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Abstract. Energetic Reasoning (ER) is a powerful filtering algorithm for the

Cumulative constraint. Unfortunately, ER is generally too costly to be used in

practice. One reason of its bad behavior is that many intervals are considered

as relevant, although most of them should be ignored. In the literature, heuristic

approaches have been developed in order to reduce the number of intervals to

consider, leading to a loss of filtering. In this paper, we provide a sharp charac-

terization that allows to reduce the number of intervals by a factor seven without

loss of filtering.

1 Introduction

Due to its relevance in many industrial contexts, the NP-Hard Cumulative Scheduling

Problem (CuSP) has been widely studied in Constraint Programming (CP). This prob-

lem is defined on a set of activities A consuming a resource of capacity C. Each activity

a ∈ A is defined by four variables: its starting time sa, its processing time pa, its ending

time ea and its height ha, which represents the amount of resource consumed by the ac-

tivity when it is processed. We use the notation a = {sa, pa, ea, ha}. Usually, variables

pa and ha are fixed integers, as well as C. In this paper, we make such assumptions. A

solution to a CuSP is a schedule that satisfies the following constraints:

∀a ∈ A : sa + pa = ea ∧ ∀t ∈ N :
∑

t∈[sa,ea[,a∈A ha ≤ C

In CP, this problem is generally represented by the global constraint Cumulative [1].

The Energetic Reasoning of Baptiste et al. (ER) is one of the most powerful filtering

algorithms for Cumulative [2]. This algorithm uses a characterization of relevant inter-

vals, that is, intervals that are sufficient to check in order to ensure that all the undergo-

ing rules used for filtering domains are satisfied. Unfortunately, ER is often too costly

to be used in practice. First, its time complexity is O(n3). Moreover, the hidden con-

stant in that time complexity is huge, as many intervals are characterized to be relevant

although most of them should be ignored. In the literature, only heuristic approaches

have been proposed for reducing the number of checked intervals [3].

This article provides a sharper characterization of relevant intervals. We reduce the

number of intervals by a factor seven without loss of reasoning. From this theoretical

work, we improve the ER checker and we introduce a new ER propagator. Compared

with state-of-the-art ER techniques for Cumulative, our experiments show a significant

reduction in the running time of both the ER checker and the ER propagator.



2 Background

Given a variable x, let x be the minimum value in its domain and x the maximum value.

The principle of ER is to compare the available energy within a given time interval

(length of that interval × capacity) with the energy necessarily taken by activities that

should partially or totally overlap this interval. The minimum energy for an activity can

be found either when the activity is left shifted or right shifted.

We define the part of a left shifted activity a in intersection with an interval [t1, t2[
as LS(a, t1, t2) = max(0,min(ea, t2) − max(sa, t1)). Similarly, for the right shifted

intersection we define RS(a, t1, t2) = max(0,min(ea, t2) − max(sa, t1)). Then the

minimal intersection of activity a with an interval [t1, t2[ is:

MI(a, t1, t2)=min(LS(a, t1, t2), RS(a, t1, t2))

Proposition 1 (ER checker [5]). If the condition

∀t1, t2 ∈ N
2, t1 < t2 C × (t2 − t1) ≥

∑

i∈A

hi × MI(i, t1, t2) (1)

is violated then the problem represented by Cumulative is unfeasible.

One issue is then to find the smallest sufficient set of intervals [t1, t2[ that should be

checked to detect the unfeasibility.

Proposition 2 (Baptiste et al. characterization). In order to ensure that the condition

of Proposition 1 holds, it is sufficient to consider all pairs of activities (i, j) and check

intervals [t1, t2[ from the set OB =
⋃

(i,j)∈A2 OB(i, j), with:

OB(i, j) =







(t1, t2), t1 ∈ O1(i) < t2 ∈ O2(j)
(t1, t2), t1 ∈ O1(i) < t2 ∈ Ot1(j)
(t1, t2), t2 ∈ O2(j) > t1 ∈ Ot2(i)

and O1(i) = {si, si, ei}, O2(i) = {si, ei, ei}, Ot(i) = {si+ei − t}.

Proposition 1 can also be used to adjust bounds of starting and ending time vari-

ables. We examine if scheduling an activity a at its minimum schedule does not lead to

a failure of condition (1). We first define the available energy for a over interval [t1, t2[
as the capacity of the interval minus the minimum intersection of all other activities:

Avail(a, t1, t2)= C × (t2−t1)−
∑

i∈A\{a}

hi × MI(i, t1, t2)

Proposition 3. For any activity a if there exists an interval [t1, t2[ such that

Avail(a, t1, t2) < ha×LS(a, t1, t2) then the left shift placement of a is not valid and

the activity can not start before t2 −
1
ha

×Avail(a, t1, t2).

