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Introduction

The theory of transparent boundary conditions is a large and deep domain of mathematical studies. To our knowledge, the first main theoretical paper on the subject concerns simulations of solutions of a linear wave equation in the exterior of a bounded domain and is due to B. Engquist and A. Majda ( [START_REF] Engquist | Absorbing Boundary Conditions for the Numerical Simulation of Waves[END_REF]) : the authors suggest a method, based on a Fourier transform in time and the transverse direction, which leads to exact and non local transparent boundary conditions. They also perform several series developments (with different orders) in order to obtain approximate but local transparent boundary conditions. Let us also notice the works of L. Halpern ([10] [START_REF] Halpern | Well-Posedness of One-Way Wave Equations and Absorbing Boundary Conditions[END_REF]) : she (and co-authors) studied well-posedness of different boundary conditions and their numerical schemes.

When one studies solutions of linear wave equations with a unique velocity, the boundary conditions on the input and output boundary are transparent boundaries conditions : they ensure that waves should go out of the domain (there is no reflection) and they avoid singularity (see Fig. 2). In case of a transmission problem, the difference between wave'velocities involves singularities which are localized at the intersections between the boundary and the interface of transmission (see Fig. 3 and Fig. 4). We give a precise description of them with a mathematical analysis of this phenomenon : we prove that the singularities are involved by the gap across the interface on the lateral boundary of the antisymmetric part of the Neumann derivative of the solution. Let us notice that these singularities do not appear for homogeneous Neumann boundary conditions on the whole boundary of Ω.

Let us illustrate our claim with the following different situations : figures 1, 2, 3 and 4 below concern solutions of a transmission problem (see system (1.1)) in the square Ω =]0, 1[×]0, 1[ and during the time T = 1.2. The interface is localized at y = 0.2 and the velocities are c = c -if y < 0.2 and c = c + if y > 0.2 with 0 < c -≤ c + . Initial data are null and the right hand side f is localized in the region with velocity c -. Fig. 1 shows the support of the right hand side f . Numerical computations are performed in Matlab with a time step of order 0.001 and space steps (both in the x and y directions) of 1 120 = 0.0083. Figures 2, 3 and 4 are snap-shots at time T = 0.41294 or T = 0.41367 in the three following situations : in Fig. 2, one has c -= c + = 1 and the right hand side is a high frequencies time excitation. One can see that there is no singularity. In Fig. 3, one has c + = 2 and c -= 1 and the right hand side f is a low frequencies time excitation. In Fig. 4, one has c + = 2 and c -= 0.5 and the right hand side is a high frequency time excitation. In both Fig. 3 and4, one can see singularities appearing at the intersection between the interface y = 0.2 and the the boundary x = 0. This is what we explain in the following. Others numerical computations are given in order to exhibit more precisely these singularities. In a forthcoming paper, we suggest a way to avoid these singularities introducing efficient new tranparent boundary conditions. Let us notice that our method leads to a non local computation which is classical in the obtention of exact transparent boundary conditions at higher order but new for first order.

Our plan is the following one : in a first section, we present the mathematical problem and we focus on the singularity. In a second section, we study existence and regularity results of its solutions. In a third section, we focus on singularities on the boundary of the interface. In this section, we state our main theorem. All along, the paper is completed by numerical simulations which have been performed with Matlab and which illustrate our theoritical results.

The wave model used for the discussion

Let us consider a two dimensional open set Ω =]0, L[×] -a, a[ (L > 0 and a > 0) of R 2 as shown on figure 5. A point x of Ω has coordinates x = (x 1 , x 2 ). The wave velocity is denoted by c and is piecewise constant. It is c + in Ω + = Ω ∩ (x 2 > 0) and c -in Ω -= Ω ∩ (x 2 < 0) and we assume that 0 < c -< c + .

For any given functions f = f (x, t), u 0 = u 0 (x) and u 1 = u 1 (x), let us consider 

                               ∂ 2 u ∂t 2 -div(c 2 ∇u) = f in Q = Ω×]0, T [, ∂u ∂ν = 0 on (Γ + ∪ Γ -)×]0, T [, ∂u ∂t + c ∂u ∂ν = 0 on (Γ e ∪ Γ s )×]0, T [, u(x, 0) = u 0 (x) ∂u ∂t (x, 0) = u 1 (x) in Ω. (1.1) We write Γ e+ = Γ e × (x 2 > 0), Γ e-= Γ e × (x 2 < 0), Σ + = Γ + ×]0, T [, Σ -= Γ -×]0, T [, Σ e = Γ e ×]0, T [, and Σ s = Γ s ×]0, T [. The interface is Γ i = Ω ∩ [x 2 =
0] and Σ i = Γ i ×]0, T [. The letter ν denotes the unit outward normal vector on the boundary Γ of Ω.

Existence and uniqueness of solutions of system (1.1) are classical results, even if the transparent boundary conditions on Γ e ∪ Γ s (which imply first order time derivative) require a slightly different strategy as the usual one. Let us summarize them in the following statement.

