Untangling trigonal diagrams - Archive ouverte HAL Access content directly
Journal Articles Journal of Knot Theory and Its Ramifications Year : 2016

Untangling trigonal diagrams


Let $K$ be a link of Conway's normal form $C(m)$, $m \geq 0$, or $C(m,n)$ with $mn>0$, and let $D$ be a trigonal diagram of $K.$ We show that it is possible to transform $D$ into an alternating trigonal diagram, so that all intermediate diagrams remain trigonal, and the number of crossings never increases.
Fichier principal
Vignette du fichier
iso2.pdf (698.13 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01084463 , version 1 (19-11-2014)
hal-01084463 , version 2 (23-11-2014)



Erwan Brugallé, Pierre-Vincent Koseleff, Daniel Pecker. Untangling trigonal diagrams. Journal of Knot Theory and Its Ramifications, 2016, 25 (7), ⟨10.1142/S0218216516500437⟩. ⟨hal-01084463v2⟩
469 View
159 Download



Gmail Facebook X LinkedIn More