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ON THE LEXICOGRAPHIC DEGREE OF TWO-BRIDGE KNOTS

ERWAN BRUGALLÉ, PIERRE-VINCENT KOSELEFF, AND DANIEL PECKER

Abstract. We study the degree of polynomial representations of knots. We
obtain the lexicographic degree for two-bridge torus knots and generalized twist
knots. The proof uses the braid theoretical method developed by Orevkov
to study real plane curves, combined with previous results from [KP10] and
[BKP14]. We also give a sharp lower bound for the lexicographic degree of any
knot, using real polynomial curves properties.

1. Introduction

It is known that every knot in S3 can be represented as the closure of the image of
a polynomial embedding R → R3 ⊂ S3, see [Sh92, Va90]. In these early papers on
the subject, only a few specific examples were given. The two-bridge torus knots
form the first infinite family of knots for which a polynomial representation was
explicitly given, see [RS96, KP08, KP11, KP10].

Example 1.1 (Harmonic knots ([KP11, KP12])). The harmonic knot H(a, b, c) is
the polynomial knot parametrized by (Ta(t), Tb(t), Tc(t)), where Tn is the classical
Chebyshev polynomial Tn(cos t) = cosnt and a, b, c are pairwise coprime integers.
The two knot diagrams depicted in Figure 1 are the xy-diagrams of the knots

31 = H(3, 4, 5) 41 = H(3, 5, 7)

Figure 1. Two harmonic knots

H(3, 4, 5) and H(3, 5, 7), corresponding to the projection (x, y, z) 7→ (x, y).

The multidegree of a polynomial map γ : R → Rn, t 7→ (Pi(t)) is the n-tuple
(deg(Pi)). The lexicographic degree of a knot K is the minimal multidegree, for
the lexicographic order, of a polynomial knot whose closure in S3 is isotopic to
K. The unknot has lexicographic degree (−∞,−∞, 1), and one sees easily that
the lexicographic degree of any other knot is (a, b, c) with 3 ≤ a < b < c. Given
a knot, it is in general a difficult problem to determine its lexicographic degree.
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In particular, the corresponding diagram might not have the minimal number of
crossings.

In this paper we investigate the case of two-bridge knots, that are the knots for
which a = 3, see [Cr04, KP10, BKP14]. We focus in particular on two-bridge torus
knots and generalized twist knots, that we respectively denote by C(m) with m
odd, and C(m,n) with mn positive and even (see Figure 2). Note that C(−m) and
C(−m,−n) are the mirror images of C(m) and C(m,n).

m m

n

C(m) C(m,n)

Figure 2. Two-bridge torus knots and generalized twist knots

Figure 3 shows typical examples, C(5) and C(4, 3).

51 = C(5) 73 = C(4, 3)

Figure 3. The knots 51 and 73

Mishra claimed in [Mi00] that the lexicographic degree of the torus knot C(m),
m 6≡ 2 (mod 3), is (3,m+ 1, c). Later on, it was proved in [KP08] that this is false
for every integer m > 5. At that stage, the lexicographic degree of only a few knots
was known, namely the trefoil, the figure-eight knot, the torus knot 51 [Mi00], and
the torus knot 71 [KP08].

For every two-bridge knot of crossing number N , a polynomial representation of
degree (3, b, c), with b + c = 3N and b ≥ N + 1 is constructed in [KP10]. From
that construction an upper bound for the lexicographic degree of two-bridge knots
is immediately deduced. The main result of this paper is that this upper bound is
sharp for two-bridge torus knots and for generalized twist knots.

Theorem 3.9. Let K be the two-bridge knot C(m), or C(m,n) with mn > 0, and
let N be its crossing number. Then the lexicographic degree of K is

(

3,
[
3N−1

2

]
,
[
3N
2

]
+ 1

)

.

The proof goes by the study of the plane curve defined by the xy-projection of
a polynomial knot, and uses Orevkov’s braid theoretical approach to study real
plane curves (see [Ore99] or Section 2). Like in the case of knots, we define the
lexicographic degree of a long knot diagram as the minimal multidegree, for the
lexicographic order, of a polynomial knot whose xy-diagram is isotopic in R

2 to D.
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The main idea in the proof of Theorem 3.9 is as follows. Suppose that D1 is
a trigonal long knot diagram with lexicographic degree (3, b, c). If D2 is a trigonal
diagram obtained from D1 by an isotopy through trigonal diagrams which never
increases the number of crossings, then one may expect that it has lexicographic
degree (3, b′, c′) with b′ ≤ b. If this was the case, then Theorem 3.9 would follow
from the study of the alternating diagrams C(m) or C(m,n), combined with the
following theorem.

