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ABSTRACT 

This paper deals with the kinematic analysis of a single-loop 

reconfigurable RRRR-RRR mechanism with multiple 

operation modes (SLR7RMMOM), which is composed of 

seven revolute (R) joints and can switch from one operation 

mode to another one without disconnection and reassembly. 

The algorithm for the inverse kinematics of the serial open 

6R chain using kinematic mapping is adopt to deal with the 

forward kinematics for the SLR7RMMOM. 13 sets of 

solutions for the SLR7RMMOM are computed. Among these 

solutions, nine sets are real solutions, which are verified 

using the CAD models of the mechanism. It is shown that the 

present mechanism has three operation modes: translational 

mode and two 1-DOF planar modes. The transitional 

configurations between the three modes are also identified. 

 

KEYWORDS: Single-loop reconfigurable mechanism; 
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1. Introduction                          

Reconfigurable parallel mechanisms (RPMs) have been 

received increasing attention from researchers around the 

world. One class of RPMs can generate different operation 

modes to fulfil variable tasks based on a sole mechanism. 

Different approaches have been proposed to design RPMs 

generating multiple motion patterns. Several classes of RPMs 

have been developed such as modular reconfigurable 

mechanisms,
1,2

 metamorphic mechanisms,
3
 kinematotropic 

mechanisms,
4
 variable actuated mechanism,

5
 and 

reconfigurable mechanisms with multiple operation modes. 

This paper focuses on a reconfigurable mechanism with 

multiple operation modes since this class of RPMs can be 

reconfigured without disassembly and without increasing the 

number of actuators. A systematic approach has been 

proposed
6,7 

for the synthesis of reconfigurable mechanisms 

with multiple operation modes, including single-loop 

reconfigurable mechanisms with multiple operation modes
6
 

and multiple-loop reconfigurable mechanisms with multiple 

operation modes.
8
 

Meanwhile, several approaches have been developed to 

deal with the kinematics and singularity analysis of serial and 

parallel mechanisms, such as different evaluation algorithm,
9
 

screw theory algorithm
10

 and kinematic mapping algorithm.
12

 

Husty and Pfurner have made a significant contribution to the 

algebraic approach to the kinematic analysis of 

mechanisms.
11-13

 It has been shown that algebraic method is 

very efficient for both direct (forward) and inverse kinematic 

analysis of mechanisms.  

This paper aims to analyze a single-DOF (degree-of-

freedom) single-loop reconfigurable RRRR-RRR mechanism 

with multiple operation modes (SLR7RMMOM) using the 

effective algorithm for the inverse kinematics of a general 

serial 6R manipulator. Here R denotes a revolute joint. The 

operational modes and transitional configurations will be 

identified. The paper is organised as follows. Section 2 

describes the 1-DOF SLR7RMMOM. In Section 3, the 

forward kinematics analysis for the mechanism is undertaken 

within three steps mainly using the kinematic mapping 

method, and the solutions with respect to one given input 

angle are verified using CAD software. Based upon the 

results from Section 3, a series of input angles are given and 

the operation modes and transitional configurations are 

obtained in Section 4. Finally, conclusions are drawn. 

 

 

2. Description of a 1-DOF SLR7RMMOM 

It is well known that the Sarrus linkage (Fig. 1(a)), which is 

composed of two groups of three R joints with parallel joint 

axes (rotational axes), is used to control the 1-DOF 

translation of the moving platform along a straight line with 

respect to the base. Since the Sarrus linkage is an 

overconstrained mechanism, we can insert one additional R 

joint between the two joints of a link to obtain a non-

overconstrained 1-DOF single-loop RRRR-RRR mechanism 

(Fig. 1(b)).
14

 Such a mechanism must have at least two 

operation modes. In the translational operation mode, it 

works as the Sarrus linkage in which the moving platform 

translates along a straight line (Fig. 1(b)). In the 1-DOF 

planar operation mode, the moving platform undergoes a 1-

DOF general planar motion (Fig. 1(c)). Therefore the above 

RRRR-RRR mechanism is a SLR7RMMOM.  

