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On stabilizability conditions for discrete-time switched linear systems

Mirko Fiacchini1, Antoine Girard2, Marc Jungers3

Abstract— In this paper we consider the stabilizability prop-
erty for discrete-time switched linear systems. Novel conditions,
in LMI form, are presented that permit to combine generality
with computational affordability. The relations and implications
between different conditions, new ones and taken from litera-
ture, for stabilizability are analyzed to infer and compare their
conservatism and their complexity.

I. INTRODUCTION

Switched systems are characterized by dynamics that may
change along the time among a finite number of possible
dynamical behaviors, see [7]. Each behavior is determined
by a mode and the active one is selected by means of a
function of time, referred to as switching law. The interest
that such kind of systems rose in the last decades relies
in their capability of modelling complex real systems, as
embedded or networked, and also for the theoretical issues
involved. Their dynamical properties, in fact, are often not
intuitive nor trivial and the problems related to analysis and
control design may result rather challenging, also for linear
switched system, see [8].

The problem of stability or stabilizability, depending on
the assumption on the switching law, of linear switched
system attracted many research efforts, see the overview [9].
Conditions for stability, that is when the switching law is
considered an exogenous signal, have been proposed: the
joint spectral radius approach [4]; the polyhedral Lyapunov
functions [1], [10] and the path-dependent switched Lya-
punov ones [6].

In this paper we are considering the problem of stabi-
lizability of switched systems, namely the condition under
which a switching law can be designed for the system to be
asymptotically stable. Sufficient conditions have been pro-
vided in literature, mainly based on min-switching policies,
introduced in [11], developed in [5], [7] and leading to
Lyapunov-Metzler inequalities [3]. A necessary and suffi-
cient condition, based on set theory, for the stabilizability of
discrete-time switched linear systems has appeared recently
in [2]. Nevertheless, this condition might result to be often
computationally unaffordable, as it requires to check whether
some particular set is contained in the union of others. On
the other hand, such computational complexity appears to be
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inherent the problem itself, then avoidable only at the price
of introducing some conservatism.

The first main objective of this paper is to propose new
conditions for stabilizability of discrete-time switched linear
systems which could conjugate computational affordabil-
ity with generality. Moreover, we provide geometrical and
numerical insights on different stabilizability conditions to
quantify their conservatism and the relations between them
and with the necessary and sufficient ones. We proved the
implications between the conditions, which permit to get a
clear picture of their relations, their conservatism and their
complexity.

The paper is organized as follows: Section II presents
the problem of stabilizability of switched systems. The
Section III provides the analysis of the Lyapunov-Metzler
approach and proposes a generalization. In Section IV a
novel condition, in LMI form, is given and its relations with
other ones are analyzed. A numerical example is presented
in Section V and Section VI draws some conclusions.

Notation: Given n ∈ N, define Nn = {x ∈ N : 1 ≤ x ≤ n}.
Given α ∈Rn, αi denote its i-th element; given π ∈Rn×m, πi j
is the entry of i-th row and j-th column. Given Ω⊆Rn define
the interior of Ω as int(Ω). Given P∈Rn×n with P> 0 denote
with E (P) =

{
x ∈ Rn : xT Px≤ 1

}
, the related ellipsoid. The

i-th element of a finite set of matrices is denoted, with slight
abuse, as Ai.

II. PROBLEM STATEMENT

We consider the problem of stabilizability of autonomous
discrete-time switched linear system of the form

xk+1 = Aσ(k)xk, (1)

where xk ∈Rn is the state at time k∈N and σ :N→Nq is the
switching law and {Ai}i∈Nq , with Ai ∈ Rn×n for all i ∈ Nq.
The following assumption, not necessary, is supposed to hold
throughout the paper for simplicity.

Assumption 1: All the matrices Ai, with i∈Nq, are invert-
ible and non-Schur.

The following notations are employed in the paper:

• I = Nq: finite set of switching modes.
• I k = ∏

k
j=1 I : all the possible sequences of modes of

length k.
• I [1:N] =

⋃N
k=1 I k: all the possible sequences of modes

of length from 1 to N.
• N̄ = ∑

N
k=1 qk: given N ∈ N, number of elements i ∈

I [1:N]. Analogous for M̄.