Proposition 1.1. Let us assume that u 0 ∈ H 1 (Ω), u 1 ∈ L 2 (Ω) and f ∈ L 2 (Q).
Then, there exists a unique solution u to the system (1.1) with :

u ∈ L ∞ (]0, T [; H 1 (Ω)) ∩ W 1,∞ (]0, T [; L 2 (Ω)).
We don't give the full proof of proposition 1.1, one can refer to [START_REF] Dautray | Analyse mathématique et calcul numérique T8. Evolution : Semi-groupe, Variationnel, collection enseignement[END_REF] in case of interest : it is based on a Galerkin method, a priori estimate and weak convergence of a subsequence solution of a finite dimensional approximation. Let us recall the variational formulation of (1.1).

• The function u is solution of

∀v ∈ H 1 (Ω), Ω ∂ 2 u ∂t 2 (x, t)v(x)dx + Ω c 2 ∇u(x, t).∇v(x)dx+ Γe∪Γs c ∂u ∂t (x, t)v(x) = Ω f (x, t)v(x)dx (1.2)
• The energy is defined by

E(t) = 1 2 Ω ∂u ∂t (x, t) 2 dx + 1 2 Ω c 2 |∇u(x, t)| 2 dx (1.3)
and one has for f = 0

E(t) + Σe∪Σs c ∂u ∂t (x, t) 2 dx = E(0).
Therefore it decreases with respect to the time variable. In the general case, there exists a constant d > 0, such that for every data

(u 0 , u 1 , f ) ∈ H 1 (Ω) × L 2 (Ω) × L 2 (Q) : E(t) + Σe∪Σs c| ∂u ∂t (x, t)| 2 dx ≤ d[E(0) + ||f || Q ] 2 ,
where || || Q denotes the L 2 (Q)-norm. These results prove that :

∂u ∂t ∈ L 2 (Σ e ∪ Σ s ). Since ∂u ∂ν = - 1 c ∂u ∂t , one has ∂u ∂ν ∈ L 2 (Σ e ∪ Σ s ). Furthermore, even if ∂u ∂t ∈ H -1 (0, T ; H 1 (Ω)), the discontinuity of c implies that in general ∂u ∂ν ∈ D ′ (0, T ; H 1/2 (Γ e )) and ∂u ∂ν ∈ D ′ (0, T ; H 1/2 (Γ s )).
The function u, unique solution of (1.1), satisfies :

                     ∂ 2 u ∂t 2 -c 2 + ∆u = f in Q + = Ω + ×]0, T [, ∂ 2 u ∂t 2 -c 2 -∆u = f in Q -= Ω -×]0, T [, c 2 + ∂u ∂ν i -c 2 - ∂u ∂ν i = 0 on Σ i , (1.4) 
where ν i is one of the unit normal vector to Γ i and ∂u ∂ν i = ∇u.ν i .
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The third equation of (1.4) implies that, whatever the smoothness of the data are, there is in general no hope to have u ∈ D ′ (0, T ; H 2 loc (Ω)) if c is not constant across the separation line Γ i between the two materials.

We now turn to the regularity study of solutions of (1.1).

On the smoothness of u in time and space

Let us study the regularity of u first with respect to the time variable and then with respect to space variables. Singularities will be discussed in the next section.

Based on derivative methods with respect to the time t, one can upgrade the results stated in Proposition 1.1 by assuming that the initial condition u 0 doesn't cross the interface Γ i . 

u 0 ∈ H 2 (Ω) with supp(u 0 ) ⊂ O + ∪ O -, u 1 ∈ H 1 (Ω) and if f ∈ H 1 (]0, T [; L 2 (Ω)), then the solution u of (1.1) is such that: u ∈ W 1,∞ (]0, T [; H 1 (Ω)) ∩ W 2,∞ (]0, T [; L 2 (Ω)).
From classical inclusions (see [START_REF] Brezis | Analyse Fonctionnelle, collection mathématiques appliquées pour la maîtrise[END_REF]), this implies for instance that

u ∈ C 0 ([0, T ]; H 1 (Ω)). Proof. Let us set u = ∂u ∂t . The function u is solution of (1.1) with data ḟ = ∂f ∂t ∈ L 2 (Q), u(x, 0) = u 1 (x) ∈ H 1 (Ω) and ∂ u ∂t (x, 0) = f (x, 0) + div(c 2 ∇u 0 ).
The assumption on the initial data u 0 ensures that ∇u 0 is null on a neighborhood of the interface Γ i in Ω and thus div(c

2 ∇u 0 ) ∈ L 2 (Ω). Moreover, f ∈ C 0 ([0, T ]; L 2 (Ω)) and f (x, 0) is in L 2 (Ω). Applying Proposition 1.1, we eas- ily deduce that u ∈ W 1,∞ (]0, T [; H 1 (Ω)) ∩ W 2,∞ (]0, T [; L 2 (Ω)).
By iterating Theorem 2.1, one easily gets Theorem 2.2. With the same notations as in Theorem 2.1, and if the initial conditions are such that