Proposition 4. For any activity a there exists an interval [t1, t2[ such that

Avail(a, t1, t2) < ha×RS(a, t1, t2) then the right shift placement of activity a is not

valid and a can not end after t1 +
1
ha

×Avail(a, t1, t2).



Definition 1 (Complete ER propagation). The Complete ER Propagation is obtained

when no activity can be adjusted using Proposition 3 or 4.

The characterization of Proposition 2 is proved to be sufficient in [2] (Proposi-

tion 19) for the ER checker. Two open questions remain. The first one is related to

the checker: The set of relevant intervals OB is proved to be sufficient but could it be

reduced? The second one is related to the propagator: Is OB also sufficient to perform

a complete ER propagation? In the next section, we demonstrate that one can respond

affirmatively to those two questions.

3 The Energetic Reasoning checker revisited

Baptiste et al. showned that f1 : (t1, t2) → C × (t2 − t1)−
∑

i∈A hi × MI(i, t1, t2) is

continuous and piecewise linear, and that any piece can be bounded by points defined

in their characterization. As extrema of a continuous and piecewise linear function can

only be found on bounds of the pieces their characterization is sufficient. Out of the

scope of Constraint Programming, Schwindt proposed in [9] a study of f1 limited to

local minima in order to compute a lower bound of the makespan. We propose a study

adapted to the computation of relevant intervals for the Energetic Reasoning checker.

Lemma 1. f1 is locally minimum in (t1, t2) only if there exist two activities i and j
such that the two following conditions are satisfied.

∂−MI(i, t1, t2)

∂t1
>

∂+MI(i, t1, t2)

∂t1
(2)

∂−MI(j, t1, t2)

∂t2
>

∂+MI(j, t1, t2)

∂t2
(3)

Proof. By contradiction, let (t1, t2) such that for all activities in A condition (2) is not

satisfied. Then
∑

i∈A hi ×MI(i, t1, t2) has its left derivative lower than or equals to it’s

right derivative and f1 has its left derivative greater than or equal to its right. By the

second derivative test, minimal value of a function can only be found at points where

its left derivative is lower than its right derivative. (t1, t2) can not be a local minimum.

Proof is similar for condition (3). This proves the lemma. ⊓⊔

The set of intervals OB characterizes for any couple of activity (i, j) a total number

of 15 intervals. This number can be reduced thanks to Lemma 1: We can deduce neces-

sary conditions for determining the subset of intervals that are really relevant. We first

characterize the condition for which the end of an interval may be relevant.

Lemma 2. For any activity j and any interval starting time t1 there exists at most one

interval [t1, t2[ such that
∂−MI(j,t1,t2)

∂t2
> ∂+MI(j,t1,t2)

∂t2
:

1. if t1≤sj then only [t1, ej [ has to be considered

2. if t1>sj ∧ t1≥ej then no interval has to be considered

3. if t1>sj ∧ t1<ej ∧ t1<sj then only [t1, sj+ej−t1[ has to be considered

4. if t1>sj ∧ t1<ej ∧ t1≥sj then only [t1, ej [ has to be considered



Proof. Let us study the variation of the function f j
2 : t2 → MI(j, t1, t2) when t2 varies.

As an example that illustrates the case of the first item, Figure 1 is a representation of

the evolution of the minimal intersection of an activity with the following data: j =
{sj ∈ [2, 4], pj=4, ej ∈ [6, 8], hj}. We can distinguish three cases.

– If t2 ≤ sj then

MI(j, t1, t2) = 0.

– If sj ≤ t2 ≤ ej then

MI(j, t1, t2) = t2 − sj .

– And finally if ej ≤ t2 then

MI(j, t1, t2) = pj .