• given i = (i1, . . . , ik) such that i ∈ I [1:N] and a set Ω,
define:

Ai = ∏
k
j=1 Ai j = Aik · · ·Ai1 ,

Ωi = Ωi(Ω) = {x ∈ Rn : Aix ∈Ω},
Bi = {x ∈ Rn : xTAT

i Aix≤ 1}.

and then Bi = Ωi(B) with B = {x ∈ Rn : xT x ≤ 1}.
The dependence of Ωi on Ω is omitted when clear from
the context.

• MN : set of Metzler matrices of dimension N, i.e.
matrices π ∈RN×N whose elements are nonnegative and
∑

N
j=1 π ji = 1 for all i ∈ NN .

We recall hereafter the main results proposed in [2] on the
stabilizability of switched linear systems (1). These results
are based on the Algorithm 1 in [2] that basically consists
in computing the successive pre-images of a C∗-set Ω⊆ Rn

with respect to all the possible modes. A C∗-set Ω⊆Rn is a
compact, star-convex set containing the origin in its interior.
The stabilizability of the system (1) is equivalent to the fact
that the algorithm ends with a finite number of steps. The
Theorem 1 in [2], recalled below, provides a set-theory based
necessary and sufficient condition for stabilizability of the
system (1).

Theorem 2 ( [2]): Let Ω be a C∗-set. The switched sys-
tem (1) is stabilizable if and only if there exists N ∈N such
that

Ω⊆ int
( ⋃

i∈I [1:N]

Ωi

)
. (2)

Since the stabilizability property is not dependent on the
choice of the initial C∗-set Ω, focussing on the case Ω = B
and ellipsoidal pre-images entails no loss of generality, see
[2]. Then condition (2) can be replaced by

B ⊆ int
( ⋃

i∈I [1:N]

Bi

)
, (3)

for what concerns stabilizability, although the value N might
depend on the choice of Ω.

The set inclusions (2) or (3) are the stop conditions
of the algorithm and then must be numerically tested at
every step. The main computational issue is that determining
numerically if a C∗-set Ω is included into the interior of the
union of some C∗-sets is very complex in general, also in
the case of ellipsoidal sets. On the other hand, the condition
given by Theorem 2 provides an exact characterization of the
complexity inherent to the problem of stabilizing a switched
linear system.

The objective of this paper is to consider alternative
conditions for stabilizability, taken from the literature and
novel ones, to provide geometrical and numerical insights
and analyze their conservatism by comparison with the
necessary and sufficient one given in Theorem 2.

III. LYAPUNOV-METZLER BMI CONDITIONS

The condition we are considering first is related to the
Lyapunov-Metzler inequality, proposed in [3]. The condition
is sufficient and characterized by a set of BMI inequalities
involving the Metzler matrices. The result is recalled below.

Theorem 3 ( [3]): If there exist Pi > 0, with i ∈ I , and
π ∈Mq such that

AT
i

(
q

∑
j=1

π jiPj

)
Ai−Pi < 0, ∀i ∈I , (4)

holds, then the switched system (1) is stabilizable.
As proved in the paper [3], the satisfaction of condition

(4) implies that the homogeneous function induced by the set⋃
i∈I E (Pi) is a control Lyapunov function for the system.
Our first objective is the geometrical meaning of the

Lyapunov-Metzler condition and which is the relation with
the necessary and sufficient condition for stabilizability given
in Theorem 2.

A. Lyapunov-Metzler conditions for q = 2

Consider, thus, q = 2 for the moment. Given i ∈ I , we
analyze the geometrical meaning of the Lyapunov-Metzler
condition, that is

AT
i (αiP1 +βiP2)Ai−Pi < 0, ∀i ∈ {1,2}, (5)

with αi +βi = 1 and αi,βi ≥ 0. Define

E1 = E (P1) =
{

x ∈ Rn : xT P1x≤ 1
}
,

E2 = E (P2) = E
{

x ∈ Rn : xT P2x≤ 1
}
,

Θ =
α+β=1⋃
α,β≥0

E (αP1 +βP2) = {x ∈ Rn : ∃α,β ≥ 0

s.t. α +β = 1, xT (αP1 +βP2)x≤ 1
}
.