In this SLR7RMMOM, link 7 is the base, and link 4 is 

specified as the moving platform. Links 4 and 7 are identical 

and the link lengths and the axes of the R joints must satisfy 

the following conditions: 

R1//R3//R4┴R2,                   (1) 

R5//R6//R7,                      (2) 

a1+a2=a3=a5=a6                 (3) 

where Ri (i=1,2, …,7) is the unit vector along the axis of joint 

Ri, and ai is the link length as indicated in Fig. 1(c). 

http://hal.archives-ouvertes.fr/index.php?action_todo=search&s_type=advanced&submit=1&p_0=is_exactly&f_0=LABID&halsid=bhp28rurspdebrf66oenim9b13&v_0=21439


2 
 

 
Fig. 1. Construction of a SLR7RMMOM 

 

    

 The SLR7RMMOM has at least two operation modes. 

Whether it has additional operational modes is unclear from 

only the construction of the mechanism. In the next section, 

we will discuss the kinematic analysis of the SLR7RMMOM 

in order to identify all of its operation modes as well as 

transition configurations that the mechanism can switch from 

one operation mode to another.  

 

 

3. Kinematics Analysis and Numerical Example 

Using the approach to the inverse kinematics for the general 

6R mechanism,
 11-13

 one can perform the kinematic analysis 

of the SLR7RMMOM. Then all the operation modes and 

transition configurations of the mechanism can be identified.  

 

3.1. D-H Parameters for the mechanism 

In order to define the transformation relations between the 

links, the coordinate frames Σi is attached to link i as follows: 

the zi-axis coincides with the axis of joint Ri, the xi-axis aligns 

with the common perpendicular to the zi-1- and zi-axes, and 

the yi-axis is defined by the right-hand rule (Fig. 2). With this 

notation one could write the transformation matrix (Ti) from 

Σi to Σi+1 as: 

       

 [

  
         

   
           

         
  

             
    

] [

  
   

              
              

  
   

                 

                  

]    

(4) 

where θi and di are the revolute angle and distance between 

the two x-axes of links i and i+1, respectively, and αi and ai 

are the twist angle and distance between the two z-axes of 

links i and i+1, respectively.  

The SLR7RMMOM can be regarded as a 6R serial 

mechanism (Fig. 3(a)) with link 6 as the end-effector (EE), 

the coordinate frame on which is set as follows. Its z-axis (zEE) 

coincides with the axis of joint R7 and its x-axis aligns with 

the common perpendicular to the z6-axis and the zEE-axis. The 

angle between the xEE-axis and the vertical line (θ) is defined 

as the input angle of the SLR7RMMOM. The D-H 

parameters of the 6R mechanism are shown in Table 1, which 

should satisfy the conditions given in Section 2. 

 

 

Fig. 2. D-H parameters (Σ is the coordinate frame system) 

 

 

Table 1. D-H parameters for the loop 

 

i ai di αi θi 

1 0.80 0 90
0
 θ1 

2 3.00 0 −90
0
 θ2 

3 3.80 0 0
0
 θ3 

4 0 1.47 −120
0
 θ4 

5 3.80 1.47 0
0
 θ5 

6 3.80 0 0
0
 θ6 

 

  In addition, the angle between the axes of joints R1 and R7 

is 60
0
, θ is specified as  45

0
 and a7 is 1.47. Therefore, the 

pose of end-effector ΣEE with respect to Σ1 (A) can be 

Σi 

Σi+1 
xi+1 

yi+1 

zi+1 

Link i 

yi 

zi 

θi 

αi 

di 
ai 

Link i+1 

xi 

R5 

a5 

R6 

a6 

a7 R1 

a1 

R2 

a2 

R3 

a3 

R4 

R7 

(a) Sarrus linkage  (b)  SLR7RMMOM in translation 

mode (equivalent to Sarrus linkage)     

(c)  SLR7RMMOM in    

1-DOF planar mode                                                                                     
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obtained (Fig. 3(b)). First, the frame Σ1 rotates 60
0
 about the 

x-axis (R1), then it moves 1.47 units along the z-axis (P2) and 

rotates another 60
0
 about its x axis (R3), finally we get the 

frame ΣEE after rotating  45
0
 about the z-axis (R4): 

                           (5) 

that is: 

 

  [
             

         
                              

                     
                                        

                            
                          

                           
                          

] 

   ) 