(u 0 , u 1 ) ∈ H 3 (Ω) × H 2 (Ω) both with compact supports in O + ∪ O -, and if f ∈ H 2 (0, T ; L 2 (Ω)), then the solution u of (1.1) is such that: u ∈ W 2,∞ (]0, T [; H 1 (Ω)) ∩ W 3,∞ (]0, T [; L 2 (Ω)) and thus u ∈ C 1 ([0, T ], H 1 (Ω)).
Remark 2.1. Let us first recall that, if γ is a non-empty and open part of the whole boundary Γ of Ω, the restriction operator to γ maps H 1/2 (Γ) onto H 1/2 (γ) whereas the extension by zero of a function of H 1/2 (γ) is not in general a function of H 1/2 (Γ). In both cases of theorems 2.1 and 2.2, one has

u |Γ e ∪Γs ∈ C 1 ([0, T ]; H 1/2 (Γ e ∪ Γ s ))
and therefore

c ∂u ∂ν |Γe∪Γs ∈ C 0 ([0, T ]; H 1/2 (Γ e ∪ Γ s )).
The function c is discontinuous across Γ i and therefore in general (even a piecewise continuous function is not globally H 1/2 of the whole open set)

∂u ∂ν |Γe ∈ D ′ (0, T ; H 1/2 (Γ e )) and ∂u ∂ν |Γs ∈ D ′ (0, T ; H 1/2 (Γ s )). (2.1) 
We get at least for 0 ≤ s < 1/2,

∂u ∂ν |Γe ∈ C 0 ([0, T ]; H s (Γ e )) and ∂u ∂ν |Γs ∈ C 0 ([0, T ]; H s (Γ s )).
Let us now turn to the smoothness with respect to the space variables and there are several cases. For x ∈ R 2 , we denote by V x a small enough open and non-empty neighborhood of x in R 2 . We write 1 O the characteristic function of a set O of R 2 and

• Γ i the interior of Γ i . Theorem 2.3. Let f ∈ H 1 (Q)
and let us assume that the initial data as in Theorem 2.1. Let u be the solution of system 1.1. One has :

(1) u1 Ω+ ∈ L ∞ (]0, T [; H 2 loc (Ω + )) and u1 Ω-∈ L ∞ (]0, T [; H 2 loc (Ω -)) (2) If x ∈ Γ + ∪ Γ -then u ∈ L ∞ (]0, T [; H 2 (V x ∩ Ω)) (3) If x ∈ (Γ e ∩Ω + )∪(Γ e ∩Ω -)∪(Γ s ∩Ω + )∪(Γ s ∩Ω -) then u ∈ L ∞ (]0, T [; H 2 (V x ∩ Ω)) (4) If x ∈ • Γ i then ∂u ∂x 1 ∈ L ∞ (]0, T [; H 1 (V x )). Proof. (1) On Ω + ×]0, T [, one has div(c 2 ∇u) = c 2 + ∆(u) = ∂ 2 u ∂t 2 ∈ L ∞ (]0, T [; L 2 (Ω + )).
From a localisation argument, it is classical to prove that u| Ω+ ∈ L ∞ (]0, T [; H 2 loc (Ω + )). Of course, the same argument can be applied in Ω -. (2) Let x ∈ Γ + for example. The boundary conditions ∂u ∂ν = 0 on Σ + allows us to apply a symmetry argument and to consider an extension ū of u across Γ + which is still solution of 1.1 in a neighborhood V x of x. The first point of this theorem leads to ū

∈ L ∞ (]0, T [; H 2 (V x )) and thus u ∈ L ∞ (]0, T [; H 2 (V x ∩ Ω)). (3) Let x ∈ Γ e ∩ Ω + . Since ∂u ∂t ∈ L ∞ (]0, T [; H 1 (Ω)), we obtain ∂u ∂ν = - 1 c ∂u ∂t ∈ L ∞ (]0, T [; H 1/2 (Γ e ∩Ω + )). After localisation, we get ∆u ∈ L 2 ((V x ∩Ω)×(0, T )) and ∂u ∂ν ∈ L ∞ (0, T ; H 1/2 (∂(V x ∩Ω)). Classically, this leads to u ∈ L ∞ (0, T ; H 2 (V x ∩ Ω)). (4) Let x ∈ • Γ i .
In this case, let us notice that we can assume that V x ⊂ Ω. There is no hope (in general) that u ∈ D ′ (0, T ; H 2 loc (V x )) excepted for c + = c -. Let us consider ρ ∈ D(Ω) with ρ = 1 on V x and let us write w 1 = ρ ∂u ∂x 1 . Since Γ i is parallel to the axis and boundary x 1 , the function w 1 is still solution of a transmission problem similar to 1.1 with

     ∂ 2 w 1 ∂t 2 -div(c 2 ∇w 1 ) ∈ L 2 (Q), ∂w 1 ∂ν ∈ L ∞ (]0, T [; H 1/2 (∂V x )),
and thus

w 1 ∈ L ∞ (]0, T [; H 1 (V x )).
Remark 2.2. One can easily prove that

∂u ∂x 1 is L ∞ (]0, T [, H 1 (]a, b[×] -a, a[)) in any rectangle ]a, b[×] -a, a[ with 0 < a < b < L.
We now turn to the main point : the description of the singularities focusing at the point (x 1 , x 2 ) = (0, 0).