(6)

The condition (5) implies that the image of Ei through the
linear map given by Ai is contained in the interior of one
element of the uncountable sets E (αiP1 + βiP2). In fact, if
(5) holds then for all x∈ Ei, i.e. with xT Pix≤ 1, we have that

xT AT
i (αiP1 +βiP2)AT

i x < xT Pix≤ 1

which implies x ∈ E (αiP1 +βiP2). Thus (5) implies AiEi ⊆
E (αiP1 +βiP2).

Now, we are interested in the particular sets (of sets)
E (αP1 + βP2). It can proved that the set Θ is exactly the
union of E1 and E2. This equivalence is proved below for a
generic number of ellipsoids.

Lemma 4: Given Pi > 0, i ∈ Nm, the set defined by

Γ =
α1+···+αm=1⋃

αi≥0

E

(
∑

i∈Nm

αiPi

)
(7)

is such that
Γ =

⋃
i∈Nm

E (Pi). (8)

Proof: The equality (8) is satisfied if and only if the
following conditions⋃

i∈Nm

E (Pi)⊆ Γ⊆
⋃

i∈Nm

E (Pi) (9)

hold. The first inclusion in (9) is trivially proved by noticing
that for α j = 1 and the other coefficients αk = 0 for all j 6= k,
then E

(
∑i∈Nm αiPi

)
= E (Pj).



Consider the second condition in (9) and suppose that x ∈
Γ. Then, from the definition of Γ, we have that there exist
α∗i ∈ [0,1] such that ∑i∈Nm α∗i = 1 and

∑
i∈Nm

α
∗
i xT Pix≤ 1. (10)

All the terms xT Pix being non-negative, it yields

min
i∈Nm

xT Pix≤ ∑
i∈Nm

α
∗
i xT Pix≤ 1. (11)

That leads to the existence of i∗ ∈ Nm such that x ∈ E (Pi∗)
and finally x ∈

⋃
i∈Nm

E (Pi).

The set Γ is defined as the union of a set of ellipsoids
parameterized with respect to αi and ∑i∈Nm αi = 1. Such an
equality can be relaxed in the inequality ∑i∈Nm αi ≥ 1, as
shown in the following.

Corollary 5: Given Pi > 0, i∈Nm, the set Γ defined in (8)
verifies

Γ =
α1+···+αm≥1⋃

αi≥0

E
(
∑i∈Nm αiPi

)
Proof: The result follows directly from the fact that, if

s = ∑i∈Nm αi ≥ 1 then

∑
i∈Nm

αiPi = s ∑
i∈Nm

αi

s
Pi ≥ ∑

i∈Nm

α̃iPi, (12)

with α̃i =
αi
s and thus ∑i∈Nm α̃i = 1. Then x ∈ E (∑i∈Nm αiPi)

with ∑i∈Nm αi≥ 1 implies x∈ E (∑i∈Nm α̃iPi) with ∑i∈Nm α̃i =
1, which means that x ∈ Γ.

Using the results above with m = 2, we can now prove the
equivalence between the conditions of the type (5) and the
set inclusion, for i ∈ {1,2}. The idea is to prove that all the
ellipsoids contained in the union of E1 and E2 are contained
in one of the ellipsoids parameterized by all the α and β

such that α +β ≥ 1.
Lemma 6: Given P,P1,P2 > 0 and the sets defined in (6),

the inclusion
E (P)⊆ int(Θ), (13)

holds if and only if there exist α,β ≥ 0 such that α +β = 1
and

αP1 +βP2 < P. (14)
Proof: We assume without loss of generality that

E (P) * E1 (the case E (P) * E2 is symmetric). Sufficiency
consists in proving that (14) implies (13). Notice that (14)
is equivalent to

xT (αP1 +βP2)x < xT Px,

for all x ∈ Rn and if x ∈ E then x ∈ int(Θ), from the
definitions (6), and (13) holds.

For necessity, let us assume that E (P) ⊆ int(E1∪E2).
Then, for all x ∈ E (P), such that x /∈ int(E1), it must hold
x ∈ int(E2). This can be reformulated as follows:

∀x ∈ Rn,
(
xT Px≤ 1 and xT P1x≥ 1

)
=⇒ xT P2x < 1.

Let y ∈ Rn, y 6= 0, such that yT (P1 − P)y ≥ 0. Let x =
y/
√

yT Py, then xT Px = 1 and

xT P1x =
yT P1y
yT Py

≥ 1.