Fig. 3. Coordinate frame system for the SLR7RMMOM 

 

 

3.2. Solutions for the kinematic analysis 

The algorithm for the inverse kinematics analysis of a general 

6R serial manipulator presented in 
11-13 

mainly used kinematic 

mapping method. Using this method, an Euclidean 

displacement can be mapped into a point on a study quadric 

(S6
2
) in a seven dimensional space, the so called kinematic 

mapping space P
7
, where the point is displayed by eight study 

parameters. In the kinematic mapping space, the constraint 

manifold of a 2R-chain is the intersection of a 3-space with 

the S6
2
, and the constraint manifold of a 3R chain is the 

intersection of a set of 3-spaces with the S6
2
, where the set of 

3-spaces is called Segre Manifold (SM).
11

 The SM of a 3R-

chain can be represented by a set of four bilinear equations in 

the eight homogenous study parameters, which is denoted by 

z0, z1, …, z7, and one additional parameter corresponding to 

the tangent half of one joint angle out of the three joint angles. 

That means that there are three SMs (SMi, i=1, 2, 3) which 

were presented by three sets of four equations for a 3R-chain. 

  The 6R serial chain associated with the 1-DOF 

SLR7RMMOM is further decomposed into two 3R chains, 

the left 3R one (1-2-3) with end effector frame ΣL and the 

right 3R one (6-5-4) with end effector frame ΣR (Fig. 4). The 

pose of the frame ΣL with respect to Σ1 (TL) and the pose of 

the frame ΣR with respect to Σ1 (TR) can be obtained based on 

Eqs. (4) and (5): 

                             (6.a) 

      
    

    
    

    
    

                (6.b) 

  In some discrete, the frames ΣL and ΣR have to coincide, 

which means there is intersection among SML, SMR and S6
2
. 

The equations for SMs the can be derived from Eq. (6). Three 

sets of four equations can be obtained for the left or the right 

3R chain, and each depends on one out of three joint angles.
14

 

One needs to select one of the three sets of four equations for 

the left 3R-chain and one of the three sets of four equations 

for the right 3R-chain according to different situations
14

 

before doing further calculation.  

 
Fig. 4. Decomposing the loop into two 3R chains 

 

 

  In some cases, not all the three SMs can be selected
 13

. If 

one select one SM depending on one R joint with the joint 

axes of the remaining two parallel or intersected, which 

means the SM lies on the S6
2
, then the intersection with the 

S6
2
 fails. Therefore, we select SM3, which refers to four 

equations in    (tangent half angle of θ3), for the left 3R-
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chain since the axes of joints R1 and R2 do not intersect and 

are not parallel. For the right 3R-chain, we select SM5 with 

four equations in  ̅  (minus tangent half angle of θ5), 

because the axes of joints R4 and R5 intersect and the axes of 

joints R5 and R6 are parallel. Thus eight equations for the 6R 

serial mechanism are obtained as follows: 

                                                                           (7) 

 

                                                                           (8)                   

 

                                                                           (9) 

 

                                                                         (10) 

 

   ̅                                       ̅                                        ̅   

                                     ̅                                             ̅   
                                      ̅                                         ̅   
                                      ̅                                        ̅                                                                 

                                                                                                 (11) 

   ̅ 
                                      ̅                                         ̅   

                                     ̅                      
                      ̅   

                                       ̅                                          ̅   
                                      ̅                                          ̅        

                                                                                                (12) 

   ̅                     
                      ̅                                         ̅   

                                      ̅                                        ̅   
                                      ̅                                         ̅   
                                       ̅                                         ̅            

                                                                                                (13) 

   ̅                                            ̅                                        ̅   

                                       ̅                                        ̅   
                                      ̅                                         ̅   
                                      ̅                                          ̅           

(14) 

                                                            (15) 

 

Including the equation for the S6
2
 shown in Eq. (15), we 

obtain nine bilinear equations in ten unknowns (Eqs. (7)-

(15)). Because z0, z1, …, z7 are homogeneous, so one of them 

can be normalize to 1. Solving seven of the nine equations to 

get the eight study parameters for z0, z1, …, z7 in    and  ̅ , 

and substituting the solutions into the remaining two 

equations, we obtain two equations in    and  ̅  named E1 

and E2 as  
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(16) 
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Using the resultant to eliminate  ̅  from Eqs. (16) and (17), 

one polynomial equation of degree 56 in    named E can be 

derived as follows. 