Polylog-2 Singularities at the jonction of the interface and the

boundary Γ e (or Γ s )

We focus our study at the point with the coordinates (0, 0) but, of course, an analogous result is valid at the point with coordinates (L, 0). We introduce an even function

ρ with ρ = ρ(x 2 ) ∈ C ∞ (R)    ρ(x 2 ) = 1 for - a 2 < x 2 < a 2 ρ(x 2 ) = 0 for |x 2 | > 3a 4 (3.1) Let us denote W =]0, inf(a, L) 2 [×] - a 2 , a 2 [. We consider a function ρ a ∈ C ∞ (Ω) such that ρ a = 1 in W, ρ a = 0 in a neighborhood of Γ + ∪ Γ -∪ Γ s . (3.2)
Let us set :

V = {w ∈ H 1 (Ω), ρw1 Ω+ ∈ H 2 (Ω + ), ρw1 Ω-∈ H 2 (Ω -); and ∂ρw ∂x 1 ∈ H 1 (W )}. (3.3)
For a given function h, we denote by T s and T a the following symmetric and non-symmetric part of h defined by

T s (h)(x 1 , x 2 ) = 1 2 [h(x 1 , x 2 ) + h(x 1 , -x 2 )], (3.4) 
and

T a (h)(x 1 , x 2 ) = 1 2 [h(x 1 , x 2 ) -h(x 1 , -x 2 )]. (3.5) 
When no mistake can be made, we write h s and h a instead of T s (h) and T a (h). Of course, h = h s + h a .

We denote by Im(z) the imaginary part of the complex number z and we introduce the two following functions :

Li 2 is the polylogarithm function of order 2 defined by

Li 2 (z) = n≥1 z n n 2 for |z| ≤ 1. With z = exp[- π a (x 1 -ix 2 )],
we consider the function S defined by :

S(x 1 , x 2 ) = 2a π 2 (c 2 + + c 2 -) Im[Li 2 (z) -Li 2 (-z)] [ c - c + 1 (x2>0) + c + c - 1 (x2<0) ].
Let us notice that S ∈ H 1 (Ω) and that S is null on the interface Γ i . The graphs of the function S and its partial derivatives are given on figure 6 in the case where c + = c -= 1. Our main result in the paper is the following one : it gives a decompostion of the solution u in a regular part (u r ) and a singular one (u sg ).

Theorem 3.1. Let f ∈ H 1 (Ω×]0, T [), u 0 ∈ H 1 (Ω) and u 1 ∈ L 2 (Ω). Then, there exist two functions u r and u sg in L ∞ (]0, T [;

H 1 (Ω)) with u = u r + u sg in Q. The functions u r satisfies ∂u r ∂x 1 ∈ H -2 (]0, T [; V).
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Furthermore, there exist a function α 0 = α 0 (t) ∈ H -2 (0, T ) and ε > 0, such that

u sg (x 1 , x 2 , t) = (c + -c -)α 0 (t)S(x 1 , x 2 ) in ]0, ε[×] -ε, ε[. On ]0, ε[×] -ε, ε[, we have ∇u sg (0, x 2 , t) = (c + -c -)[ c - c + 1 (x2>0) + c + c - 1 (x2<0) ]α 0 (t)    - 2 π Arg( 1 + e iπ x 2 a 1 -e iπ x 2 a ) 2 π Ln|cotan πx 2 2a |   (3.6) Remark 3.1.
Let us notice that S is null if c + = c -thus the existence of the singularity is due to the presence of two materials and we then get Waves in a bimaterial with interface at x 2 = 0.2 The end of the paper is devoted to the proof of Theorem 3.1.

lim x2→0 + ∂u sg ∂x 2 (0, x 2 ) = lim x2→0 - ∂u sg ∂x 2 (0, x 2 ) = +∞.
Proof of Theorem 3.1. The idea is the following one : we prove that the singular part of u on Γ e comes from the antisymmetric part of the singular function -1 c ∂u ∂t on the boundary Γ e . More precisely, the singularity is strictly connected to the gap at the origin (0, 0) of this function. In order to point out this fact, we split the solution of (1.1) in several parts and we write g = -

1 c ∂u ∂t 1 Σe∪Σs .
Let us recall that for (u 0 , u

1 ) ∈ H 1 (Ω) × L 2 (Ω) and f ∈ L 2 (Q), we have g ∈ L 2 (Σ) but g ∈ H -1 (]0, T [; H 1/2 (Γ)). In a same way, if (u 0 , u 1 ) ∈ H 2 (Ω) × H 1 (Ω) with supp(u 0 ) ⊂ K where K is a compact set in Ω + ∪ Ω -, even if f ∈ H 1 (Q), then g ∈ L 2 (]0, T [; H 1/2 (Γ))
. Since our interest is not far from the interface Γ i , we first localize the function u introducing ũ = ρu where ρ is defined in (3.1). The function ũ is solution of the following system :