Theorem A. ([BKP14]) Let K be the two-bridge knot C(m), or C(m,n) with
mn > 0, and let D be a trigonal diagram of K. Then it is possible to transform
D into an alternating trigonal diagram, so that all intermediate diagrams remain
trigonal, and the number of crossings never increases.

Unfortunately, one cannot ensure that the lexicographic degree of a trigonal knot
diagram does not increase during an isotopy, even if this isotopy never increases
the number of crossings. For this to be true, one needs to enlarge the set of objects
we are studying, namely we have to consider real pseudoholomorphic curves (see
Corollary 3.7). Note that a real algebraic curve is real pseudoholomorphic, however
the converse is not true in general.

We conclude the paper by providing a lower bound for the lexicographic degree
of every non-trivial knot. We also give the lexicographic degree of some infinite
families of knots, showing in particular that this lower bound is sharp.

Theorem 4.3. Let K be a knot of crossing number N > 0. Then the lexicographic
degree of K is at least (3, N +1, 2N − 1). For every integer N 6≡ 2 (mod 3), N ≥ 3,
there exists a knot of crossing number N and lexicographic degree (3, N+1, 2N−1).

The paper is organized as follows. We recall Orevkov’s braid theoretical method
in Section 2. To avoid technical difficulties coming from an excess of generality,
we restrict ourselves to the case of real curves of bidegree (3, b), whereas the whole
section generalizes to all bidegrees. We prove Theorem 3.9 in Section 3. To keep
the exposition as light as possible we keep working with real algebraic curves as
long as pseudoholomorphic curves are not needed. In particular we prove the lower
bound of Theorem 3.9 in the particular case of the diagrams C(m) and C(m,n)
for real algebraic curves (Proposition 3.1). We introduce real pseudoholomorphic
curves only in Section 3.2 to deduce the general lower bound of Theorem 3.9 from
Proposition 3.1 (Proposition 3.8). In Section 4, we first obtain a sharp lower bound
for alternating diagrams. The proof is elementary, it is based on polynomial plane
curves properties. As a consequence, we deduce Theorem 4.3 and an upper bound
for the crossing number of alternating knots of polynomial degree d.

2. The braid of a real algebraic curve in C2

Here we recall basic facts about the braid theoretical approach developed by
Orevkov to study real algebraic curves in C2.

2.1. Link associated to a real algebraic curve. Given C ⊂ C2 a real algebraic
curve, we denote by RC the real part of C, i.e. RC = C ∩ R2. Let us fix an
orientation preserving diffeomorphism Φ : R4 → {(x, y) ∈ C2 | Im (x) > 0}, and let
us denote by Br the image by Φ of the 4-ball of radius r, and by Sr = ∂Br the
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image by Φ of the 3-sphere of radius r. If C ⊂ C2 is a real algebraic curve, then all
links Sr ∩ C (resp. all surfaces Br ∩ C) are isotopic if r is large enough.

Definition 2.1. The link LC = Sr ∩ C, for r large enough, is called the link
associated to the real algebraic curve C.

We denote UC = Br ∩C, and we orient LC as the boundary of UC . We will use
the following standard proposition in the proof of Theorem 3.9. The linking number
of two oriented links L1 and L2 is denoted by lk (L1, L2); the algebraic intersection
number of two smooth surfaces U1 and U2 in Br intersecting transversally and in
Br \ Sr is denoted by U1 · U2.

Proposition 2.2. If L1 and L2 are two sublinks of LC which bound two components
U1 and U2 of NC, then

lk (L1, L2) = U1 · U2.

It turns out that in some situations, one can read directly on the real part RC
an expression of the oriented link LC as a closed braid. For the sake of simplicity,
we restrict ourselves here to the very special case of trigonal rational curves. For
the general case, we refer to [Ore99]. In what follows, we are interested in curves
in C2 up to isotopies respecting the fibration of C2 by vertical lines.

Definition 2.3. An isotopy on a curve C ⊂ C2 is called a L-isotopy if it commutes
with the projection π : C2 → C, (x, y) 7→ x.

Let us consider a polynomial map

γ : C −→ C2

t 7−→ (P (t), Q(t))

where P (t) and Q(t) are two real polynomials of degrees 3 and b ≥ 1. Replacing
P (t) with −P (t) if necessary, we may assume that P (t) is positive for t large enough.
We may also assume that b = 3k − 1 or b = 3k − 2. If b = 3k, then we can replace
the map γ by the map t → (P (t), Q(t) − αP k(t)). In the target space C2, this
corresponds to performing the real change of coordinates y = y−αxk and does not
affect the topology of the real algebraic curve C = γ(C) in C2.