 

     
                   

               
                           

               
  

                              
                     

                    
              

      
                    

                    
                    

              
      

                    
                                                        

   
                  

                     
                    

                     
   

                  
                     

                     
                    

  
                  

                    
                    

                    
  

                  
                    

                                       0 

                                                                            (18) 

 

The solutions to    
        are    = ± I (I is the unit 

imaginary number). The corresponding points in P
7
 lie on the 

exceptional generator, which have to be cut out of the S6
2
. 

The solutions of polynomial of 10 degrees squared are points 

with coordinate (0, 0, 0, 0, 0, 0, 0, 0), which do not lie on the 

S6
2
 and the solutions of polynomials of degree 4 are points lie 

on the exceptional 3-space of the S6
2
.
13

 Then the polynomial 

of degree 16 gives the 16 solutions: 

 

  =[0.08366283786, 0.3610109062, 1.000000000, 6.521970015, 59.40599134, 4.132441204    , 5.081725257    ,     

0.4234204659+2.169839731 I, −0.07511185210+1.019253419 I, −6.650597562    +3.156689159     I, 

−0.3581658035, −1.000000001, −1.507896627, −6.650597562     3.156689159     I, 

−0.07511185210−1.019253419 I, 0.4234204659−2.169839731 I] 
 

Then the solutions for    are substituted back to E1 and E2, 

the common solutions for  ̅  with their corresponding    are 

the solutions as desired. Please note only 12 sets of solutions 

could be easily obtained where the remaining four solutions 

for    tend to be infinite, such as 5.081725257    , i.e. θ3 

approaches to be 180
0
. The situation that θ3=180

0
 does exist 

when the joints on the platform and the base coincide. It is 

special configurations for the 1-DOF SLR7RMMOM, as 

shown in Fig. 5(i). 

The remaining four joint angles for the normal 12 sets of 

solutions could be solved by the other sets of four equations 

for SM1, SM2, SM4 and SM6.  

As to the above four particularly configurations in which 

   tend to be infinite, there is one set of real solutions: θ2=0
0
, 

θ3=180
0
, θ6=180

0
, θ1, θ4 and θ5 can be any value. This set of 

solutions can be easily verified by observation. The complex 

solutions associated with the remaining three particularly 

configurations are omitted in this paper. 

 

Finally, 13 sets of solutions for the forward kinematics 

analysis of the single loop are obtained, as listed in Table 2. 

 

 

 

Table 2. Solutions for the loop
 

 

Solutions θ1(deg) θ2(deg) θ3(deg) θ4(deg) θ5(deg) θ6(deg) 

Solution 1 −173.940 20.726 9.565 −3.504 −155.426 −45.598 

Solution 2 135.000 0.000 90.000 −45.000 −135.000 −90.000 

Solution 3 −135.000 0.000 −90.000 45.000 −135.000 −90.000 

Solution 4 −4.576 15.737 178.071 −2.648 −70.339 −172.852 

Solution 5 −78.354 118.963 −112.897 −145.457 86.692 −119.924 

Solution 6 −154.651 73.117 39.700 −14.351 131.208 90.703 

Solution 7 −25.162 72.737 −39.412 −165.750 −41.899 90.473 

Solution 8 141.385 −94.455 162.566 158.819 156.631 −137.538 

Solution 9 −54.493− 

109.370I 

163.879+ 

10.798I 

−106.507− 

186.806I 

−127.985+ 

77.436I 

58.785+ 

82.626I 

−100.688− 

144.387I 

Solution 10 −54.493+ 

109.370I 

163.879− 

10.798I 

−106.507+ 

186.806I 

−127.985− 

77.436I 

58.785− 

82.626I 

−100.688+ 

144.387I 

Solution 11 93.401+ 

63.964I 

−142.300+ 

1.679I 

167.711+ 

54.093I 

105.690+ 

9.871I 

112.781+ 

77.655I 

−156.361− 

28.617I 

Solution 12 93.401− 

63.964I 

−142.300− 

1.679I 

167.711− 

54.093I 

105.690− 

9.871I 

112.781− 

77.655I 

−156.361+ 

28.617I 

Solution 13 Any value 0.000 180.000 Any value Any value 180.000 
 Note: I is the unit imaginary number 

