [21]. γV V and γV H are two
coefficients relative to the nature of the ground and ρ is the correlation coefficient between
the channels HH and VV. Due to the structure of Rpc, the low-rank structure of the clutter
is preserved.

In the following subsection, we discuss about the choice of partitions in this particular
context.

5.2 Choice of partition A
For polarimetric STAP, we have P = 3 and A = {1, 2, 3}: B3 = 5 LR-filters and LR-
detectors are obtained. The different choices of partition are presented in table 2. All filters
and detectors are computed with the AU-HOSVD. Nevertheless the first two partitions are
particular cases. When A1 = {1, 2, 3}, the algorithms are equal to the vectorial one as
mentioned in 4.3. When A1 = {1}, A2 = {2}, A3 = {3} we obtain the same LR filter
and LR detector as those given by the HOSVD. The ranks relative to the LR-filters and
LR-detectors are described in the following:
• The rank r1 is the spatial rank and the rank r2 is the temporal rank. They depend on

radar parameters and in most cases they are not deficient.
• r3 could be deficient depending on the nature of the data and especially on the cor-

relation coefficient ρ between the polarimetric channels.
• r12 is the same as the 2D low rank vector case and can be calculated by the Brennan’s

rule [22].
• r123 is deficient and is linked to r3 and r12.
• r13 and r23 could be deficient and depends on r1, r2 and r3.
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5.3 Performance criteria

In order to evaluate the performance of our LR-filters, we evaluate the SINR Loss defined
as follows [21]:

ρloss =
SINRout

SINRmax
, (39)

where SINRout is the SINR at the output of the LR tensor STAP filter and SINRmax the
SINR at the output of the optimal filter Wopt. SINRout is equal to:

SINRout =
| <Wlr,S > |2

E[| <Wlr,N > |2]

=
|vec(Wlr)Hvec(S)|2

vec(Wlr)HSqMat(R)vec(Wlr)
(40)

The SINRout is maximum when W = Wopt = vec−1(SqMat(R)−1vec(S)). After
some developments, the SINR loss is equal to [1]:

ρloss =

|(vec(Wlr)
Hvec(S))|2

vec(Wlr)HSqMat(R)vec(Wlr)vec(S)HSqMat(R)−1vec(S)
(41)

For the moment, as the analytical formulation of the SINR Loss for the tensorial approach
is not available, it will be evaluated using Monte Carlo simulations.

In order to evaluate the performance of our LR-detectors, we use the classical probability
of false alarm (Pfa) and probability of detection (Pd):

Pfa = Pr(Λ̂A1...AL
> η/H0) (42)

Pd = Pr(Λ̂A1...AL
> η/H1), (43)

where η is the detector threshold. Since there is no analytical formulation for Pfa and Pd
(for the adaptive version) even in the vectorial case, Monte Carlo simulations are used to
evaluate them.

5.4 Simulations

Parameters The simulations are performed with the following parameters. The target is
characterized by an Angle Of Arrival (AOA) of θ = 0◦ and a speed of v = 10 m.s−1, a
case where the classic 2D STAP is known to be inefficient because the target is close to the
clutter ridge. The radar receiver contains N = 8 sensors processing M = 8 pulses. The
platform speed V , is equal to 100 m.s−1. For the clutter, we consider two cases: ρ = 1,
i.e the channels HH and V V are entirely correlated and ρ = 0.5. The SNR is equal to
45 dB and the Clutter to Noise Ratio (CNR) to 40 dB. r1, r2, r3 and r12 can be calculated
based on the radar configuration. r13 depends on the value of ρ. r123 and r23 are estimated
according to the eigenvalues of the different unfoldings of R. The results are presented in
table 1. All Monte-Carlo simulations are performed with Nrea = 1000 samples, except the
Probability of false alarm where Nrea = 100.



Boizard et al. Page 14 of 19

Results on SINR losses Figures 1 and 2 show the SINR losses for each filter as a function
of K. SINR losses are obtained from Monte-Carlo simulations using eq. (41). On both
figures, the SINR loss of the classic 2D STAP is plotted for comparison. The well-known
result is obtained: the SINR loss reaches −3 dB when K = 2r12 = 30 and it tends to
0 dB as K increases. Similarly, the SINR loss of Ŵlr(1,2,3) reaches −3 dB when K =

2r123 (60 for ρ = 1 and 90 for ρ = 0.5). When ρ = 1, all LR-filters achieve reasonable
performance since all ranks, except r1 and r2 are deficient. Ŵlr(1/2/3), Ŵlr(1/2,3) and
Ŵlr(1,3/2), which can only be obtained by AU-HOSVD, outperform Ŵlr(1,2,3) and the
classic 2D STAP for a small number of secondary data. This situation is more realistic
since the assumption of homogeneity of the data is no longer true when K is too large.
Ŵlr(1,2/3) has poor performance in this scenario.