Then, it follows that we must have xT P2x < 1 and therefore
yT (P−P2)y > 0. Summarizing, we have shown

∀y ∈ Rn, y 6= 0,
(
yT (P1−P)y≥ 0

)
=⇒ yT (P−P2)y > 0.

Since E (P) * E1, it follows that there exists y0 such that
yT

0 (P1−P)y0 > 0. Then, it follows from the S-lemma that
there exists β ≥ 0 such that

P−P2 > β (P1−P).

Then, it follows that α1P1 +α2P2 < P with α1 = β/(1+β )
and α2 = 1/(1+β ).

The results stated in Lemma 6 is not true for Θ given
by more than two ellipsoids, see for instance the counter-
example given in Example 13. In general, the LMI condition
analogous to (14) is only sufficient for the set inclusion.

Using the Lemma 6, we can prove that the Lyapunov-
Metzler condition is equivalent to the set theory one with
N = 1.

Theorem 7: If q = 2, the Lyapunov-Metzler condition (5)
holds if and only if (2) holds with N = 1 and Ω = Θ.

Proof: To prove sufficiency suppose that (2) holds with
N = 1 and Ω = E1 ∪ E2, see Lemma 4. This means that
I = {1,2} and then E1 ∪ E2 ⊆ int(Ω1(E1 ∪ E2)∪Ω2(E1 ∪
E2)). This is equivalent, by Lemma 6, to the existence of
α1,α2 ∈ [0,1] such that αiAT

i P1Ai +(1−αi)AT
1 P2Ai < Pi for

i ∈ {1,2}, that is to satisfaction of (5).
For necessity, assume that (5) is satisfied. Consider i =

1, the case i = 2 is analogous. Condition (5) results in
AT

1 (π11P1+π21P2)A1 < P1 that is equivalent, from Lemma 4,
to

E1 ⊆ int
(
E (AT

1 P1A1)∪E (AT
1 P2A1)

)
⊆ int

(
Ω1(E1)∪Ω1(E2)

)
⊆ int

(
Ω1(Ω)

)
⊆ int

(
Ω1∪Ω2

)
,

where the third inequality follows from

Ω1(Ei) = {x : A1x ∈ Ei} ⊆ {x : A1x ∈ E1∪E2}= Ω1(Ω).

Then, Ω = E1∪E2 ⊆ int
(
Ω1∪Ω2

)
.

Thus, when the system has two modes, the Lyapunov-
Metzler condition and the set-inclusion one with N = 1 are
equivalent. This equivalence is lost, in general, for higher
number of modes or bigger N.

B. Lyapunov-Metzler conditions for q > 2

An interesting issue is whether the Lyapunov-Metzler con-
dition is necessary and sufficient also for a generic number
of modes q. From the results presented in the following
sections, one can infer that the Lyapunov-Metzler condition
(5) is only sufficient for stabilizability, in general. See the
implications in Figure 2 below, some of which are proved in
the paper.



A direct generalization of the Lyapunov-Metzler condition
can be given, by removing the unnecessary link between the
number of ellipsoids (and matrices Pi) and the system modes.

Proposition 8: If there exist M ∈ N and Pi > 0, with i ∈
I [1:M], and π ∈MM̄ such that

AT
i

(
∑

j∈I [1:M]

π jiPj

)
Ai−Pi < 0, ∀i ∈I [1:M], (15)

holds, then the switched system (1) is stabilizable.
Proof: The proof is analogous to that one of the classical

Lyapunov-Metzler condition, see [3].
Proposition 8 extends the Lyapunov-Metzler condition

providing a more general one. An interesting issue, that we
are considering in our current research, is the relation with
the necessary and sufficient condition for stabilizability, as
well as with other ones.

Remark 9: The condition (15) can be interpreted in terms
of the classical Lyapunov-Metzler condition (4) by consider-
ing the switched system obtained by defining one fictitious
mode for every matrix Ai with i ∈ I [1:M]. Thus, testing
the generalized Lyapunov-Metzler condition is equivalent to
checking the classical one for a system whose modes are
related to every possible sequence of the original system (1),
with of length M or less.

IV. LMI SUFFICIENT CONDITION

The main drawback of the necessary and sufficient set-
inclusion condition for stabilizability is, as already stated,
its inherent complexity. On the other hand, the Lyapunov-
Metzler-based approach leads to a more affordable BMI
sufficient condition. Nevertheless, the complexity could be
still computationally prohibitive. Our next aim is to formulate
an alternative condition that could be checked efficiently, a
convex one.