We suppose in addition that the map γ is generic enough so that:

— γ is an immersion;
— if γ(t1) = γ(t2) for t1 6= t2, then γ′(t1) 6= γ′(t2) and γ−1(γ(t1)) = {t1, t2}.

In other words, the only singularities of the embedded algebraic curve C ⊂ C2 are
nodes. Since C is real, it has three kinds of nodes:

(1) the intersection of two real branches of C (i.e. t1, t2 ∈ R); such a real node
is called a crossing, see Figure 4a;

(2) the intersection of two complex conjugated branches of C (i.e. t2 = t1);
such a real node is called solitary node, see Figure 4b;

(3) the intersection of two branches of C which are neither real nor complex
conjugated; all such nodes lie in C2 \ R2 and come in pairs of complex
conjugated nodes.

We denote by N the number of crossings of C, by α the number of solitary nodes
of C and by 2β its number of nodes lying in C2 \R2. Hence the real part RC is the
union of γ(R) together with the α solitary nodes of C.

Lemma 2.4. Given a map γ : C → C2 as above, we have b − 1 = N + α+ 2β.
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a) A crossing b) A solitary node

Figure 4.

Proof. The Newton polygon T of the curve γ(C) is the triangle with vertices
(0, 0), (0, 3) and (b, 0), and the number of nodes of γ(C) is the number of points in
Z2 contained in the interior of T . �

Example 2.5. Let 1/
√
3 < ν < 1. Using elementary elimination theory, one sees

that the real part of the parametrized curve γ : t 7→ (T3(t), T4(t + ν)) is depicted,
up to L-isotopy, in Figure 5a. It has two crossings and one solitary node.

a) RC b) A

Figure 5.

Now let us consider the set A = π−1(R) ∩ C. It consists in the real part RC
together with some pairs of complex conjugated arcs, meeting at critical points of
the map π|RC (i.e. at points of RC which intersect a vertical line non-transversely).

Example 2.6. The set A in the case of the parametrization of Example 2.5 is
depicted in Figure 5b. The dotted curves correspond to complex conjugate arcs.

The set A is not a manifold because of critical points of the map π|RC . However
there is a canonical way to perturb A to a 1-dimensional manifold and to recover
the link LC . Let R1, R2 and ε be some positive real numbers, and let

V1 = π−1 ({x ∈ C | |x| ≤ R1 and Im (x) > ε}) and V2 = {y ∈ C | |y| ≤ R2}.
Then for R1 and R2 large enough, and ε small enough, the link C ∩ ∂ (V1 × V2) in
∂ (V1 × V2) ≃ S3 is precisely the link LC , and the surface C ∩ (V1 × V2) is precisely
the surface UC in V1×V2 ≃ B4. Moreover the link C∩∂ (V1 × V2) appears naturally
as the closure of a braid bC , that we describe in the next section.

2.2. The link LC as a closed braid. Recall that the group of braids with 3-strings
is defined as

B3 = 〈σ1, σ2|σ1σ2σ1 = σ2σ1σ2〉.
This terminology comes from the fact that there exists a natural geometric inter-
pretation of σ1, σ2, and of the relation σ1σ2σ1 = σ2σ1σ2 as depicted in Figure 6.
Note that a string of a braid is implicitly oriented from left to right. In particular if
an oriented link L is represented as the closure of a braid b, then the linking number
of two sublinks L1 and L2 of L is half the sum of all exponents of b corresponding
to the crossings of L1 and L2.
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a) σ1 b) σ2 c) σ1σ2σ1 = σ2σ1σ2

Figure 6.

Let us associate an L-scheme to the real curve C. Denote by l1 < l2 < . . . < ls
the real vertical lines of C2 which are not transversal to C (the order on the li’s is
the one induced by the canonical orientation of R). Recall that the degree of the
polynomial Q(t) is b = 3k − 1 or b = 3k − 2.

Definition 2.7. The L-scheme LC realized by C is given by the sequence c1c2 . . . cs+1

where ci with 1 ≤ i ≤ s is given by

— ci =⊃j (resp. ci =⊂j) if 1 ≤ i ≤ s and li has an ordinary tangency point
with C which is a local maximum (resp. minimum) of the map π|RC ;

— ci = ×j (resp. ci = •j) if i ≤ s and li passes through a crossing (resp.
solitary node) of RC;

(in each case j = 1 if the transverse intersection point of Rli and RC is below the
second point of Rli ∩ RC, and j = 2 otherwise)

and cs+1 is given by

— cs+1 =↓ (resp. ↑) if b = 3k − 1, and Q(t) is positive (resp. negative) for t
large enough;

— cs+1 = ∨ (resp. ∧) if b = 3k − 2, and Q(t) is positive (resp. negative) for
t large enough.

