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ABSTRACT
Space time Adaptive Processing (STAP) for airborne
RADAR fits the context of a disturbance composed of a Low
Rank (LR) clutter, here modeled by a Compound Gaussian
(CG) process, plus a white Gaussian noise (WGN). In such
context, the corresponding LR adaptive filters used to detect
a target require less training vectors than classical methods
to reach equivalent performance. Unlike the classical filter
which is based on the Covariance Matrix (CM) of the noise,
the LR filter is based on the clutter subspace projector, which
is usually derived from a Singular Value Decomposition
(SVD) of a noise CM estimate. Regarding to the considered
model of LR-CG plus WGN, recent results are providing
both direct estimators of the clutter subspace [1][2] and an
exact MLE of the noise CM [3]. To promote the use of these
new estimation methods, this paper proposes to apply them
to realistic STAP simulations.

Index Terms— Covariance Matrix and Projector esti-
mation, Maximum Likelihood Estimator, Low-Rank clutter,
SIRV, STAP.

I. INTRODUCTION
In Space Time Adaptive Processing (STAP) [4], the addi-

tive disturbance can be modeled by a sum of two noises: a
White Gaussian Noise (WGN), due to electronics, and the
so-called ground clutter, the response of the environment
to the emitted signal. In side looking STAP, the clutter is
known to be Low Rank (LR) structured [5] i.e. to have a
singular Covariance Matric (CM) of rank R�M (with M
the dimension of the data). The rank R can be evaluated
thanks to the Brennan Rule [5].

In practice, this LR structure of the disturbance can
be exploited to build LR adaptive filters. The approach
consists of canceling the clutter instead of performing a
classical whitening the noise. Thus LR filters are not based
on the estimated noise CM but on the estimated clutter
subspace projector only (usually derived from an SVD of
a CM estimate). LR adaptive techniques present two main
advantages. Firstly, estimating the clutter subspace projector
requires only K ≥ 2R secondary data to ensure a classical
3dB loss of the output SNR compared to optimal filtering

[6], while classical filter requires K ≥ 2M secondary data to
reach equivalent performance. Secondly, LR adaptive filters
and detectors are robust to secondary data contamination by
outliers [7].

Classically the LR clutter has been modeled by a corre-
lated Gaussian noise with eigenvalues that largely exceeds
the power of the WGN, leading to the Sample Covariance
Matrix (SCM) as estimator of the CM and the clutter sub-
space. Nevertheless, the SCM is not well adapted in highly
heterogeneous or impulsive clutter environment. Therefore,
developing filters/detectors based on it may lead to poor
performance.

To describe an heterogeneous clutter, one of the most
general model is provided by the Complex Elliptically
Symmetric distribution (CES) [8]. Among the general CES
class, this paper will focus on the Compound-Gaussian
(CG) distributions1 that covers a large panel of well known
distributions, notably Weibull and K-distribution. Eventually,
the disturbance will be modeled in this paper as a LR-CG
clutter plus WGN. This general model as already been used
in [10][11][1][12].

The noise CM and the clutter subspace may then be
estimated with Tyler’s estimator [13]2. Nevertheless, this
approach presents two drawbacks. Firstly, this estimator is
not the MLE of the CM in our context, and ignoring the
LR property of the heterogeneous noise, as well as ignoring
the additive WGN, may lead to loss of performance [15].
Secondly, the FPE requires K > M secondary data to be
computed, which is a problem for high-dimensional data.
Moreover, this requirement does not allows to take full
advantage of the LR assumption in the cases where 2R �
M.

Regarding to the considered model of LR-CG plus WGN,
recent results are providing both direct estimators of the
clutter subspace [1][2] and an exact MLE of the noise
CM [3]. In [1] is proposed an estimator of the clutter
subspace under specific hypotheses: the CM of the low-

1Also referred to as Spherically Invariant Random Vectors (SIRV) in the
literature [9]

2Also known as the Fixed-Point estimator (FPE) in the complex case
[14].



rank CG clutter is assumed to have identical eigenvalues,
and the Probability Density Function (PDF) of the texture
is assumed to be known. The assumption of known texture
PDF has been relaxed in [2] by considering texture as an
unknown deterministic parameter. [3] relaxes the hypothesis
of identical eigenvalues of the clutter CM and introduces a
parametric MLE of the clutter CM (where the parameters are
the eigenvectors corresponding eigenvalues). To promote the
use of these new estimation methods, this paper presents an
application of them to realistic STAP simulations.