Theorem 10: The switched system (1) is stabilizable
if there exist N ∈ N and α ∈ RN̄ such that α ≥ 0,
∑i∈I [1:N] αi ≥ 1 and

∑
i∈I [1:N]

αiAT
i Ai < I. (16)

Proof: The result follows directly from the fact that (16)
implies (3), as a consequence of Lemma 4.

We can also give an interpretation of the previous result in
terms of Lyapunov functions and derive a natural controller
synthesis technique. Let us assume that (16) holds, then there
exists ρ ∈ [0,1) such that

∑
i∈I [1:N]

αiAT
i Ai ≤ ρ

2I.

Also, for all x ∈ Rn, it holds

min
i∈I [1:N]

(xTAT
i Aix)≤ ρ

2xT x. (17)

We can now describe the stabilizing control strategy. The
controller does not necessarily select at each time step k ∈N
which input should be applied. This is done only at given
instant {kp}p∈N with k0 = 0, and kp < kp+1 ≤ kp +N, for
all p ∈ N. At time kp, the controller selects the sequence of

inputs to be applied up to step kp+1−1. The instant kp+1 is
also determined by the controller at time kp. More precisely,
the controller acts as follows for all p ∈ N, let

ip = arg min
i∈I [1:N]

(xT
kp
AT

i Aixkp). (18)

Then, the next instant kp+1 is given by

kp+1 = kp + l(ip), (19)

with l(ip) length of ip, and the controller applies the sequence
of inputs

σkp+ j−1 = ip, j, ∀ j ∈ {1, . . . , l(ip)}. (20)

Theorem 11: Let us assume that (16) holds, and consider
the control strategy given by (18), (19), (20). Then, for all
x0 ∈ Rn, for all k ∈ N,

‖xk‖ ≤ ρ
k/N−1LN−1‖x0‖ (21)

where L≥ ‖Ai‖, for all i∈I . Then, the controlled switched
system is globally asymptotically stable.

Proof: Using the proposed control strategy, we have
xkp+1 = Aipxkp for all p ∈ N. Then, it follows from (17) and
(18) that ‖xkp+1‖ ≤ ρ‖xkp‖ and thus for all p ∈ N, ‖xkp‖ ≤
ρ p‖xk0‖. Moreover, since kp+1 − kp ≤ N and L > 1 from
Assumption 1, we have for all p ∈ N:

‖xk‖ ≤ Lk−kp‖xkp‖ ≤ ρ
pLN−1‖x0‖, ∀k ∈ {kp, . . . ,kp+1−1}.

(22)
Now let k ∈N, and let p∈N be such that k ∈ {kp, . . . ,kp+1−
1} then necessarily p≥ bk/Nc ≥ k/N−1. Then (21) follows
from (22).

One particular case in which the LMI condition is guar-
enteed to have a solution follows.

Corollary 12: If there exist N ∈N and i1, i2 ∈I [1:N] such
that B ⊆ int(Bi1 ∪Bi2) then there is α ∈ [0,1] such that

αAT
i1Ai1 +(1−α)AT

i2Ai2 < I.
Proof: The property is a consequence of Lemma 6.

The condition presented in Theorem 10 is just sufficient
unless there exists, among the Ei, two ellipsoids containing
B in their union, see Corollary 12. This is proved by the
following counter-example.

Example 13: The aim of this illustrative example is to
show a case for which the inclusion condition (3) is satisfied
with N = 1, but there is not a finite value of N̂ ∈N for which
the condition (16). Consider the three modes given by the
matrices

A1 = AR(0), A2 = AR
(

2π

3

)
, A3 = AR

(
−2π

3

)
,

where

A =

[
a 0
0 a−1

]
, R(θ) =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
, (23)

with a = 0.6. Set Ω =B. By geometric inspection of Figure
1 (left), condition (3) holds at the first step, i.e. for N = 1.
On the other hand, Ai are such that det(AT

i Ai) = α2α−2 = 1
and trace(AT

i Ai) = α2+α−2 = 3.1378 while the determinant



and trace of the matrix defining B are 1 and 2, respectively.
Notice that α2+α−2 > 2 for every α different from 1 or −1
and α2 +α−2 = 2 otherwise.