Example 2.8. The L-scheme realized by the parametrization of Example 2.5 is

•1 ⊂1 ×2×1 ⊃1 ∨.

Then replace the L-scheme c1c2 . . . cs+1 by c′0c1c2 . . . c
′
s+1 where

— c′0 =⊃2 (resp. ⊃1) and c′s+1 =⊂1 if cs+1 =↓ and k is even (resp. odd);
— c′0 =⊃1 (resp. ⊃2) and c′s+1 =⊂2 if cs+1 =↑ and k is even (resp. odd);
— c′0 =⊃2 (resp. ⊃1) and c′s+1 =⊂1⊃1⊂1 if cs+1 = ∨ and k is even (resp.

odd);
— c′0 =⊃1 (resp. ⊃2) and c′s+1 =⊂2⊃2⊂2 if cs+1 = ∧ and k is even (resp.

odd).

Finally replace each •j with ⊂j⊃j and each ×j with ⊃j⊂j in c′0c1c2 . . . c
′
s+1, and

do the following final substitutions:

— replace each ⊃j⊂j by σ−1
j (see Figure 7a);

— replace each ⊃1⊂2 by σ−1
1 σ−1

2 σ1 (see Figure 7b);
— replace each ⊃2⊂1 by σ−1

2 σ−1
1 σ2 (see Figure 7c).

Then we obtain a braid bR. We define the braid associated to the L-scheme LC ,
denoted bC , as the braid bR(σ1σ2σ1)

k.

Example 2.9. After the two replacements described above, we obtain in the case
of Example 2.5
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a) ⊃j⊂j→ σ−1
j b) ⊃1⊂2→ σ−1

1 σ−1
2 σ1 c) ⊃2⊂1→ σ−1

2 σ−1
1 σ2

Figure 7.

•1 ⊂1 ×2 ×1 ⊃1 ∨
︷︸︸︷
⊃2

︷ ︸︸ ︷
⊂1⊃1

︷︸︸︷
⊂1

︷ ︸︸ ︷
⊃2⊂2

︷ ︸︸ ︷
⊃1⊂1

︷︸︸︷
⊃1

︷ ︸︸ ︷
⊂1⊃1⊂1

σ−1
2 σ−1

1 σ2σ
−1
1 σ−1

2 σ−1
1 σ−2

1 (σ1σ2σ1)
2

which finally gives the braid

bC = σ−1
2 σ−1

1 σ2σ
−1
1 σ−1

2 σ−3
1 (σ1σ2σ1)

2

which is the trivial braid, see Figure 8.

=

The braid bC of the parametrization given in Example 2.5

Figure 8.

Proposition 2.10. The closure of the braid bC is the oriented link LC associated
to C.

Proof. The only part which is not already contained in [Ore99, Section 3] is the
determination of the braid C ∩ π−1(γ) where γ is the arc in C parametrized by
u ∈ [0;π] → ε + R1 exp(2iπu) (recall that ε and R1 have been introduced at the
end of Section 2.1). But this braid is dictated by the monomials of an equation
of C in C2 which are dominating at infinity. Up to a real multiplicative constant,
these monomials are precisely

— y3 − λx3k−1 if cs+1 =↓,
— y3 + λx3k−1 if cs+1 =↑,
— y3 − λx3k−2 if cs+1 = ∨,
— y3 + λx3k−2 if cs+1 = ∧,

where λ is some positive real number. Now the result follows from straightforward
local computations as in [Ore99, Section 3]. �

3. Proof of Theorem 3.9

Here we apply the method described in the previous section to the study of the
lexicographic degree of two-bridge knots. Given a long knot diagram D in R2, we
denote by D its projection to R

2 (i.e. we forget about the sign of the crossings).
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3.1. The case of alternating diagrams. We first consider the special case of
alternating diagrams, from which we will deduce the general case in Section 3.2.

Proposition 3.1. Let D be the alternating trigonal diagram C(m) with m odd, or
C(m,n) with mn even and positive. If γ : R → R2 is a polynomial map of bidegree
(3, b) such that γ(R) is L-isotopic to D, then b ≥

[
3N−1

2

]
, where N is the crossing

number of the knot.

Proof. Up to a change of coordinates in C2, we may suppose that b = 3k − 1 or
b = 3k− 2. By genericity argument, we may also suppose that C = γ(C) is a nodal
curve in C2. Finally by symmetry we may further assume that m is even when
m+ n is odd.

