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Abstract—The paper addresses the problem of target detection
embedded in a disturbance composed of a low rank Gaussian
clutter and a white Gaussian noise. In this context, it is interesting
to use an adaptive version of the Low Rank Normalized Matched
Filter detector, denoted LR-ANMEF, which is a function of the
estimation of the projector onto the clutter subspace. In this
paper, we show that the LR-ANMF detector based on the sample
covariance matrix is consistent when the number of secondary
data K tends to infinity for a fixed data dimension m but not
consistent when m and K both tend to infinity at the same
rate, ie. m/K — ¢ € (0,1]. Using the results of random
matrix theory, we then propose a new version of the LR-ANMF
which is consistent in both cases and compare it to a previous
version, the LR-GSCM detector. The application of the detectors
from random matrix theory on STAP (Space Time Adaptive
Processing) data shows the interest of our approach.

Keywords—Low rank detection, Random matrix theory, G-
MUSIC estimator, Spike-MUSIC estimator, STAP processing, Adap-
tive Normalized Matched Filter.

I. INTRODUCTION

In the context of target detection in a noise composed of a low
rank Gaussian clutter and an AWGN (Additive White Gaussian
Noise), one could use the Low Rank Normalized Matched
Filter (LR-NMF) detector [1] in order to exploit this low rank
structure. Although its full rank version (NMF detector [2])
depends on the covariance matrix, the LR-NMF detector only
requires the projector onto the clutter subspace. In practice,
this projector and the covariance matrix are unknown and
it is necessary to estimate them using K secondary data
which share the same properties as the tested data. It is well
known that the adaptive low rank version of the detector
needs much less secondary data as its classical version (ANMF
detector [3]) for equivalent performances [4], [5].

Nevertheless, for high dimensional data, the performances
of the LR-ANMF detector can suffer of this reality. Further-
more, the LR-ANMF detector is composed of 3 quadratic
forms and, relying on [6] or [7], it is known that, although these
quadratic forms are consistent when the number of secondary
data K tends to infinity for a fixed length m of the data vector,
they are no more consistent when the data length m also
tends to infinity. Hence it is interesting to use random matrix
theory in order to provide consistent estimators of quadratic
forms and more particularly of the LR-NMF detector which

has been proved consistent when K — oo with a fixed m but
no more consistent when m, K — oo at the same rate, i.c.
m/K — ¢ € (0,1]. In this paper, we compare two versions of
consistent detectors from random matrix theory and the Girko’s
estimators [8]. The first one, the LR-GSCM detector built from
the G-MUSIC estimator [6], was presented and its convergence
was studied in [9]. However the data model associated to this
estimator is not suited to our data. Thus, we propose to develop
another detector coming from the Spike-MUSIC estimator [7]
which considers a data model closer to our data and which
is designed to be consistent when the number of secondary
data K and the data dimension m both tend to infinity at
the same rate. In this paper, we study the consistency of the
proposed detector. In addition, we compare the LR-GSCM
detector and the proposed detector in terms of MSE and of
detection performances through false alarm probability and
detection probability.

As an illustration of the interest of the proposed detector,
the STAP application [10] is studied as it is well known that the
disturbance is then composed of a low rank Gaussian clutter
plus a white Gaussian noise. Moreover, the dimension of the
STAP data is often large with respect to the available number
of secondary data.

The paper is organized as follows: Section II presents
the problem statement and the definition of the LR-NMF
detector. Section III contains the presentation of the studied
detectors. Finally, Section IV shows the STAP application
which illustrates the obtained results.

Notations: An italic letter stands for a scalar quantity,
boldface lowercase (uppercase) characters stand for vectors
(matrices) and (.)¥ stands for the conjugate transpose. Iy
is the N x N identity matrix. diag(.) denotes the diago-
nalization operator such as (A);; = (diag(a));; = ()i

and equal to zero otherwise. [a,b] is the set defined by
{zeZ:a<a<bV(a,b) € Z}.

II. Low RANK (LR) DETECTION
A. Problem formulation

The aim of the problem is to detect a complex signal d in
an additive noise ¢ + n in the observation vector & € C™*1,



Hence, one can define the detection problem with the following
binary hypothesis test:

Hy:x=c+n T = ¢ + Ny,
H:x=d+c+n x,=cp+nyg,

ke[l K]
keLk]

where K is the number of secondary data, &, € C™*! are
the secondary data (learning data used for the estimation of
the total noise covariance matrix) and n € C™*! (or ny)
~ CN(0,0%1,,) is the AWGN (Additive White Gaussian
Noise) complex vector. d is the target response and is equal to
aa(©®) where « is an unknown deterministic parameter, a(©)
is the steering vector and © is an unknown deterministic vector
containing the localization parameters of the target. The clutter
c € C™*! is modeled by a random centered complex Gaussian
vector with a covariance matrix C (¢ or ¢ ~ CN(0, C)). The
covariance matrix is normalized as tr(C) = m. Consequently,
the covariance matrix of the secondary data can be written as
R = C + ¢%I,, € C™*™. Moreover, the clutter is considered
of low rank r (as in a STAP application according to Brennan’s
formula [11]). Hence, rank (C) = r < m and one could write
the eigendecomposition of C and define:

C=> ruuf (@)
=1

where v; and w;, i € [1;r] are respectively the non zero
eigenvalues and the associated eigenvectors of C, unknown
in practice. The covariance matrix R of the secondary data
can be decomposed as:

R =Y \uu,’ 3)
i=1

with Ay = 1 +02 > - >\ = 3 +02 > \yy =
-++ = A, = 0%. Then, we define the projector onto the clutter
subspace II. and the projector onto the orthogonal subspace
to the clutter subspace IT.:

_ T H
m. = > wu;
L _ _ m H
m; = I,-T=>," ., uu;

“)

B. LR-NMF detector

A filtering preprocessing on the observation vector x is first
done in order to remove the clutter, and we retrieve a complex
signal detection problem defined by the following binary
hypothesis test:

Hy:r= Ugl r = ng )
H1:7’:U6{$ = do+mng
where Ug = [t;41, - , Uy, ]. The detection problem is solved

considering the white noise power m( unknown. The used
detection test corresponds to the Normalized Matched Filter
in its low rank version, denoted by LR-NMF (Low Rank
Normalized Matched Filter [1]):

ALrR-NMF(O) =
|a(©)"T1; z|* & (©)
(a(©)ta(®)(afta) &, "

H
where 21 OnMr means that the Hp hypothesis (respectively
H

0
Hy) is decided if the test ALr—nMmr(©®) is over (respectively
under) the threshold dnur.

C. Regulation

Observing Eq.(6), one can remark that if the steering vec-
tor is in the clutter, the left part of the denominator
(a(®)7IIta(O®)) is equal to zero and leads to an undefined
value of the detector. Consequently, divergence problems will
occur due to this division. Hence, we propose to regulate this
part of the denominator according to the following equation:

ALrR—NnMF(O) =
|a(©) 11 2|” s ™
(a(©)1Ita(®) +¢)(x lta) 4,

where ¢ is the regulation parameter. In the remainder of the
paper, the detectors will be used in their regulated version.

III. ADAPTIVE LOW RANK DETECTORS
A. Traditional low rank detector

The traditional estimation of the total noise covariance matrix
R and the projector IT} orthogonal to the clutter subspace
are first presented as, in practice, they are unknown. The
estimation is based on the Sample Covariance Matrix (SCM)
which is computed from the K secondary data and can be
written as:

. 1 .
Rscm = *kaﬂig: Naal (8)

where )\; and @; are respectively the eigenvalues and the
eigenvectors. Finally, the estimated projectors are:

Meson = Y aa) ®
i=1

m

Moson = In —Meson = Y aa (10)
i=r+1

Then, using the SCM, the estimated LR-SCM detector can be

written as:

Arr_scm(®) =

ALR7NMF (6) |r1g :ﬁé:SCM

= (1)
2 dscm

Hop

Although this detector is consistent when K — oo, it has
been proved [9] that it is inconsistent when both m, K — oo
at the same rate ¢ = m/K. That is why we use random matrix

theory which permits to give us consistent estimators at this
convergence regime under some assumptions.

B. Low rank detectors from random matrix theory

We first consider data without a priori on them: i.e. the
secondary data without target can be written as xj;, = R!/2y;,
where the elements of yy, k € [1, K], are i.i.d. and of p.d.f.
CN(0,1) without any structure of covariance matrix R. The
corresponding estimator in random matrix theory is then the
G-MUSIC estimator [6] and a consistent detector estimator
was proposed [9] named LR-GSCM, based on this estimator:

Arr_csom(©) =

= 12)

ALr—NMF(O) |Hé:ﬁécsm 50 dasom



where f[j:GSCM =" o(i)aal, with:

r j\n An
1+ 35 XXMA),ifi>r
. n=1 i \n i~ Mn
o) =1 o o (13)
B S N (AL TP
n=r+1 )\2 — >\n )\z — [Ln

where fiy > -+ = [, are the eigenvalues of diag(A) —

~ =T - A A
%\/X\/X and A = [Ag,--- ,)\m}T. When ¢ > 1, j, =
-=fg=0and if c=1, fi,,, =0.
However, this estimator does not really correspond to our
problem due to the data model. Indeed, it does not bring
any information about the data. In our problem one deals
with a low rank Gaussian noise with a white Gaussian noise,
which corresponds to the spiked model in random matrix
theory presented by the authors of [7]. They consider that the
secondary data can be written as:

xp = ¢, +ny, = RY?y, = (C + 0°1,,) 2y, (14)

where the elements of y;, are i.i.d. and of p.d.f. CN'(0,1) and
C is a rank r perturbation matrix. Thus, the main difference
between these two models (the first presented model and
the spiked model) is the probability density function of the
eigenvalues of the SCM (see [12] for the first presented model
and [13] for the spiked model). Then they defined a consistent
estimator of the quadratic form S{J HCL s derived from the data
model:

S{IH(J::SPIKESQ m s{TI;so (15)
where fICL)SPIKE is a pseudo-projector taking into account all
the estimated eigenvectors from the SCM and leading to a
better estimation of the quadratic form. It can be written as
U gpixp = 2oioq E(@)wa! [7], with:

1, ifi>r
§6) =19, _ L4 c!