T ime

0 1 2 3 4 5 6 7 8 9 10

t1=1

a

0

4

Fig. 1: a graphical exemple

The only interval for which
∂−MI(j,t1,t2)

∂t2
> ∂+MI(j,t1,t2)

∂t2
is then [t1, ej [; [1, 8[ in the

example. Similar case-based proofs apply for other items [4]. ⊓⊔

Lemma 3. f1 is locally minimum in (t1, t2) only if there exist two activities i and j
such that (t1, t2) ∈ OC(i, j) with

OC(i, j) =















































































[si, ej [ if si≤sj ∧ ej≥ei
[si, sj+ej−si[ if si>sj ∧ si<ej ∧ si<sj ∧ sj+ej−si≥ei
[si, ej ] if si>sj ∧ si<ej ∧ si≥sj ∧ ej≥ei
[si, ej ] if si≤sj ∧ ej<ei ∧ ej>si ∧ ej≤ej
[si, sj+ej−si] if si>sj ∧ si<ej ∧ si<sj ∧

si<sj+ej−si≤ei ∧ sj+ej−si<ei
[si, ej ] if si>sj ∧ si<ej ∧ si≥sj ∧

ej<ei ∧ ej>si ∧ ej≤ei
[si+ei−ej , ej ] if ej<ei ∧ ej>si ∧ ej>ei ∧ si+ei−ej≤sj
[si+ei−ej , ej ] if ej<ei ∧ ej>si ∧ ej>ei ∧

sj≤si+ei−ej<ej ∧ sj<si+ei−ej

Proof. Suppose 6 ∃(i, j) such that (t1, t2) ∈ OC(i, j) then by Lemma 2 and its symmet-

ric both condition
∂−MI(j,t1,t2)

∂t2
> ∂+MI(j,t1,t2)

∂t2
and

∂−MI(j,t1,t2)
∂t1

> ∂+MI(j,t1,t2)
∂t1

can

not be satisfied; by Lemma 1 f1 can not be minimal. This proves the Lemma. ⊓⊔

Theorem 1. In order to ensure ER checker property holds (condition (1)), it is enough

to check intervals of the form OC(A) =
⋃

(i,j)∈A2 OC(i, j).

Proof. Suppose ∃[t1, t2[ such that
∑

i∈A hi × MI(i, t1, t2) − C × (t2 − t1) < 0. By

Lemma 3, ∃[t∗1, t
∗
2[∈ OC(A) such that

∑

i∈A hi × MI(i, t∗1, t
∗
2) − C × (t∗2 − t∗1) ≤

∑

i∈A hi×MI(i, t1, t2)−C× (t2− t1). f1 is negative in (t∗1, t
∗
2), thus checking [t∗1, t

∗
2[

leads to a failure. The characterization is sufficient. ⊓⊔

This precise characterization reduces the number of relevant intervals for any pair of

activities. Our characterization leads to 2 intervals for any pair of activities, as no more

than two conditions can be simultaneously valid. We have thus reduced the number

of intervals by a factor 7 compared with Baptiste et al. characterization. Moreover, no

intervals start by ei or end by sj .



4 Characterization of intervals for the propagator

Similarly to the checker, we aim to find minimal values of the induced function

fa
3 : (t1, t2) → Avail(a, t1, t2) − ha× LS(a, t1, t2). If fa

3 takes a negative value, the

lower bound of activity a can be adjusted (thanks to Proposition 3).

Lemma 4. fa
3 is locally minimum in (t1, t2) only if one of the four conditions is satis-

fied:

∃(i, j),
∂−MI(i, t1, t2)

∂t1
>

∂+MI(i, t1, t2)

∂t1
∧

∂−MI(j, t1, t2)

∂t2
>

∂+MI(j, t1, t2)

∂t2
(4)

∃i,
∂−MI(i, t1, t2)

∂t1
>

∂+MI(i, t1, t2)

∂t1
∧

∂−LS(a, t1, t2)

∂t2
>

∂+LS(a, t1, t2)

∂t2
(5)

∃j,
∂−LS(a, t1, t2)

∂t1
>

∂+LS(a, t1, t2)

∂t1
∧

∂−MI(j, t1, t2)

∂t2
>

∂+MI(j, t1, t2)

∂t2
(6)

∂−LS(a, t1, t2)

∂t1
>

∂+LS(a, t1, t2)

∂t1
∧

∂−LS(a, t1, t2)

∂t2
>

∂+LS(a, t1, t2)

∂t2
(7)

Proof. Similar to proof of Lemma 1. ⊓⊔

We can build from Lemma 4 the set of relevant intervals for a couple of activities

from the four conditions. Intervals satisfying condition (4) have already been defined:

OC(A\a). From conditions (5), (6) and (7) we can similarly build the set La studying

the conditions from the left shift placement function fa
4 : (t1, t2) → LS(a, t1, t2).

Lemma 5. For any activity a and any interval starting time t1 there exists at most one

interval [t1, t2[ such that
∂−LS(a,t1,t2)

∂t2
> ∂+LS(a,t1,t2)

∂t2
:

– If t1<ea then only [t1, ea[ has to be considered.