                             ∂ 2 ũ ∂t 2 -div(c 2 ∇ũ) = f in Q = Ω×]0, T [, ũ = 0 on (Γ + ∪ Γ -)×]0, T [, ∂ ũ ∂t + c ∂ ũ ∂ν = 0 on (Γ e ∪ Γ s )×]0, T [, ũ(x, 0) = ρu 0 (x) ∂ ũ ∂t (x, 0) = ρu 1 (x) in Ω.
(3.7)

with f = ρf + c 2 ∇ρ.∇u + div(c 2 ∇ρu). Since ρ = 1 in a neighborhood of Γ i , we have div(c 2 ∇ρu) ∈ L 2 (Q). We denote g = - 1 c ∂ ũ ∂t 1 Σe∪Σs . We get g ∈ L 2 (Σ) and g = g = - 1 c
∂u ∂t in a neighborhood in Γ e of the point (0, 0).

We recall that g s (respectively g a ) is the symmetric (respectively the antisymmetric) part of g. We introduce u (1) ∈ L 2 (0, T ; H 1 (Ω)) and u (2) ∈ L 2 (0, T ; H 1 (Ω)) solutions of :

               div(c 2 ∇u (2) (t)) = 0 in Q = Ω×]0, T [, u (2) (t) = 0 on {Γ + ∪ Γ -}×]0, T [, ∂u (2) ∂ν (t) = ga (t) on {Γ e ∪ Γ s }×]0, T [, (3.8) 
and u (1) = ũ -u (2) . We obtain that u (1) ∈ L 2 (0, T ; H 1 (Ω) is solution of

               div(c 2 ∇u (1) ) = div(c 2 ∇ũ) = ü -f in Q, u (1) = 0 on {Γ + ∪ Γ -}×]0, T [, ∂u (1) ∂ν = ḡs on (Γ e ∪ Γ s )×]0, T [, (3.9) 
The following lemmas will be useful for the study of the regularity of u (1) .

Lemma 3.1. Let w ∈ H 1 (Ω) be a solution of                    div(c 2 ∇w) = h in Ω, w = 0 on Γ + ∪ Γ -, ∂w ∂ν = g 0 on Γ e ∪ Γ s , (3.10) 
with h ∈ L 2 (Ω), g 0 1 Γe ∈ H 1/2 (Γ e ) and g 0 1 Γs ∈ H 1/2 (Γ s ). Then w ∈ V (see (3.3)).

Proof of Lemma 3.1. The function w 1 = ρw is solution of

                   div(c 2 ∇w 1 ) = h 1 in Ω, w 1 = 0 on Γ + ∪ Γ -, ∂w 1 ∂ν = g 1 on Γ e ∪ Γ s , (3.11) 
with h 1 = ρh + c 2 ∇ρ.∇w + div(c 2 w∇ρ) and g 1 = ρg 0 + w∇ρ.ν.

Since ∇ρ = 0 in a neighborhood of Γ i , we deduce that c 2 ∇ρ ∈ C ∞ (R) and div(c 2 w∇ρ) ∈ L 2 (Q) and thus h 1 ∈ L 2 (Q). Furthemore, g 0 1 Γe ∈ H 1/2 (Γ e ) implies that g 0 ρ1 Γe ∈ H 1/2 00 (Γ e ) (and same argument is valid on Γ s ). Let us denoted by ḡ1 the extension by zero on the whole boundary of the function g 1 . We then have ḡ1 ∈ H 1/2 (Γ).

Let us set w

2 = ∂w 1 ∂x 1 = ρ ∂w ∂x 1 . We obtain                    div(c 2 ∇w 2 ) = ∂h 1 ∂x 1 in Ω, w 2 = 0 on Γ + ∪ Γ -,
w 2 = -g 1 on Γ e and w 2 = g 1 on Γ s .

(3.12)

Since g 1 1 Γe ∈ H 1/2 00 (Γ e ) (and same on Γ s ), we get that the function 1 Γs g 1 -

1 Γe g 1 ∈ H 1/2 (Γ). Introducing now G 1 ∈ H 1 (Ω) with G 1 = 1 Γs g 1 -1 Γe g 1 on Γ, and w 3 = w 2 -G 1 , we deduce that        div(c 2 ∇w 3 ) = ∂h 1 ∂x 1 -div(c 2 ∇G 1 ) in Ω, w 3 = 0 on Γ, (3.13) 
with

h 3 = ∂h 1 ∂x 1 -div(c 2 ∇G 1 ) ∈ H -1 (Ω).
We easily deduce that

w 3 ∈ H 1 (Ω) thus w 2 = ρ ∂w ∂x 1 ∈ H 1 (Ω).
Assertions ρw1 Ω+ ∈ H 2 (Ω + ) and ρw1 Ω-∈ H 2 (Ω -) are easy consequences of ∆(ρw1 Ω+ ) ∈ L 2 (Ω + ) and ∂ρw ∂x 1 ∈ H 1 (Ω) ( same for Ω -). Of course, there is no hope to have w ∈ H 2 (W ). Lemma 3.1 is therefore proved.