When ρ = 0.5, Ŵlr(1,2/3) outperforms Ŵlr(1,2,3) and the classic 2D STAP regardless
of the number of secondary data. This corresponds to a more realistic scenario, since the
channel HH and VV are not entirely correlated. Ŵlr(1/2/3), Ŵlr(1/2,3) and Ŵlr(1,3/2) do
not have acceptable performance. This is explained by the fact that all ranks pertaining to
these filters are full and no projection can be done as mentioned at the end of section 3.
These filters (for ρ = 0.5) will not be studied in the rest of the simulations.

Figures 3 and 4 show the SINR loss as a function of the CNR for K = 2r12 = 30

secondary data. They show that our filters are more robust than the vectorial one for polari-
metric STAP configuration.

Figures 5 and 6 show the SINR loss as a function of the target velocity for K = 180.
For both cases, the classic 2D STAP achieves the expected performance. For ρ = 1, the
difference in polarimetric properties between the target and the clutter is exploited by our
filters, since r3 is deficient. When the target is in the clutter ridge, the SINR loss is higher
(especially for Ŵlr(1/2/3), Ŵlr(1/2,3) and Ŵlr(1,3/2)) than the classic 2D LR STAP filter.
By contrast, when ρ = 0.5, the 2D LR STAP filter outperforms Ŵlr(1,2/3) Ŵlr(1,2,3) (in
the context of large K), since r3 is full.

Results on Pfa and Pd The Pfa as a function of threshold is presented in figures 7 and
8. The Probability of Detection as a function of SNR is presented on figures 9 and 10 for
K = 30. The thresholds are chosen in order to have a PFA of 10−2 according to figures 7
and 8. When ρ = 1, Λ̂lr(1/2/3), Λ̂lr(1/2,3) and Λ̂lr(1,3/2), which can only be obtained by
AU-HOSVD, outperform Λ̂lr(1,2,3) and the classic 2D STAP LRNMF. For instance, Pd is
equal to 90% when the SNR is equal to 15 dB for Λ̂lr(1/2/3), Λ̂lr(1/2,3) and Λ̂lr(1,3/2), 20

dB for the classic 2D STAP LRNMF and 33 dB for Λ̂lr(1,2,3). When ρ = 0.5, Λ̂lr(1,2/3)

outperforms Λ̂lr(1,2,3) and the classic 2D STAP LRNMF. For instance, Pd is equal to 90%

when the SNR is equal to 16 dB for Λ̂lr(1,2/3), 20 dB for the classic 2D STAP LRNMF and
54 dB for Λ̂lr(1,2,3).

The results on Pd confirm the results on SINR loss concerning the most efficient partition
for the two scenarios. In particular, it shows that the best results are provided by the filters
and detectors which can only be obtained with the AU-HOSVD.

6 Conclusion
In this paper, we introduced a new multilinear decomposition: the AU-HOSVD. This new
decomposition generalizes the HOSVD and highlight the correlated data in a multidimen-
sional set. We showed that the properties of the AU-HOSVD are proven to be the same
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as those for HOSVD: the orthogonality and the LR decomposition. We have also derived
LR-filters and LR-detectors based on AU-HOSVD for multidimensional data containing
one LR-structure contribution. Finally, we applied our new LR-filters and LR-detectors to
polarimetric Space Time Adaptive Processing (STAP) where the dimension of the problem
is three and the contribution of the background is correlated in time and space. Simulations
based on Signal to Interference plus Noise Ratio (SINR) losses, Probability of Detection
(Pd) and Probability of False Alarm (Pfa) showed the interest of our approach: LR-filters
and LR-detectors which can be obtained only from AU-HOSVD outperformed the vectorial
approach and those obtained from HOSVD in the general polarimetry physic model (where
the channels HH and VV are not completely correlated). The main future work concerns
the application of the LR-filters and LR-detectors developed from the AU-HOSVD for the
general system of MIMO-STAP [25, 26, 27, 28].