For every N and every Bi with i ∈I [1:N], the related Ai
is such that det(AT

i Ai) = 1 and trace(AT
i Ai)≥ 2. Notice that,

for all the matrices Q > 0 in R2×2 such that det(Q) = 1, then
trace(Q)≥ 2 and trace(Q) = 2 if and only if Q = I, since the
determinant is the product of the eigenvalues and the trace its
sum. Thus, for every subset of the ellipsoids Bi, determined
by a subset of indices K ⊆I [1:N], we have that

∑
i∈K

αiAT
i Ai < I,

cannot hold, since either trace(AT
i Ai)> 2 or AT

i Ai = I.
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Fig. 1. B1 B2 B3 and Ω (left). B1i, with i ∈ N3, and Ω (center). B1i j ,
with i, j ∈ N3, and Ω (right).

Thus the LMI condition (16) is sufficient but not necessary.
In what follows we provide a relation with the generalized

Lyapunov-Metzler condition (15). Recall that the Lyapunov-
Metzler condition regards nonconvex sets and sequences of
length one (possibly of extended systems) whereas the LMI
one concerns quadratic Lyapunov functions and switching
control sequences. It can be proved that the LMI sufficient
condition (16) holds if and only if the generalized Lyapunov-
Metzler one can be satisfied.

Theorem 14: There exist M ∈ N, Pi > 0, with i ∈I [1:M],
and π ∈MM̄ such that (15) holds if and only if there exists
N ∈ N and α ∈ RN̄ such that α ≥ 0, ∑i∈I [1:N] αi ≥ 1 and
(16) holds.

Proof: First we prove that satisfaction of (15) implies
the existence of N such that (16) holds. Suppose that for
appropriate Pi, with i ∈I [1:M], and π ∈MM̄ , (15) holds or,
equivalently, that there exists λ ∈ [0,1) such that

AT
m

(
∑

j∈I [1:M]

π jmPj

)
Am ≤ λPm, ∀m ∈I [1:M].

Let us choose an arbitrary m ∈I [1:M]. We have

AT
m

(
∑

j∈I [1:M]

π jmAT
j

(
∑

k∈[1:M]

πk jPk

)
A j

)
Am

≤ λAT
m

(
∑

j∈I [1:M]

π jmPj

)
Am ≤ λ

2Pm,

which is equivalent to

AT
m

(
∑

j∈I [1:M]

π jm ∑
k∈I [1:M]

πk j

(
AT

j PkA j

))
Am ≤ λ

2Pm.

From λ < 1 and Assumption 1, we have that, for every m ∈
I [1:M] there exists s(m) = s ∈ N such that λ sPm ≤ AT

mAm
and then

AT
m

(
∑

i1∈I [1:M]

πi1m . . .∑
is∈[1:M]

πisis−1

(
AT

i PisAi

))
Am< λ

sPm ≤ AT
mAm,

with i = (i1, . . . , is−1) ∈I [1:M(s−1)]. Since there is no loss of
generality, assume that I ≤ Pk for all k ∈I [1:M] and then

AT
m

(
∑

i1∈I [1:M]

πi1m . . . ∑
is−1∈I [1:M]

πis−1is−2

(
AT

i Ai

))
Am

≤ AT
m

(
∑

i1∈I [1:M]

πi1m . . . ∑
is∈I [1:M]

πisis−1

(
AT

i PisAi

))
Am < AT

mAm,

that implies

∑
i1∈I [1:M]

πi1m . . . ∑
is−1∈I [1:M]

πis−1is−2

(
AT

i Ai

)
< I, (24)

from Assumption 1. Denoting for every i ∈ I [1:M(s−1)] the
parameter αi = πi1mπi2i1 . . .πis−1is−2 it can be proved that 0≤
αi ≤ 1 and ∑i∈I [1:M(s−1)] αi = 1 and (24) is equivalent to (16).

We prove now that the satisfaction of the LMI condition
(16) with appropriate N and α implies that the generalized
Lyapunov-Metzler one is satisfied for with adequate M. From
(16) one have

AT
i

(
∑

j∈I [1:N]

α jAT
j A j

)
Ai < AT

i Ai, ∀i ∈I [1:N],

which is equivalent to (15) with Pj = AT
j A j and π ji = α j,

for all i, j ∈I [1:N] and M = N.
Remark 15: Notice that, in the first part of proof of

Theorem 14, there is a dependence on the index m ∈I [1:M].
In reality, for every other possible index, the stabilizability
result would be same. The only difference would be the
length s, that depends on m, and the values of the parameters
αi, that should be written as dependent on m.