Lemma 3.2. Let g ∈ L 2 (Γ e ) with g1 Γe + ∈ H 1/2 (Γ e+ ) and g1 Γe -∈ H 1/2 (Γ e-).
Then, we have

g s ∈ H 1/2 (Γ e ).
Let us suppose that Lemma 3.2 is proved. Since the function g satisfies g1 Γe+ ∈ H -1 (0, T, H 1/2 (Γ e+ )), (and same on Γ e-), we obtain that gs ∈ H -1 (0, T ; H 1/2 (Γ e ). Moreover, üf ∈ H -1 (0, T ; L 2 (Ω)). We can apply Lemma 3.1 to the function u (1) , and we get that u (1) 

∈ H -1 (0, T ; V) if (u 0 , u 1 ) ∈ H 1 (Ω)×L 2 (Ω).
In the case where (u 0 , u

1 ) ∈ H 2 (Ω) × H 1 (Ω) with supp(u 0 ) ⊂ K where K is a compact set in Ω + ∪ Ω -, one can easely prove that u (1) ∈ L 2 (0, T ; V) since ü -f ∈ L 2 (0, T ; L 2 (Ω)) gs ∈ L 2 (0, T ; H 1/2 (Γ e )).
Proof of Lemma 3.2. Let us point out that the time variable is a parameter in Lemma 3.2 and thus by linearity, the regularity in time comes from the one of the function g. There is nothing to prove for this.

Let us introduce :

T s (g 1 , g 2 )(x 2 ) =      1 2 [g 1 (x 2 ) + g 2 (-x 2 )] if x 2 > 0 1 2 [g 2 (x 2 ) + g 1 (-x 2 )] if x 2 < 0 for g 1 ∈ L 2 (Γ e+ ) and g 2 ∈ L 2 (Γ e-).
We easily get

T ∈ L(L 2 (Γ e+ ) × L 2 (Γ e-); L 2 (Γ e )). If (g 1 , g 2 ) ∈ H 1 (Γ e+ )×H 1 (Γ e-) then T s (g 1 , g 2 ) ∈ H 1 (Γ e ) (there is no gap across x 2 = 0) hence T ∈ L(H 1 (Γ e+ ) × H 1 (Γ e-); H 1 (Γ e )).
By interpolation of order 1/2, we deduce Lemma 3.2.

We now turn to the proof of Theorem 3.1 with the study of u (2) , solution of (3.8) and we first prove the following result concerning the solution u : it defines the gap of u| Γe at the origin.

Proposition 3.1. Suppose (u 0 , u 1 ) ∈ H 1 (Ω) × L 2 (Ω). We have ũ1 Ω+ ∈ L 2 (0, T ; H 3/2 (Ω + )), ũ1 Ω-∈ L 2 (]0, T [; H 3/2 (Ω -)) and we can write ga = T a (g) = α(t) sign(x 2 ) + g ar where α ∈ H -2 (0, T ) and g ar ∈ H -2 (]0, T [; H 1/2 (Γ e )).
Proof of Proposition 3.1. Let us prove that ũ1 Ω+ ∈ L 2 (]0, T [; H 3/2 (Ω + )). We introduce ũS and ũA defined by ũA = ũ -ũS and

ũS (x 1 , x 2 , t) =            c 2 + ũ(x 1 , x 2 , t) + c 2 -ũ(x 1 , -x 2 , t) c 2 + + c 2 - if x 2 > 0 c 2 + ũ(x 1 , -x 2 , t) + c 2 -ũ(x 1 , x 2 , t) c 2 + + c 2 - if x 2 < 0
We have ũS ∈ L 2 (0, T ; H 1 (Ω) and ũS = ũ on Γ i . Let us prove that ũS ∈ H -1 (0, T ; H 2 (Ω)). We obtain in Ω + :

∂ ũS ∂x 2 = 1 c 2 + + c 2 - [c 2 + ∂ ũ ∂x 2 (x 1 , x 2 , t) -c 2 - ∂ ũ ∂x 2 (x 1 , -x 2 , t)]
thus (recall that ũ satisfies the transmission condition), we get ∂ ũS ∂ν = 0 on Γ i . An analogous calculus on Ω -proves that there is no gap of the normal derivative of ũS through the interface Γ i . Since ũS ∈ L 2 (0, T ;

H 1 (Ω)), ∆(ũ S 1 Ω+ ) ∈ H -1 (0, T ; L 2 (Ω + )), ∆(ũ S 1 Ω-) ∈ H -1 (0, T ; L 2 (Ω -))
, with no gap of the normal derivative through Γ i , we deduce that ∆ũ S ∈ H -1 (0, T ; L 2 (Ω)).