 

   

  The above real solutions for the kinematic analysis have 

been verified using the CAD models for the 1-DOF 

SLR7RMMOM. The CAD configurations associated with 

these solutions are shown in Fig. 5. 
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           (a) Solution 1: θ3=9.565

0
         (b) Solution 2: θ3=90.000

0
    (c) Solution 3: θ3=−90.000

0
              

 
(d) Solution 4: θ3=178.071

0  
   (e) Solution 5: θ3=−112.897

0
      (f) Solution 6: θ3=39.700

0
 

 
    (g) Solution 7: θ3=−39.412

0 
     (h) Solution 8: θ3=162.566

0
       (i) Solution 13: θ3=180.000

0
 

 

Fig. 5. CAD configurations corresponding to the real solutions 

 

 

4. Operation Modes and Transitional Configurations 

As the input angle θ changes, a series of solutions 

corresponding to different input angles can be obtained 

accordingly. Then via plotting the joint angles against the 

input angle, we illustrate the operation modes and transitional 

configurations of the 1-DOF SLR7RMMOM (Fig. 6). All the 

operation modes and transitional configurations of the 

mechanism can be obtained from the plotting of angles θ1 and 

θ3 against the input angle θ. 

Figure 6 shows that there are two straight lines A and B 

and two closed curves C (C0-C1-C2-C0 in Fig. 6(a) or C0-C1-

C2-C3-C4-C0 in Fig. 6(b)) and D (D0-D1-D2-D3-D4-D0) 

designating the operations modes. Lines A and B are 

associated with translation operation mode, while the closed 

curves C and D are associated with two 1-DOF planar 

operation modes separately. Therefore, the mechanism has 

three operation modes but not only two operation modes. 

This could be easily verified by comparing the straight lines 

and closed curves to their corresponding operation mode 

figures in Fig. 5. Line A corresponds to Fig. 5(b), Line B 

corresponds to Fig. 5(c), closed curve C corresponds to Fig. 

5(a), and closed curve D corresponds to Fig. 5(f).  

In the following, the transitional configurations between 

three operation modes are analyzed. By comparing the two 

plotting figures (Fig. 6), two intersecting points TA and TB, 

through which both operation modes pass in both the plotting 

figures are apparently observed, which represent the 

transitional configurations (Fig.7). The input angles 

corresponding to the transitional configurations are shown in 

Table 3. 
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(a)     

 

 
(b)    

Fig. 6. Plotting of two rotational angles (θ1 and θ3) against 

input angle θ: a) θ1 (deg) in vertical axis versus θ (rad) in the 

horizontal axis; b) θ3 (deg) in vertical axis versus θ (rad) in 

the horizontal axis 

 

 

Table 3. Transitional configurations 

 

Transition 

points 

Input angle  

θ in degree 
Modes 

TA 0
0
 

Translational mode & 1-DOF 

planar mode one (curve C) 

TB 180
0
 

Translational mode & 1-DOF 

planar mode two (curve D) 

 

 
   (a) TA: θ=0

0
         (b) TB: θ=180

0 

 

Fig. 7. Transitional configurations of the SLR7RMMOM. 

 

 

5. Conclusions 

The kinematics analysis of a novel 1-DOF SLR7RMMOM 

has been implemented. Using the algorithm for the inverse 

kinematics of a general serial 6R manipulator, a set of 

solutions for the 1-DOF SLR7RMMOM have been obtained 

with the real solutions verified through the CAD model of the 

mechanism. The solutions against a series of input angle have 

been plotted in two figures, which show that the mechanism 

has three operation modes: translational mode and two 1-

DOF planar modes. Transitional configurations have also 

been identified where the mechanism can switch from one 

operation mode to another.  

When switching the proposed 1-DOF SLR7RMMOM from 

one operation mode to another, neither the extra actuator nor 

disassembly is needed. Therefore, this reconfigurable 

mechanism may be useful for developing energy-efficient 

manipulators. 

The investigation of the operation modes of the mechanism 

using an algebraic approach
15

 instead of the numerical 

approach deserves further application.   
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