In the case of C(m), the L-scheme of C contains the patterns ⊂2 (×1)
m ⊃2. In

the case of C(m,n), the L-scheme of C contains the patterns ⊂2 (×1)
m(×2)

n ⊃1

(see Figure 9). By the Riemann–Hurwitz formula the map π ◦ γ has exactly two

1

12

2

3 3

m
1 1 1

2 2 2

3 3 3

m

n

1 1 1

2 2

23 3

3

m

n

C(m) C(m,n) with n even C(m,n) with n odd

Figure 9. Diagrams for C(m) or C(m,n) knots

ramification points, which correspond precisely to the patterns ⊂ and ⊃ in the
L-scheme of C. In particular, these two ramification points are real. Hence, still
by the Riemann–Hurwitz formula, the surface UC is made of three embedded disks
U1, U2, and U3. Each disk Ui bounds the subknot Li of the link LC . The positivity
of self-intersections of a complex algebraic curve and Proposition 2.2 implies that
lk (Li, Lj) = Ui · Uj ≥ 0. On the other hand Ui and Uj intersect transversally at
complex conjugated nodes, thus we have

∑

1≤i<j≤3

Ui · Uj = β,

and therefore

(1) lk (Li, Lj) ≤ β, 1 ≤ i < j ≤ 3.

Moreover Lemma 2.4 states that

(2) N + α+ 2β = b− 1.

Let us label the components L1, L2, and L3 as depicted in Figure 9, and let us eval-
uate the quantity 2lk (L1, L3) from the algorithm described in Section 2.2. Clearly,
no crossing point of RC contributes to 2lk (L1, L3), and the factor (σ1σ2σ1)

k con-
tributes k to 2lk (L1, L3). As in Section 2.2, we denote by c1 . . . cs+1 the L-scheme
realized by C, and by c′0c1 . . . csc

′
s+1 the result of replacing cs+1 by c′0 and c′s+1.

We have N = n +m and s = N + α + 2. Let p ≥ 1 such that cp =⊂2. Then we
have cp+N+1 =⊃2 and cq = •j for 1 ≤ q ≤ p − 1 and N + p+ 2 ≤ q ≤ s. We can
estimate the contribution of bR to 2lk (L1, L3) as follows:



ON THE LEXICOGRAPHIC DEGREE OF TWO-BRIDGE KNOTS 9

— in the case of C(m) or C(m,n) with N odd:
each pattern cq with p+N+1 ≤ q ≤ s contributes −1; each pattern cqcq+1

with 1 ≤ q ≤ p− 1 contributes at least −1; the pattern c′0c1 contributes at
least 0; the pattern c′s+1 contributes 0 if b = 3k − 1, and −1 if b = 3k − 2.

— in the case of C(m,n) with N even:
each pattern cqcq+1 with 1 ≤ q ≤ p−1 or p+N +1 ≤ q ≤ s−1 contributes
at least −1, as well as the pattern c′0c1; the pattern csc

′
s+1 contributes at

least −1 if b = 3k − 1, and at least 0 if b = 3k − 2.

Altogether, writing d = 3k − 1− ε, we obtain

2lk (L1, L3) ≥ k − α− 1− ε

if N is odd, and

2lk (L1, L3) ≥ k − α− 2 + ε

if N is even. These last inequalities together with identities (1) and (2) give

b− k ≥ N − ε

if N is odd, and

b− k ≥ N − 1 + ε

if N is even. Hence we obtain

b ≥
[
3N−1

2

]

which proves the proposition. �

Remark 3.2. The proof of Proposition 3.1 shows that if b =
[
3N−1

2

]
then β = 0

and α = N−3
2

or α = N
2
− 2 depending on the parity of N . Moreover the mutual

position of the solitary nodes of C is imposed: the L-scheme realized by C does not
contain the pattern (•j)2 (i.e. the pattern corresponding to two successive solitary
nodes must be •j•j±1).

Remark 3.3. Let us consider the harmonic knot H(3, 7, 11). It is proved in [KP08]
that its crossing number is 6. Then its lexicographic degree is (3, 7, c), which is
smaller than the upper bound given in Proposition 3.1. This is the knot 63 which
is neither a torus knot nor a generalized twist knot ([KP10]). In Section 4 we shall
see that the lexicographic degree of 63 is (3, 7, 11).

Figure 10. The harmonic knot H(3, 7, 11) = 63
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3.2. Reduction to the case of alternating diagrams: real pseudoholomor-

phic curves. As explained in the introduction it might not be true that the lexico-
graphic degree of a trigonal long knot diagram does not increases along an isotopy
through trigonal diagrams which never increases the number of crossings. For this
to be true we have to consider real pseudoholomorphic curves (see Corollary 3.7).

We consider C2 equipped with the standard Fubini–Study symplectic form

ω(u+ iv, u′ + iv′) = u ∧ v + u′ ∧ v′.