– If t1≥ea then no intervals have to be considered.

Proof. We consider 3 different cases :

1. t1 < sa:

Then LS(a, t1, t2) = max(0,min(ea, t2)− sa)
(a) if t2 ≤ sa then LS(a, t1, t2) = 0.

(b) if sa ≤ t2 ≤ ea then LS(a, t1, t2) = t2 − sa.

(c) if ea ≤ t2 then LS(a, t1, t2) = pa.

The only interval for which
∂−LS(a,t1,t2)

∂t2
> ∂+LS(a,t1,t2)

∂t2
is then [t1, ea[.

2. sa ≤ t1 < ea:

Then LS(a, t1, t2) = max(0,min(ea, t2)− t1)
(a) if t2 ≤ ea then LS(a, t1, t2) = t2 − t1.

(b) if ea ≤ t2 then LS(a, t1, t2) = ea − t1.

The only interval for which
∂−LS(a,t1,t2)

∂t2
> ∂+LS(a,t1,t2)

∂t2
is then [t1, ea[.

3. ea ≤ t1: Then LS(a, t1, t2) = 0 and no interval satisfies the condition.

Combination of cases 1, 2 and 3 proves the lemma. ⊓⊔



We now precisely characterize relevant intervals for the left shift placement of ac-

tivity a, from the conditions 5 , 6 and 7 : La =
⋃

i∈A\a L
a
1(i)

⋃

j∈A\a L
a
2(j)

⋃

La
3 .

From Lemma 5 and the symmetric of Lemma 2, we can characterize for any i the

interval that satisfy condition (5).

La
1(i) =















[si, ea[ if si<sa ∧ ei<ea
[si+ei−ea, ea[ if si+ei−ea<ea ∧ si+ei−ea<sa ∧

ea<ei ∧ ea>si ∧ ea>ei
[si, ea[ if si<sa ∧ ea<ei ∧ ea<si ∧ ea≤ei

From the symmetric of Lemma 5 and Lemma 2 we can characterize for any j the inter-

val that satisfy condition (6).

La
2(j) =



















[sa, ej [ if sa≤sj ∧ ej<ea
[sa, sj+ej−sa[ if sa>sj ∧ sa<ej ∧ sa<sj ∧

sj + ej − ea>sa ∧ sj + ej − ea<ea
[sa, ej [ if sa>sj ∧ sa<ej ∧ sa≥sj ∧ ej<ea

From Lemma 5 and its symmetric we can build the interval that satisfy condition (7).

La
3 = { [sa, ea[}

Lemma 6. fa
3 is locally minimum only in (t1, t2) ∈ Oa

L with Oa
L = OC(A\a) ∪ La.

Proof. Same proof as Lemma 3. ⊓⊔

The same reasoning leads to the characterization of relevant intervals for the right

shift placement Ra =
⋃

j∈A\a R
a
1(j)

⋃

i∈A\a R
a
2(i)

⋃

Ra
3 .The precise characterization

is symmetrical to the left shift placement characterization.

The number of relevant intervals for any activity a is then |OC(A\a) ∪ La ∪ Ra|.
By construction, |OC(A\a)| = 2(n−1)2 and |La|= |Ra|= 2.n + 1. Compared with

Baptiste et al. characterization, our characterization reduces by a factor 7 the number of

relevant intervals.

Theorem 2. In order to ensure a complete ER propagation (Definition 1) it is sufficient

to check intervals [t1, t2[ in OP = OC(A)
⋃

a∈A La
⋃

a∈A Ra.

Proof. Same proof as Theorem 1. ⊓⊔

We can thus respond affirmatively to the second open question:

Property 1. Baptiste et al. characterization of relevant intervals OB is sufficient to en-

sure a complete ER propagation.

Proof. By Theorem 2, OP is sufficient and OP ⊂ OB . ⊓⊔



5 Algorithms and Experiments

5.1 Checker

Baptiste et al. proposed an O(n2) checker algorithm based on their characterization.

Their algorithm loops over set O1 =
⋃

a∈A{sa, sa, ea} to compute all relevant intervals

starting by a value in O1. We have shown that ea is not relevant as a starting value. We

propose a version of the algorithm adapted to our characterization, reducing the relevant

starting values. We replace O1 by O′
1 =

⋃

a∈A{sa, sa} and apply the same algorithm.