Appendices
A Proof of proposition 4.1
By analogy with the vector case [34], we derive the optimal filter Wopt, which maximizes
the output SINRout:

SINRout =
| <Wopt,S > |2

vec(Wopt)HSqMat(R) vec(Wopt)
. (44)

Then:

| <Wopt,S > |2

= |vec(Wopt)
Hvec(S)|2

= |vec(Wopt)
HSqMat(R)

1
2 SqMat(R)−

1
2 vec(S)|2

= | < SqMat(R)
1
2
(H)vec(Wopt), SqMat(R)−

1
2 vec(S) > |2 (45)

By Cauchy-Schwarz inequality, (45) is maximum when SqMat(R)
1
2 (H)vec(Wopt) =

SqMat(R)−
1
2 vec(S) and vec(Wopt) = SqMat(R)−1vec(S). We replace Wopt in (44):

SINR =

|vec(S)HSqMat(R)−1vec(S)|2

vec(S)HSqMat(R)−1SqMat(R)SqMat(R)−1vec(S)

= |vec(S)HSqMat(R)−1vec(S)|
= SINRmax (46)

B Proof of proposition 4.2
To prove proposition 4.2, let us introduce the following intermediate result.
Lemma B.1

< [H]Al
, [B]Al

>=<H,B >, ∀l (47)

Proof B.1 Using the definition of the scalar product for tensors given by (1) and compar-
ing to the definition of matrix scalar product, the proof is straightforward.

We propose to derive the low-rank tensor filter as follows:
• First, the covariance tensor R is decomposed with the AU-HOSVD:

R = KA1/.../A2L
×A1

U(A1) . . .×AL
U(AL)

×AL+1
U(A1)∗ . . . ×A2L

U(AL)∗ (48)

• rA1
, . . . , rAL

(rAl
= rank([R]Al

)) are estimated.
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• Each U(Al) is truncated to obtain U
(Al)
0 = [u

(Al)
rAl+1, . . . ,u

(Al)
Al

]

• We apply the low-rank approximation given by (20), with H = X, Hc = C and
H0 = αS + N:

X×A1
U

(A1)
0 U

(A1)H
0 . . .×AL

U
(AL)
0 U

(AL)H
0 ≈ αS + N (49)

• The problem is then to filter S which is corrupted by a white noise N. The filter given
by (24) is applied with R = II1...Ip :

y = | < S,X×A1
U

(A1)
0 U

(A1)H
0 . . .×AL

U
(AL)
0 U

(AL)H
0 > |. (50)

Applying lemma B.1, (50) may be rewritten as:

y = | < [S]A1
, [X×A1

U
(A1)
0 U

(A1)H
0 . . .

×AL
U

(AL)
0 U

(AL)H
0 ]A1

> |

= | < [S]A1
,U

(A1)
0 U

(A1)H
0 [X×A2

U
(A2)
0 U

(A2)H
0 . . .

×AL
U

(AL)
0 U

(AL)H
0 ]A1

> | (51)

By definition of the scalar product between 2 matrices, (51) becomes:

y = |Tr((U(A1)
0 U

(A1)H
0 [X×A2

U
(A2)
0 U

(A2)H
0 . . .

×AL
U

(AL)
0 U

(AL)H
0 ]A1

)H [S]A1
)|

= |Tr([X×A2
U

(A2)
0 U

(A2)H
0 . . .

×AL
U

(AL)
0 U

(AL)H
0 ]HA1

U
(A1)
0 U

(A1)H
0 [S]A1

)| (52)

Moreover U
(A1)
0 U

(A1)H
0 [S]A1

= [S×A1
U

(A1)
0 U

(A1)H
0 ]A1

by definition of multimode
product. Finally y becomes:

y = | < S×A1
U

(A1)
0 U

(A1)H
0 ,X×A2

U
(A2)
0 U

(A2)H
0 . . .

×AL
U

(AL)
0 U

(AL)H
0 > | (53)

(27) is obtained by repeating the same steps for l = 2 . . . L.
• Finally the output filter is rewritten:

Wlr(A1,...,AP ) = S×A1
U

(A1)
0 U

(A1)H
0 . . .