Recall that an almost complex structure J on C2 is a smooth section J : C2 →
EndR(TC

2) such that J2
p = −IdTpC

2 for any p ∈ C2, and that J is said to be

tamed by ω if ω(v, Jv) > 0 for any non-null vector v ∈ TC2. Such an almost
complex structure is called real if the standard complex conjugation conj on C2 is
J-antiholomorphic (i.e. conj ◦J = J−1 ◦conj). For example, the standard complex
structure J0 on C2 is real and tamed by ω. An almost complex structure is called
admissible if it is real, tamed by ω, and coincide with J0 outside a compact set in
C

2.
The next definition follows the lines of [OS02, Section 1] and [MS04, Chapter 2].

We also denote by J0 (resp. conj) the standard complex structure (resp. complex
conjugation) on C.

Definition 3.4. Let J be an admissible almost complex structure on C2. A real
(rational) J-holomorphic curve is a map γ : C → C2 which is polynomial outside a
compact set of C, and such that

dγ′ ◦ J0 = J ◦ dγ′ and γ ◦ conj = conj ◦ γ.
A real pseudoholomorphic curve γ : C → C2 is a map which is J-holomorphic

for some admissible almost complex structure J on C2.

Example 3.5. Every polynomial real map γ : R → R2 is a real J0-holomorphic
curve. However not every real pseudoholomorphic curve is J0-holomorphic.

By definition, the image C = γ(C) of any real pseudoholomorphic curve γ co-
incide with a real algebraic curve C0 outside a compact set of C2. We say that
γ is of bidegree (3, b) if the curve C0 has for Newton polygon the triangle with
vertices (0, 0), (0, 3), and (0, b). As in the algebraic case, we may assume for our
purposes that if a real pseudoholomorphic curve is of bidegree (3, b), then b = 3k−1
or b = 3k − 2. Note that nodal pseudoholomorphic curves satisfy the adjunction
formula (see [MS04, Chapter 2]), in particular Lemma 2.4 still holds for pseudo-
holomorphic curves.

The braid theoretical approach described in Section 3 extends word by word to
the case of nodal real pseudoholomorphic curves of bidegree (3, b) (see for example
[Ore99, OS02]). Indeed, in these latter two sections we only use the behavior at
infinity of real algebraic curves and the three following facts:

(1) any intersection of two complex algebraic curves is positive;
(2) there exists a unique vertical line passing through a given point p of C2,

which is real if p is real;
(3) the map π is a real holomorphic map.

Let us fix an admissible almost complex structure J on C2. The word by word
extension of Sections 2.1 and 2.2 to J-holomorphic curves follows from the three
following facts:
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(1’) any intersection of two J-holomorphic curves is positive (see [MS04, Ap-
pendix E]);

(2’) there is an analogue of the pencil of vertical lines in C2: consider the
standard embedding

C2 −→ CP 2

(x, y) 7−→ [x : y : 1]
;

then given a point p ∈ C2 there exists a unique J-holomorphic line in CP 2

passing through p and [0 : 1 : 0] (see [Gro85]); by uniqueness, this line is
real if p is real; this produces a real pencil of “vertical” J-holomorphic lines
on C2;

(3’) since J is standard outside a compact set of C2, the line {y = b} is J-
holomorphic for |b| large enough; replace the map π by the map πb : C

2 →
{y = b} which associates to each point p of C2 the (unique) intersection
point of {y = b} with the J-holomorphic vertical line passing through p;
the map πb is clearly a real J-holomorphic map.

The main advantage in dealing with real pseudoholomorphic curves rather than
real algebraic curves is that we have the following proposition.

Proposition 3.6 (Orevkov, [Ore99]). Let γ : C → C2 be a real nodal pseudo-
holomorphic curve of bidegree (3, b) realizing an L-scheme Lγ, and let L′

γ be the
L-scheme obtained from Lγ by one of the following elementary operations :

×j ⊃j±1 ↔ ×j±1 ⊃j ⊂j±1 ×j ↔ ⊂j ×j±1 ×j×j → ∅

×j ⊃j ↔ ⊃j •j ⊂j ×j ↔ •j ⊂j ×j+1 ×j ×j+1 ↔ ×j ×j+1 ×j

Then there exists a real nodal pseudoholomorphic curve of bidegree (3, b) realizing
L′
γ.

Corollary 3.7. Let D1 and D2 be two trigonal long knot diagrams such that D2

is obtained from D1 by an isotopy of trigonal diagrams which never increase the
number of crossings. If there exists a real nodal pseudoholomorphic curve γ1 : C →
C

2 of bidegree (3, b) such that γ1(R) is L-isotopic to D1, then there also exists a
real nodal pseudoholomorphic curve γ2 : C → C2 of bidegree (3, b) such that γ2(R)
is L-isotopic to D2.