LMI condition
  Theorem 10

Stabilizability
   Theorem 2

Lyapunov-Metzler 
    generalized 
     Proposition 8

Lyapunov-Metzler 
      Theorem 3

Fig. 2. Implications diagram of stabilizability conditions.

The implications between the stabilizability conditions are
summarized in the diagram in Figure 2. It is remarkable that
the LMI condition concerns a convex problem, thus more
affordable than the BMI one related to Lyapunov-Metzler
inequalities, but it is less conservative.



V. NUMERICAL EXAMPLE

Consider the system (1) with q = 2, n = 2, x0 = (−3,3)T

and

A1 = 1.01R
(

π

5

)
, A2 =

[
−0.6 −2

0 −1.2

]
.

Matrices A1 and A2 are not Schur. With N = 1, . . . ,6
the LMI (16) is unfeasible, but there is a solution for
N = 7. By applying the min-switching strategy (18)-(20),
one obtains a stabilizing switching law, which concatenates
elements of I [1,7], respectively of lengths {7,6,5,7,7, . . .}.
The time-varying length of the switching subsequences is a
consequence of the state dependency of the min-switching
strategy. The switching law is depicted on Figure 3 (left).
Each resulting subsequence of I [1,7] is alternatively depicted
by ◦ or ? to emphasize its length. The induced state trajectory
is drawn in Figure 3 (right) and converges to the origin.
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Fig. 3. Switching law (left). State trajectory in time (right).

The Lyapunov function associated with the min-switching
strategy (18)-(20) is shown in Figure 4. As for the switching
law, the Lyapunov function values issued from the same
subsequence are alternatively depicted by ◦ or ?. In addition,
the last Lyapunov function value of each subsequence is
given by a big �, leading to a decreasing function as
expected. Nevertheless, the Lyapunov function may increase
during the first samples of each subsequence.

0 5 10 15 20 25 30 35
10 5

10 4

10 3

10 2

10 1

100

101

102

Ly
ap

un
ov

 fu
nc

tio
ns

Time

Fig. 4. Lyapunov function in time.

The method in paper [2] leads to satisfy the stop condi-
tion (3) after 5 iterations, as depicted in Figure 5 and 6 (left).

The resulting Lyapunov function is depicted in Figure 6
(right), which does not increase and strictly decreases every
each 5 steps. This is a main difference with the previous
method. Of course the stabilizing switching law given in this
framework and depicted in Figure 6 (right) is different.
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Fig. 5. Step 1 (left). Step 2 (right).
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In order to strengthen the value of our approach, it should
be noticed that no solution has been numerically found
for the Lyapunov-Metzler inequalities (4). That has been
numerically checked by fixing the Metzler matrix (fully
characterized only by two parameters and a grid of the
parameters with step of 0.01) which yields the Lyapunov-
Metzler inequalities to LMI form.

VI. CONCLUSION

In this paper we provide a characterization of the relations
and implications of different conditions, new and known
ones, for stabilizability of switched linear systems. A com-
parison in terms of conservatism and complexity is presented.
Extensions to novel conditions and new computational meth-
ods for testing stabilizability are the objectives of our current
and future work on this topic.
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MA, 2003.

[8] D. Liberzon and A. S. Morse. Basic problems in stability and design of
switched systems. IEEE Control Systems Magazine, 19:59–70, 1999.

[9] H. Lin and P. J. Antsaklis. Stability and stabilizability of switched
linear systems: a survey of recent results. IEEE Transaction on
Automatic Control, 54(2):308–322, 2009.

[10] A. P. Molchanov and Y. S. Pyatnitskiy. Criteria of asymptotic stability
of differential and difference inclusions encounterd in control theory.
Systems & Control Letters, 13:59–64, 1989.

[11] M. A. Wicks, P. Peleties, and R. A. De Carlo. Construction of
piecewise Lyapunov functions for stabilizing switched systems. In
Proceedings of the 33rd IEEE Conference on Decision and Control,
pages 3492–3497, 1994.