II. STAP MODEL AND LR APPROXIMATION

Typically, the radar receiver consists in an array of Q an-
tenna elements processing P pulses in a coherent processing
interval (M = PQ). In this framework, we assume that the
received signal z is a complex known signal d corrupted by
an additive disturbance n. One also have K secondary data
zk which are signal free realizations of the disturbance:

z = d + n (1)

zk = nk for k ∈ [[1,K]] (2)

The additive disturbance is the sum of the ground clutter
c and a thermal noise g, model commonly used in Radar
community [11][1][12][2].

n = c + g (3)

The thermal noise is modeled by a WGN of known power
σ2 i.e. n ∼ CN (0, σ2Im). The hypothesis of known σ2

is made for describing a valid theoretical framework. In
practice, presented results could be applied with a prior
estimate of σ2 used as its actual value. The ground clutter
is an heterogeneous noise that has a different power in each
cell k. The randomness of its power is induced by spatial
variation in the radar backscattering. In such a situation, it is
common to model this kind of clutter by a CG process [9][8].
A realization of a CG process corresponds to a Gaussian
random vector multiplied the square root of a random power
factor called the texture τ of Probability Density Function
(PDF) fτ . Moreover, in side looking STAP, the rank R of the
clutter CM can be evaluated [5] and is verifying R � M .
One has then c ∼ CG(0,Σc, fτ ). With the rank R clutter
CM defined by its eigendecomposition:

Σc =

R∑
r=1

crvrv
H
r (4)

The whole noise covariance matrix is then defined as

Σ = σ2IM + E(τ)Σc (5)

However, in a realistic STAP application, no prior infor-
mation is available on the PDF fτ . In that case, each
secondary data may be described conditionally to the texture
as (zk|τk) ∼ CN (0,Σk), with

Σk = σ2IM + τkΣc , (6)

where the textures of each realizations τk are considered as
unknown deterministic parameters.

Usual adaptive processes (filtering, detection, estimation
of signal parameters) require an estimate of the noise CM
Σ, obtained with the set of secondary data {zk}. However,
considering the previous framework, one can exploit the
LR structure of the noise and cancel the clutter instead
of whitening it. This approach presents an interest, notably
when there are few secondary data or when they may be
corrupted by outliers. Adaptive LR processes are therefore
based on the following LR approximation:

Σ−1 ∼ 1

σ2
Π⊥c ∝ Π⊥c (7)

Π⊥c is the projector onto the clutter subspace complemen-
tary, namely

Π⊥c = IM −Πc , (8)

where Πc is the rank R projector onto the clutter subspace
is constructed with the eigenvectors of the clutter CM:

Πc =

R∑
r=1

vrv
H
r (9)

Classically, an estimator of the clutter subspace projector Π̂c

is derived from the SVD of an estimate of the noise CM Σ̂.
The following section will recall the classical CM estimators
and newly introduced estimators, directly derived from the
considered model.

III. CM AND CLUTTER SUBSPACE ESTIMATORS

This section simply recalls the expression of the estimators
that are going to be tested. For a more detailed review of
their related model / properties / computation methods, we
refer the reader to the associated references.
• The classical Sample Covariance Matrix (SCM), which

is the MLE of the CM in a Gaussian context:

Σ̂SCM =
1

K

K∑
k=1

zkz
H
k (10)

The projector estimate derived from the SVD of the
SCM will be denoted Π̂SCM.

• The Fixed Point Estimator (FPE), or Tyler’s
estimator[14][13], is defined only for K > M as
the unique solution of the fixed point equation:

Σ̂FPE =
M

K

K∑
k=1

zkz
H
k

zHk Σ̂−1FPEzk
(11)

The projector estimate derived from the SVD of the
FPE will be denoted Π̂FPE.