Proposition 3.8. Let K be the two-bridge knot C(m) with m odd, or C(m,n)
with mn positive and even, and let N be its crossing number. Let D be any trigonal
diagram of K. If there exists a real nodal pseudoholomorphic curve γ : C → C2 of
bidegree (3, b) such that γ(R) is L-isotopic to D, then b ≥

[
3N−1

2

]
.

Proof. According to Corollary 3.7 and Theorem A, it is enough to prove the propo-
sition when D is alternating, which has been done in Proposition 3.1 (recall that
real pseudoholomorphic curves satisfy Lemma 2.4, so the proof of Proposition 3.1
extends word by word to this case). 2

Theorem 3.9. Let K be the two-bridge knot C(m) with m odd, or C(m,n) with
mn positive and even, and let N be its crossing number. Then the lexicographic
degree of K is

(

3,
[
3N−1

2

]
,
[
3N
2

]
+ 1

)

.
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Proof. Let K be any two-bridge knot. It is proved in [KP10] that there exists a
polynomial curve γ : R → R3 of degree (3, b, c) such that N < b < c, b + c = 3N ,
and γ(R) is the knot K. In particular we have b ≤

[
3N−1

2

]
and c ≥

[
3N
2

]
+ 1. If

K is C(m) or C(m,n), then by Proposition 3.8 we have b ≥
[
3N−1

2

]
. This implies

that c ≤
[
3N
2

]
+ 1, and the theorem is proved. 2

Remark 3.10. It is shown in [KP11] that the harmonic knot H(3, 3n+ 2, 3n+ 1)
is the torus knot T(2, 2n + 1) = C(2n + 1). By Theorem 3.9, this is an explicit
polynomial parametrization of minimal lexicographic degree (3, 3n+ 1, 3n+ 2). In
this example, the number of crossings of the diagram is greater than the crossing
number of the knot. In [KP09] it is proved that there exists a polynomial repre-
sentation of T(2, 2n+ 1) which is of minimal degree, and such that the number of
crossings is minimal.

4. A lower bound

Theorem 4.3 provides a general lower bound for the lexicographic degree of every
non-trivial knot, furthermore this lower bound is sharp.

Proposition 4.1. Let γ : R → R3 be a polynomial map of degree (a, b, c) whose
image is a smooth knot. Suppose that a and b are coprime, and that the xy-diagram
of γ(t) is alternating with (a− 1)(b− 1)/2 crossings. Then c ≥ ab− a− b.

The proof of Proposition 4.1 uses the following lemma of Frobenius type.

Lemma 4.2. Let a and b be coprime positive integers. The number of integers of
the form n = αa+βb, n ≤ ab− a− b− 1, (α, β) ∈ Z2

≥0, is equal to (a− 1)(b− 1)/2.

Proof. LetN = (a−1)(b−1)/2. First, let us show that the integer 2N−1 = ab−a−b
is not of the form αa+ βb, with (α, β) ∈ Z2

≥0.

If we had ab − a− b = αa+ βb, then α ≡ −1 (mod b), and α ≥ b − 1. Hence we
deduce that αa+ βb ≥ ab− a+ βb > 2N − 1, contrary to our hypothesis

Now consider the sets E = {(α, β) ∈ Z2
≥0, αa+ βb ≤ 2N − 2} and Q = {(α, β) ∈

Z2
≥0, α ≤ b− 2, β ≤ a− 2}. The set Q has 2N elements, and contains E. Denoting

s(α, β) = αa+βb, α′ = b− 2−α, and β′ = a− 2−β, we have s(α, β)+ s(α′, β′) =
2(2N − 1), and then (α′, β′) ∈ Q − E if and only if (α, β) ∈ E.

Consequently, half the elements of Q are in E, and then E has N elements. Since
a and b are coprime, the mapping s is an injection from E to Z≥0, which concludes
the proof. �

Proof of Proposition 4.1. The N = (a − 1)(b − 1)/2 crossing points of the xy-
projection of γ(t) = (x(t), y(t), z(t)) correspond to parameter pairs (si, ti) such
that

x(ti) = x(si), y(ti) = y(si), z(ti) > z(si).

Consider V the vector subspace of R[t] generated by the polynomials x(t)αy(t)β ,
αa + βb ≤ 2N − 2. By Lemma 4.2, the dimension of V is N . Let us define the

linear mapping ϕ : V → RN by ϕ(h) =
(

h(t1), . . . , h(tN )
)

. If a polynomial h is in

the kernel of ϕ, then h(t1) = h(s1) = · · · = h(tN ) = h(sN ) = 0, and the polynomial
h has 2N distinct roots. Since deg(h) ≤ 2N − 2, we deduce that h = 0.
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Consequently the mapping ϕ is an isomorphism and there exists h ∈ V such that
h(ti) = h(si) = (z(ti) + z(si))/2.