×AL
U

(AL)
0 U

(AL)H
0 (54)

y = | <WA1,...,AP
,X > | (55)

C Proof of proposition 4.3
To prove proposition 4.3, let us recall the hypothesis test:{

H0 : X = C + N, Xk = Ck + Nk, k ∈ [1,K]
H1 : X = αS + C + N, Xk = Ck + Nk, k ∈ [1,K]

(56)

Using the proposition 3.2, the data are preprocessed in order to remove the LR contribu-
tion. We denote A1...AL

= ×A1
U

(A1)
0 U

(A1)H
0 . . .×AL

U
(AL)
0 U

(AL)H
0 . The hypothesis test

becomes: H0 : XA1...AL
= NA1...AL

,Xk,A1...AL
= Nk,A1...AL

H1 : XA1...AL
= αSA1...AL

+ NA1...AL
,

Xk,A1...AL
= Nk,A1...AL

(57)

Then the operator vec is applied, which leads to:
H0 : vec(XA1...AL

) = vec(NA1...AL
),

vec(Xk,A1...AL
) = vec(Nk,A1...AL

)
H1 : vec(XA1...AL

) = αvec(SA1...AL
) + vec(NA1...AL

),
vec(Xk,A1...AL

) = vec(Nk,A1...AL
)

(58)
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where vec(NA1...AL
), vec(Nk,A1...AL

) ∼ CN (0, σ2II1...Ip). The problem is then to de-
tect a signal vec(SA1...AL

) corrupted by a white noise vec(NA1...AL
). Since α and σ are

unknown, the Adaptive Normalized Matched Filter introduced in [32] can be applied:

ΛA1...AL
=

| < vec(SA1...AL
), vec(XA1...AL

) > |2

< vec(SA1...AL
), vec(SA1...AL

) >< vec(XA1...AL
), vec(XA1...AL

) >
(59)

Finally, the proposition is proven by removing the operator vec.
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Figures

Figure 1 SINR Losses versus K for ρ = 1, CNR = 40 dB. Target located at position
(θ = 0◦,v = 10m.s−1).

Figure 2 SINR Losses versus K for ρ = 0.5, CNR = 40 dB. Target located at position
(θ = 0◦,v = 10m.s−1).

Figure 3 SINR Losses versus CNR for ρ = 1, K = 30, Nrea = 1000. Target located at
(θ = 0◦,v = 10m.s−1).

Figure 4 SINR Losses versus CNR for ρ = 0.5, K = 30, Nrea = 1000. Target located at
(θ = 0◦,v = 10m.s−1).

Figure 5 SINR Losses versus target velocity for ρ = 1, CNR = 40 dB, K = 180, Nrea = 1000.
Target located at θ = 0◦.

Figure 6 SINR Losses versus target velocity for ρ = 0.5, CNR = 40 dB, K = 180, Nrea = 1000.
Target located at θ = 0◦.

Figure 7 PFA versus threshold for ρ = 1, K = 30, CNR = 40 dB.
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Figure 8 PFA versus threshold for ρ = 0.5, K = 30, CNR = 40 dB.

Figure 9 Pd versus SNR for ρ = 1, K = 30, CNR = 40 dB, PFA = 10−2.

Figure 10 Pd versus SNR for ρ = 0.5, K = 30, CNR = 40 dB, PFA = 10−2.

Table 1 Summary of the value of the ranks for the two scenarios: ρ = 1, ρ = 0.5

r1 r2 r3 r12 r23 r13 r123
ρ = 1 full full 2 15 16 16 30
ρ = 0.5 full full full 15 full full 45

Table 2 Description of the LR filters and LR detectors provided by AU-HOSVD for polarimetric STAP.

Partition Filters Detectors ranks methods
A1 = {1, 2, 3} Ŵlr(1,2,3) Λ̂(1,2,3) r123 Vector

A1 = {1}, A2 = {2}, A3 = {3} Ŵlr(1/2/3) Λ̂(1/2/3) r1, r2, r3 HOSVD
A1 = {1, 2}, A2 = {3} Ŵlr(1,2/3) Λ̂(1,2/3) r12, r3 AU-HOSVD

A1 = {1}, A2 = {2, 3} Ŵlr(1/2,3) Λ̂(1/2,3) r1, r23 AU-HOSVD
A1 = {1, 3}, A2 = {2} Ŵlr(1,3/2) Λ̂(1,3/2) r13, r2 AU-HOSVD