5.2 Propagator

The same adaptation could be made to Baptiste et al’s propagator using the reduced

set O′
B , removing ea from O1(a) and sa from O2(a). This adaptation is simple but it

deals with a superset of the relevant intervals obtained with our sharp characterization.

Therefore, we propose a new ER algorithm. As the characterization given in Theorem

2, the algorithm is in 3 parts. First, we apply Baptiste et al’s algorithm reduced to the

set of relevant intervals OC(A) (lines 1 to 9). Then, for all activities we check its left

and right shifted placements with sets La (lines 11 to 15) and Ra (lines 16 to 20).

Algorithm 1: ERpropagator()

1 foreach (t1, t2) ∈ OC(A) do

2 W :=
∑

a∈A ha×MI(a, t1, t2);
3 if W > C × (t2 − t1) then fail;

4 else foreach a ∈ A do

5 avail := C×(t2−t1)−W + ha×MI(a, t1, t2);
6 if avail < ha.LS(a, t1, t2) then

7 sa := max(sa, t2 −
1

ha

× avail);

8 if avail < ha.RS(a, t1, t2) then

9 ea := min(ea, t1 +
1

ha

× avail);

10 foreach a ∈ A do

11 foreach (t1, t2) ∈ La do

12 avail := C×(t2−t1)−
∑

i∈A\a ha×MI(i, t1, t2);

13 if avail < ha.MI(a, t1, t2) then fail;

14 else if avail < ha.LS(a, t1, t2) then

15 sa := max(sa, t2 −
1

ha

× avail);

16 foreach (t1, t2) ∈ Ra do

17 avail := C×(t2−t1)−
∑

i∈A\a ha×MI(i, t1, t2);

18 if avail < ha.MI(a, t1, t2) then fail;

19 else if avail < ha.RS(a, t1, t2) then

20 ea := min(ea, t1 +
1

ha

× avail);



5.3 Experiments

Experiments were run on a 2.9 GHz Intel Core i7, in Choco [10] version 3 (release

13.03). In order to check the gain obtained with the new characterization we have con-

sidered 100 random instances and the instances from the PSPLIB [7]. Random instances

have either 10 or 20 activities. Their processing times were chosen within [1, 10], their

heights within [1, 5]. We used the first fail [6] search strategy (the current default strat-

egy of Choco) and compared our algorithms with the corresponding state of the art

algorithms [2], both combined with the Time-Table (TT) filtering algorithm of Letort et

al. [8]. The number of nodes is identical for all proved instances, as expected. Table 1

shows a running time improvement of 20 to 36% using the new checker (measured in

µs/node). Table 2 shows a time improvement of 49 to 72% using the new propagator.

New checker Baptiste et al Gain

Instances (µs/node) (µs/node) in %

Random10 16 25 36

Random20 44 56 21

PspLib 30 451 619 27

PspLib 120 1 339 1 683 20

Table 1: Comparison of average run-

ning of ER checkers.

Algorithm 1 Baptiste et al Gain

Instances (µs/node) (µs/node) in %

Random10 91 244 62

Random20 327 641 49

PspLib 30 4 372 8 809 50

PspLib 120 41 418 151 390 72

Table 2: Comparison of average run-

ning of ER propagators.

We also compared those combinations with the state-of-the-art filtering combina-

tion: TT + Time-Table Edge-Finding (TTEF) [11]. We tried to prove optimality. On the

random10 instances, TT associated with our new ER propagator proved 63 out of 100

instances in the given time limit of five minutes. TT+TTEF was only able to prove 8 in-

stances, mainly due to the fact that TTEF does not include an energetic checker whereas

our ER propagator does; The combination TT+TTEF+ our ER Checker proved 72 in-

stances. This shows the interest of an energetic checker as a standard feature of Cumu-

lative in existing solvers. Regarding the ER propagator, a promising perspective of our

work is to exploit the theoretical characterization to design a light version, with a lower

time complexity than the current propagator but still filtering more values than TTEF.

6 Discussion and conclusion

We have proposed a new characterization of relevant intervals for the energetic reason-

ing. Our characterization reduces by a factor seven the number of relevant intervals for

the checker and for filtering any activity. We answered to an open question: Baptiste

et al. characterization is sufficient to ensure a complete bounds adjustment. Compared

with state-of-the-art ER techniques for Cumulative, our experiments show a signifi-

cant reduction in the running time of both the ER checker and the ER propagator. Our

sharpened characterization opens the new possibility to analyze the impact, in terms

of filtering, of each type of relevant interval. This may help to design heuristics for

ignoring some intervals without decreasing too much the pruning power of ER.
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