Let us define z̃(t) = z(t)− h(t). The images of γ and γ̃(t) =
(
x(t), y(t), z̃(t)

)
are

isotopic and realize the same diagram. By construction, at each crossing we have
z̃(ti) > 0 > z̃(si).

Let us write {t1, . . . , tN , s1, . . . , sN} = {τ1, . . . , τ2N} where τj < τj+1. Since
the diagram realized by γ̃(t) is alternating, we may assume that (−1)iz̃(τi) > 0.
Consequently the polynomial z̃(t) has at least one root in the interval (τj , τj+1),
and deg(z̃) ≥ 2N−1. Since deg(h) ≤ 2N−2, we conclude that deg(z) ≥ 2N−1. �

As a consequence we deduce:

Theorem 4.3. Let K be a knot of crossing number N 6= 0. Then the lexicographic
degree of K is at least (3, N +1, 2N − 1). For every integer N 6≡ 2 (mod 3), N ≥ 3,
there exists a knot of crossing number N and lexicographic degree (3, N+1, 2N−1)

Proof. Let (a, b, c) be the lexicographic degree of K. Since K is nontrivial, we have
a ≥ 3. Suppose that a = 3. Then K is a two-bridge knot, and b is not divisible by
3. Moreover by Bézout’s theorem we have N ≤ (a − 1)(b − 1)/2 = b − 1, that is
b ≥ N + 1.

Let γ(t) : R → R3 be a polynomial parametrization of K of degree (3, b, c). If
b = N +1, then the xy-diagram of γ(t) has the minimal number of crossings. Since
K is a two-bridge knot, it is an alternating knot, and the xy-diagram of γ(t) is
alternating. By Proposition 4.1, we conclude that c ≥ 2N − 1.

On the other hand, when N 6≡ 2 (mod 3), the harmonic knot H(3, N+1, 2N−1) has
crossing number N (see [KP08]), hence its lexicographic degree is (3, N + 1, 2N −
1). �

We also obtain the lexicographic degree of an infinite family of three-bridge
knots.

Corollary 4.4. Let H be the harmonic knot H = H(5, b, 4b−5), with b 6≡ 0 (mod 5).
The knot H is a three-bridge knot of lexicographic degree (5, b, 4b− 5).

Proof. The xy-projection of the knot H has N = 2(b−1) crossings and is alternating
(see [KP11]). If H was two-bridged, then it would have a minimal diagram which
would be alternating and two-bridged. By Tait’s flyping conjecture, this is not the
case since the xy-projection of H is alternating and three-bridged.

Let
(
x(t), y(t), z(t)

)
be a polynomial knot isotopic to H. Since H is not two-bridged,

we have deg(x) ≥ 5. If deg(x) = 5, then by Bézout’s theorem we have N ≤
2
(
deg(y)− 1

)
, that is deg(y) ≥ b. If deg(y) = b, then by Proposition 4.1 we obtain

deg(z) ≥ 5b− 5− b = 4b− 5. �

Remark 4.5. The lexicographic degree of the harmonic knot H(a, b, ab − a− b) is
not always (a, b, ab− a− b). For example, if a = 4 this knot is two-bridged and has
a polynomial parametrization of degree (3, b′, c′), which is lexicographically smaller
than (4, b, 3b− 4).

Proposition 4.1 can also be used to study the maximal degree of a polynomial
knot, that is the maximum degree of its components.
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Corollary 4.6. Let K be a polynomial knot of degree d and crossing number N.
We have

N ≤ (d− 2)(d− 3)

2
.

Moreover, if d > 5 and if K is alternating, then we have:

N ≤ (d− 1)(d− 4)

2
.

Proof. Using an affine transformation, we can suppose that the lexicographic degree
of K is ≤ (d−2, d−1, d). By Bézout’s theorem we see that the number of crossings
of the xy-projection is at most (d−2)(d−3)/2, which proves the first assertion. If we
hadN = (d−2)(d−3)/2, then the lexicographic degree ofK would be (d−2, d−1, d).
By Proposition 4.1, we have d ≥ (d − 2)(d − 1)− (d − 2) − (d − 1) = d2 − 5d + 5,
which is impossible, since d > 5. Consequently, we have N ≤ (d− 2)(d− 3)/2− 1 =
(d− 1)(d− 4)/2. �

Remark 4.7. Since knots of crossing number smaller than 8 are alternating, we
deduce that the only knot of degree 4 is the trivial knot, the only nontrivial knot of
degree 5 is the trefoil, and the crossing number of a knot of degree 6 is at most 5.
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Université Pierre et Marie Curie (UPMC Sorbonne Universités),
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