On another hand, we have on

Ω + ∂ ũS ∂x 1 = 1 c 2 + + c 2 - [c 2 + ∂ ũ ∂x 1 (x 1 , x 2 , t) + c 2 - ∂ ũ ∂x 1 (x 1 , -x 2 , t)]
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and on Ω -

∂ ũS ∂x 1 = 1 c 2 + + c 2 - [c 2 - ∂ ũ ∂x 1 (x 1 , x 2 , t) + c 2 + ∂ ũ ∂x 1 (x 1 , -x 2 , t)],
thus ∂ ũS ∂ν is a symmetric function on Γ e and on Γ s . We can apply Lemma 3.2 and we get that

∂ ũS ∂ν ∈ H -1 (0, T ; H 1/2 (Γ e ∪ Γ s )).
We have proved that ũS is solution of

       ∆ũ S ∈ H -1 (0, T ; L 2 (Ω)) ũS = 0 on Γ + ∪ Γ - ∂ ũS ∂ν ∈ H -1 (0, T ; H 1/2 (Γ e ∪ Γ s )).
Since ũS is null in a neighborhood of Γ + and Γ -, we deduce that ũS ∈ H -1 (0, T ; H 2 (Ω)).

Let us now prove that ũA 1 Ω+ = (ũ -ũS )1 Ω+ ∈ H -1 (0, T ; H 3/2 (Ω + )). We have ũA ∈ L 2 (0, T ; H 1 (Ω)). Since ũ = ũS on Γ i , we get ũA | Γi = 0. Moreover, using that the normal direction on Γ e (respectively Γ s ) is the -x 1 's one (respectively x 1 's one), one can easily prove that u A satisfies in Ω + × (0, T )

               ∆ũ A ∈ H -1 (0, T ; L 2 (Ω + )) ∂ ũA ∂ν = ∂ ũ ∂ν - ∂ ũS ∂ν ∈ H -1 (0, T ; H 1/2 (Γ e+ ∪ Γ s+ )) u A = 0 on Γ i ∪ Γ + and therefore ũA ∈ H -1 (]0, T [; H 3/2 (Ω + )) if (u 0 , u 1 ) ∈ H 1 (Ω) × L 2 (Ω). We proved that ũ ∈ H -1 (]0, T [; H 3/2 (Ω + )) + H -1 (]0, T [; H 2 (Ω + )) and thus ũ ∈ H -1 (]0, T [; H 3/2 (Ω + )) for initial data (u 0 , u 1 ) in H 1 (Ω) × L 2 (Ω). Of course, the same is valid in Ω -.
We deduce that

∂ ũ ∂t | Γe + and ∂u ∂t | Γe -make sense in H -2 (]0, T [; H 1 (Γ e+ )
) and

H -2 (]0, T [; H 1 (Γ e-))
and thus their values at point (0, 0) exist. Furthermore,

∂ ũ ∂t ∈ H -1 (]0, T [; H 1/2 (Γ e ))
, thus these values are equal. Let us write α = ga | Γe + be the trace of the function ga on Γ e+ . We have

α(t) = ga (0+, t) = - 1 2 [ 1 c + ∂ ũ ∂t (0, 0+, t) - 1 c - ∂u ∂t (0, 0-, t)] = 1 2c + c - (c + -c -) ∂ ũ ∂t (0, 0, t).
We write ga (x 2 , t) = α(t) sign (x 2 ) + g ar (x 2 , t)

where sign denotes the sign-function defined by sign (x) = 1 if x > 0 and sign (x) = -1 if x < 0. The function g ar is an odd function with respect to x 2 , g ar 1 Γe + ∈ H -2 (0, T ; H 1 (Γ e+ )) and g ar 1 Γe -∈ H -2 (0, T ; H 1 (Γ e-)) and their values at the point (0, 0) are null therefore g ar ∈ H -2 (]0, T [; H 1/2 (Γ e )) and proposition 3.1 is proved.

Let us return to the proof of our main theorem. We write u (2) = u (3) + u (4) where u (3) (respectively u (4) ) is solution of (3.8) with ∂u (3) ∂ν = g ar (respectively ∂u (4) ∂ν = α sign (x 2 )) on Γ e .

Lemma 3.1 can be apply to u (3) and leads to u (3) ∈ V. We deduce that the singular part of the function u is involved by the lack of continuity at the origin of the odd part of the function 1 c ∂u ∂t . Let study w = u (4) .

We use the same splitting as in proposition 3.1 and we write w = w S + w A . We get w S ∈ H -1 (0, T ; H 2 (Ω)) and thus it is sufficient to study u (5) = w A . We know that ∆u (5) = 0 separately in Ω + and Ω -and that u (5) = 0 on Γ i ∪ Γ + ∪ Γ -.

Let us compute

∂u (5) ∂ν = -∂u (5) ∂x 1 on Γ e+ and Γ e-. We have on Γ e+ :

∂u (5) ∂x 1 (x 1 , x 2 ) = ∂u (4) ∂x 1 (x 1 , x 2 ) - ∂w S ∂x 1 (x 1 , x 2 ) = -α - c 2 + ∂u (4) ∂x 1 (x 1 , x 2 ) + c 2 - ∂u (4) ∂x 1 (x 1 , -x 2 ) c 2 + + c 2 - = -α - c 2 + (-α) + c 2 -α c 2 + + c 2 - = -α 2c 2 - c 2 + + c 2 - and thus 
β + (t) = ∂u (5) ∂ν = c - c + (c 2 + + c 2 -) (c + -c -) ∂ ũ ∂t (0, 0, t) on Γ e+ . (3.14) 
On Γ -, we get