• The Shrinkage-FPE (SFPE), also known as Diagonnaly-
Loaded FPE [16][17][18], defined for β ∈]0, 1] by the
fixed point equation:

Σ̂S-FPE(β) = (1− β)M
K

K∑
k=1

zkz
H
k

zHk Σ̂−1S-FPE(β)zk
+ βIM

(12)
The projector estimate derived from the SVD of the
S-FPE will be denoted Π̂S-FPE.

• Under the assumption of equals eigenvalues of the
clutter CM, the approached MLE of the clutter subspace
(A-MLE) [2], denoted Π̂A-MLE, is the projector onto the
subspace defined by the R strongest eigenvectors of the
matrix:

R̂ =

K∑
k=1

τ̂k
σ2 + τ̂k

zkz
H
k , (13)

with the estimated textures:

τ̂k =

{
||Π̂czk||2/R− σ2 if ||Π̂czk||2 > Rσ2

0 else
(14)

This estimator’s expression stands when there is no
prior information on the texture PDF, which is more
realistic for a STAP application. However, the case of
known texture PDF is treated in [1].

• The exact MLE of the clutter subspace [3], denoted
Π̂MLE, is the projector onto the subspace defined as the
subspace satisfying:

Π̂MLEM̂ = M̂HΠ̂MLE (15)

with the definition of the rank 1 projectors Π̂r = v̂rv̂
H
r ,

and with:

M̂ =

R∑
r=1

M̂rΠ̂r , (16)

M̂r =

K∑
k=1

τ̂k ĉr
σ2 + τ̂k ĉr

zkz
H
k , (17)

At this point, there is no direct way to obtain closed
form for the projector MLE. However, [3] proposes an
Ad-Hoc iterative procedure that increases the likelihood
at each step. This algorithm requires to alternatively
compute the parameters {τk, cr} and the clutter sub-
space projector Π̂c. The estimated textures and clutter
CM eigenvalues (that are not true MLE) are given by:

τ̂k = max(
||Π̂czk||2

R
− 1 , 0 ) (18)

ĉr = R

∑K
k=1 max(||Π̂rzk||2 − 1 , 0)∑K
k=1 max(||Π̂czk||2 −R , 0)

(19)

And the projector can be evaluated iteratively using the
SVD of:

M̂(n) =

R∑
r=1

M̂rΠ̂
(n)
r = U(n)D(n)VH(n) , (20)

and the update:

Π̂(n+1)
c = U(n)UH(n) (21)

The next section will recall LR adaptive STAP filtering prin-
ciple and the application of the different presented estimators
to it.

IV. LR ADAPTIVE FILTERING
The optimal STAP filter is [4]

wopt = Σ−1d (22)

In the context of a LR clutter, it is well known that a correct
sub-optimal filter is [19][20][21]:

wlr = Π⊥c d = (Im −Πc)d , (23)

where Πc is the projector onto the clutter subspace, de-
scribed in (9). In practice, this projector is unknown and
have to be estimated using the secondary data {zk}. The
adaptive filter is then:

ŵlr = Π̂⊥c d =
(
Im − Π̂c

)
d, (24)

with Π̂c, a given estimate of the clutter subspace projector.
Of course, the performance of the LR filters will directly
rely on the accuracy of the estimation of Πc.

To evaluate the performance of a sub-optimal filter, the
SINR-Loss [4], denoted ρ is currenlty used: it is the
mean ratio between the SINRout, computed for ŵlr, and
SINRmax computed for the optimal filter w = Σ−1d.
For an estimate of the clutter subspace Π̂c, the SINR-Loss
expression is given by :

ρΠ̂c
=

SINRout
SINRmax

=
(dHΠ̂⊥c d)2

dHΠ̂⊥c ΣΠ̂⊥c d
(25)

We consider the following STAP configuration. The
number Q of sensors is 8 and the number P of coherent
pulses is also 8. The center frequency and the bandwidth
are respectively equal to f0 = 450 MHz and B = 4 MHz.
The radar velocity is 100 m/s. The inter-element spacing is
d = c

2f0
(c is the celerity of light) and the pulse repetition

frequency is fr = 600 Hz. The clutter rank is computed
from Brennan rule [5] and is equal to R = 15 � 64,
therefore, the low rank assumption is valid. The texture
PDF is a Gamma law of shape parameter ν = 0.1 and
scale parameter 1

ν . Mean SINR-Loss are computed from
104 Monte Carlo realizations.