~—2°
1—cw;

(16)

ifir

with @; = % i — (c+1)+ \/(C—‘r 1 —/A\i)2 —40).
Consequently, we propose another consistent estimator more
accurate for our data model, named LR-SPIKE, based on the

Spike-MUSIC estimator:
ALr-spikE(©) =
i )

ALr-NMF(O) |H$:ﬁé,spm 50 OSPIKE
The proof of the consistency of the LR-SPIKE detector is
analog to the proof of the consistency of the LR-GSCM
detector [9].
IV.  STAP SIMULATIONS

A. Parameters

As an illustration of the interest of the LR-SPIKE detec-
tor (from the random matrix theory), the STAP processing
application is chosen. The purpose of STAP is to detect a
moving target thanks to a uniform linear antenna composed
of N sensors receiving M pulses. In this section, we choose
N = 4 and M = 16 in order to have a large number for

the data dimension m = NM = 64. In STAP application,
® = (0,v) where 6 is the DoA (Direction of Arrival) and
v the object relative speed. The target DoA and its relative
velocity with respect to the airborne (radar platform) velocity
are §; = 0° and vy = 35m.s!. According to Brennan’s
formula, the clutter rank is equal to r = N+ (M —1)5 = 19,
with 8 = 1 in our configuration. Then, the signal wavelength
is [p = 0.667m, the AWGN power is 02 = 1, the signal to
noise ratio is SNR = 18dB and the clutter to noise ratio is
CNR = 30dB. The regulation parameter is equal to € = 0.1.

B. MSE

First, we illustrate the estimation gain with the MSE between
the LR-NMF detector and the estimated ones (LR-SCM, LR-
GSCM or LR-SPIKE) for § = 64 and v = vy in Fig.1 and for a
parameter set of the clutter in Fig.2 as a function of the number
of secondary data /. The MSE are here measured over 10,000
realizations. We note that the MSEs between the LR-NMF and
the LR-GSCM or LR-SPIKE detectors are lower or almost
equal than the MSEs between the LR-NMF and the LR-SCM
detectors, for the majority of the K wvalues. In consequence,
the LR-NMF detector is better estimated with the estimators
based on random matrix theory on this range of K.

10 : : :
\ , - 8- LR-SCM
| -+ — LR-GSCM
\ —&— LR-SPIKE
10° | E
\\
107"t \\ E

40 60 80 100 120 140 160 180
K (number of secondary data)

Fig. 1. MSE between the LR-NMF detector and the estimated ones (with
regulation) at the target DoA and velocity.

C. Pfa vs. threshold and ROC curves

Then, the false alarm probability as a function of the threshold
is shown in Fig. 3 and the detection probability as a function
of the false alarm probability is shown in Fig. 4. We take here
K = m+1. We first observe that the LR-GSCM detector leads
to worst results that the classical LR-SCM detector due to the
error of data model. However the LR-SPIKE detector leads to
results identical to those of the classical LR-SCM detector.

At the end of this section, we can conclude that although the
LR-SPIKE detector leads to results identical to those of the
classical LR-SCM detector in terms of false alarm probability
as a function of the threshold and detection probability as a
function of the false alarm probability, the LR-SPIKE detector
better estimate the response of the target. This gain is not
noticeable on ROC curves nor Pfa vs. threshold as the MSEs
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Fig. 2. MSE between the LR-NMF detector and the estimated ones (with
regulation) at a parameter set of the clutter.
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Fig. 3. False alarm probability as a function of the threshold. (vg = 35m.s~ 1,
04 =0° CNR =30dB, SNR =18dB and K =m + 1)

are computed when the noise is low compared to the target
or the clutter. The LR-SPIKE detector is consequently more
robust than the LR-GSCM detector.

V. CONCLUSION

In this paper we proposed a new adaptive low rank detector
(LR-SPIKE) based on random matrix theory and more pre-
cisely on the Spike-MUSIC estimator. We studied its con-
vergence when the number of secondary data K and the
data dimension m both tend to infinity at the same rate and
compared it to the LR-GSCM detector in terms of MSE vs. K
and in terms of detection probability vs. false alarm probability
and false alarm probability vs. threshold in a STAP application.
The reason of this interest is that the traditional low rank (LR-
SCM) detector, based on a simple eigendecomposition of the
SCM is shown inconsistent when K, m — oo at the same
rate, contrary to the LR-GSCM and the LR-SPIKE detector.
The results showed that the LR-SPIKE estimator, contrary
to the LR-GSCM detector, gives similar results to the LR-
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Fig. 4. Detection probability as a function of the false alarm probability.
(vg = 35m.s™1, 03 =0°, CNR =30, SNR = 18dB and K = m + 1)

SCM detector on ROC curves or Pfa vs. threshold but better
estimates the LR-NMF detector for the majority of K. This
gain is not noticeable on ROC curves nor Pfa vs. threshold as
the MSEs are computed when the noise is low compared to
the target or the clutter.
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