∂u (5) ∂ν = -α - c 2 - ∂u (4) ∂ν (x 1 , x 2 ) + c 2 + ∂u (4) ∂ν (x 1 , -x 2 ) c 2 + + c 2 - = -α - c 2 -(-α) + c 2 + α c 2 + + c 2 - = -α 2c 2 + c 2 + + c 2 - and thus 
β -(t) = ∂u (5) ∂ν = - c + c -(c 2 + + c 2 -) (c + -c -) ∂ ũ ∂t (0, 0, t) on Γ e-. ( 3 

.15)
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We deduce that the function u (5) is solution of

                   ∆u (5) = 0 in Ω + , u (5) = 0 on Γ + ∪ Γ i , ∂u (5 
) ∂ν = β + on Γ e+ ∪ Γ s+ , and 
                   ∆u (5) = 0 in Ω -, u (5) = 0 on Γ -∪ Γ i , ∂u (5 
) ∂ν = β -on Γ e-∪ Γ s-, (3.16) 
In order to describe this singularity involved by the function u (5) and du to the fact that the role of the time variable is here a parameter, we begin with Proposition 3.2. Let β ∈ R and let w = w(x) ∈ H 1 (Ω + ) be solution of :

               ∆w = 0 in Ω + , w = 0 on Γ + ∪ Γ i ∪ Γ s+ , ∂w ∂ν = β on Γ e+ (3.17)
then there exists ε > 0 such that the behavior near the origin is given by

w(x) = 2a π 2 β Im[Li 2 (e -2π( x 1 L +i x 2 a ) ) -Li 2 (-e -2π( x 1 L +i x 2 a ) )] in ]0, ε[ 2 Proof.
For sake of simplicity we consider another system which leads to the same singularity (the problem is a local one). Let us write Ω a = R + * ×]0, a[ and consider the solution v ∈ H 1 (Ω a ) of the system

                   ∆v = 0 in R + * ×]0, a[, v = 0 on R + * × {0, a}, ∂v ∂ν = β on {0}×]0, a[. (3.18) We write for n ∈ N * , w n (x 2 ) = 2 a sin( nπx 2 a ) and v(x 1 , x 2 ) = n≥1 a n w n (x 2 )e - nπx 1 a
the serie being convergent in the spaces H 1 (Ω a ) and H 2 (Ω a ∩ (x 2 > 0)). Let us recall that the functions w n (n > 0) represent an orthonormal basis of L 2 (]0, a[). We obtain for p ∈ N * ,

a 0 v(x 1 , x 2 )w p (x 2 )dx 2 = a p e - pπx 1 a and ∂v ∂x 1 (x 1 , x 2 ) = - π a n a n nw n (x 2 )e - nπx 1 a thus : a 0 ∂v ∂x 1 (0, x 2 )w p (x 2 )dx 2 = - pπ a a p
which leads to :

a p = aβ pπ a 0 w p (x 2 )dx 2 = a 2 β p 2 π 2 2 a [1 -(-1) p ].
We then get Let us recall that the dilogarithm function Li 2 is defined by Li 2 (z) = n≥1 z n n 2 ( |z| ≤ 1) and we refer to [START_REF] Zagier | The Dilogarithm Function[END_REF] for very surprising properties of this function. We proved that v(x Theorem 3.1 is proved. Let us remark that in case of a unique velocity (c + = c -), there is no singular part.

Conclusion -

In this paper, we have discussed the singularity which appears when one uses a transparent boundary condition for a bimaterial. This situation occurs for instance when one tries to simulate wave propagations in an infinite strip replaced by a finite one. The singularity which belongs to the Dilog family is an artefact which doesn't exist in the physical model. Therefore it seems necessary to eliminate it from the solution. The first step was obviously to make it explicit in order to be able to suggest a method which would improve the boundary condition. For instance, a numerical method could be to compute the contribution of this artificial singularity and to substract it from the global solution. In fact, this is a way for defining an upgrade transparent boundary condition for this kind of problems. This will be discussed in a forthcoming paper. Finally, let us remark that these phenomena appear in the study of the detection of cracks at the interface between two materials, as it is noticed in [START_REF] Ph | Few remarks on the use of Love waves in non destructive testing[END_REF].
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	where the function One deduces that								=	2 π	β [Ln|	1 + z 1 -z	| + iArg(	1 + z 1 -z	)]
		∂v ∂x 2		=			1 π	βLn|	1 + 2e 1 -2e	--	πx 1 a cos( πx 1 a cos(	πx 2 a πx 2 a	) + e ) + e	-2 -2	πx 1 a πx 1 a	|
	On Γ i , one has											
	and	∂v ∂x 2		=			2 π	βLn|	1 + e 1 -e	--	πx 1 a πx 1 a	| =	4 π	β Ln| coth	πx 1 a	|,
													lim x1→0 +	∂v ∂x 2	= +∞.
	In a same way, one has on Γ e+ ,
												lim x2→0 +	∂v ∂x 2	(0, x

1 , x 2 ) = 2a π 2 βIm[Li 2 (z) -Li 2 (-z)].

Let us compute the gradient of v. One obtains with (3.19) : 2 ) = +∞.