Figure 1 and 2 show the SINR-Loss evolution with respect
to K for LR-STAP filters based on different clutter subspace
estimators. We notice that the LR-STAP filter built from
MLE and A-MLE outperforms the others ones. Estimation is
especially improved for low CNR and highly heterogeneous
clutter, as shown in figure 2. This result could have been
inferred since MLE and A-MLE are both defined as the



Fig. 1. SINR-Loss versus K. M = 64, R = 15, ν = 0.1, CNR= 0dB.

Fig. 2. SINR-Loss versus K. M = 64, R = 15, ν = 0.1, CNR= 10dB.

R dominant eigenvectors of SCMs of the data zk scaled
by factors that are increasing with the textures τk, i.e. the
power of the clutter of the realization k. With these scaling
factors, realizations that contain more power in the subspace
of interest are given more significance in the estimation
process, which may be useful if the clutter subspace is not
well represented over the data set (for example with a low
CNR or for very impulsive CG’s).

Figure 3 and 4 show the mean SINR-Loss versus V , the
speed of the target. The same conclusions as the previous
simulations can be drawn: MLE and A-MLE are slightly
improving the resolution of the LR STAP.

Figure 5 and 6 show the mean SINR-Loss versus ν, the
parameter of the texture’s Gamma law. This figure allows to
study the comportment of estimators facing different level of
heterogeneity of the clutter. The closer to 0 ν is, the more
heterogeneous the clutter is. On the contrary, if ν increases,
the clutter will have a more Gaussian behavior. One can
notice that the MLE and A-MLE outperform the state of
art when ν ∼ 0 and tend to have performance equivalent
as the SCM (theoretical MLE) when the noise is Gaussian.

Fig. 3. SINR-Loss versus V . M = 64, R = 15, K =M +1 , ν = 0.1,
CNR= 0dB.

Fig. 4. SINR-Loss versus V . M = 64, R = 15, K =M +1 , ν = 0.1,
CNR= 10dB.

Fig. 5. SINR-Loss versus ν. M = 64, R = 15, K = 2M , CNR= 0dB.

This property illustrates robustness to heterogeneity of these
estimation methods.



Fig. 6. SINR-Loss versus ν. M = 64, R = 15, K = 2M , CNR= 10dB.

V. CONCLUSION
Classically, the clutter subspace estimator can be derived

from the SVD of an estimator of the CM. However, [1][2]
show that, in the considered framework of LR-Compound
Gaussian plus white Gaussian noise, the clutter subspace
projector MLE is derived from a matrix that is not an
estimate of the CM. This intermediary matrix is the SCM of
the data scaled by a factor that gives more significance to
samples that have strong power into the subspace of interest.

In this paper, these new estimations methods [2][3] have
been applied to LR STAP simulations. Results illustrates
that they could improve LR adaptive processes. Indeed, in
standard cases (high CNR and weak heterogeneity), they will
preform equivalently as the SCM. However, in some specific
scenarios, involving data dropouts, weak clutter samples or
limited sample support (modeled by low CNR and/or very
impulsive clutter) the performances are improved.

It is also interesting to point out that clutter subspace
estimates derived from robust estimation methods (FPE,S-
FPE) are not necessarily performing a better estimation than
the simple SCM for the considered model, even it involves
non Gaussian noise. Indeed, these robust estimates of the
CM and not necessarily robust from the point of view of
estimating the clutter subspace. Nevertheless, FPE and S-
FPE could bring robustness to data corruption by outliers,
which have not been treated in this paper, but is investigated
in [23].
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