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SUMMARY & CONCLUSIONS 

Deterioration modeling and remaining useful life (RUL) 
estimation of equipment are key enabling tasks for the 
implementation of a predictive maintenance (PM) policy, 
which plays nowadays an important role for maintaining 
engineering systems.  Hidden Markov Models (HMM) have 
been used as an efficient tool for modeling the deterioration 
mechanisms as well as for estimating the RUL of monitored 
equipment.  However, due to some assumptions not always 
justified in practice, the applications of HMM on real-life 
problems are still very limited.  To tackle this issue and to 
relax some of these unrealistic assumptions, this paper 
proposes a multi-branch Hidden semi-Markov modeling (MB-
HSMM) framework. 

The proposed deterioration model comprises several 
different branches, each one being itself an HSMM.  The 
proposed model offers thus the capacity to 1) explicitly model 
the sojourn time in the different states and 2) take into account 
multiple co-existing and competing deterioration modes, even 
within a single component.  A diagnosis and RUL prognosis 
methodology based on the MB-HSMM model is also 
proposed.  Thanks to its multiple branches property, the MB-
HSMM model makes it possible not only to assess the current 
health status of the component but also to detect the actual 
deterioration mechanism.  Based on the diagnostic results, the 
component RUL can then be calculated. 

The performance of the proposed model and prognosis 
method is evaluated through a numerical study.  A Fatigue 
Crack Growth (FCG) model based on the Paris-Erdogan law is 
used to simulate deterioration data of a bearing under different 
operation conditions.  The results show that the proposed MB-
HSMM gives a very promising performance in deterioration 
mode detection as well as in the RUL estimation, especially in 
the case where these deterioration modes exhibit very different 
dynamics. 

1 MOTIVATION AND PROBLEM STATEMENT 

Predictive Maintenance (PM) plays nowadays an 
important role in the maintenance of engineering systems 
since it has the ability to recommend in advance proper 
maintenance actions by based on the relevant information 
collected from condition monitoring [1].  Within a PM 
program, diagnosis and prognosis are two key enabling steps:  

diagnosis deals with fault detection, isolation and 
identification as well as health assessment of the monitored 
system; prognosis aims at predicting the evolution of the fault 
in the future and estimate the remaining time before a failure 
occurs.  An accurate estimation of the RUL could provide 
ample time for maintenance engineers to schedule a repair or 
to acquire replacement components before they actually fail 
[2].  Due to the stochastic nature of the deterioration 
mechanisms, stochastic processes are well-suited for modeling 
the deterioration processes and have shown promising results 
within the PM framework [5, 6, 7, 8, 9, 13]. 

As doubly embedded stochastic processes, Hidden 
Markov Models (HMM) have been successfully applied in 
many domains, such as speech recognition, genes and 
deoxyribonucleic acid (DNA) analysis, etc. [4] thanks to their 
strong mathematical basis.  In the PM context, HMM classify 
equipment conditions among several meaningful discrete 
states, such as “normal”, “minor defect”, “maintenance 
required” and “failure” and therefore can give easy-to-
interpret results for maintenance implementation [5].  These 
models can also characterize the stochastic relationship 
between the features extracted from condition monitoring data 
and the actual health states of the equipment.  For these 
reasons, HMMs in the recent year are being more and more 
investigated to be used as an efficient tool for deterioration 
modeling as well as for RUL estimation [3].  For example, 
Baruah et al. employed HMMs for carrying out both the 
diagnosis and the prognosis for metal cutting tools [6].  In [2], 
HMMs are used to build a health/degradation index 
representing the current system health status.  This index is 
then fed into an adaptive prognostic scheme in order to 
estimate the RUL of a bearing.  However, due to its inherent 
Markov property, the sojourn time in a state of the HMM 
model is geometrical or exponential distributed, which is not 
often true in practice.  The semi-Markov based models could 
overcome this problem by allowing arbitrary probability 
distributions such as Gaussian or Gamma for the state sojourn 
time, [4].  From this point, several extensions have been 
adopted in the literature, such as Hidden semi-Markov models 
[7], segmented HMMs [8], segmented Hidden Semi-Markov 
Models [9], etc. 

To the best of our knowledge, almost all of the Markov-
based modeling frameworks for diagnosis and prognosis in the 



literature deal with the mono-mode case, meaning that only 
one degradation mechanism is allowed to take place at one 
time.  For example, the authors in [7] use different HSMMs to 
represent different health states of a pump but these states 
belong to only one deterioration mode.  Or in [8], only one 
degradation mechanism of a milling machine is considered 
and modeled by one segmented HMM.  In real cases, 
however, several degradation modes can co-exist in 
competition even within a single component.  For instance, 
different internal elements of bearings can be subjected to 
degradation due to different operating conditions, leading to 
different rates in deterioration evolution of the bearings.  To 
take into account such phenomena, we propose a semi-Markov 
based structure called multi-branch Hidden semi-Markov 
Model (MB-HSMM).  A simulation study is carried out in 
order to evaluate the effectiveness of the proposed model with 
respect to a standard HSMM one. 

The remainder of the paper is organized as follows.  
Section 2 is devoted to review some basic theories of HMM 
and HSMM as well as the extension to MB-HSMM model.  
Section 3 describes a framework based on the proposed model 
for diagnosis and prognosis.  To illustrate the methodology, a 
comparative study is introduced in the section 4.  Conclusion 
follows in Section 5. 

2 THEORETICAL BACKGROUND 

2.1 Basic theory of Hidden Markov Model 

Hidden Markov Model consists of an underlying Markov 
chain which is not directly observable but can be revealed 
through observation [4].  Within the deterioration modeling 
framework, the hidden states represent the health states of 
equipment, while the observations can be either measurable 
raw data such as vibration signals or high-level features 
extracted from condition monitoring data.  The relation 
between the hidden states and the observations is often 
represented by probabilistic models.   

Mathematically, the complete specification of an HMM 
consists of the following elements [4]  N , the number of states in the model  Q , the number of distinct observation symbols per state 
 A finite set of hidden states, i.e.,  1 2, , ..., NS S S S  

 A state transition probability distribution, i.e.,  ijA a , 

where  1ij t j t ia P q S q S  ∣  

 An observation symbol probability distribution, i.e.,   jB b k  where    j k t jb k P Y q S ∣ , 1 k Q   

 An initial state probability distribution, i.e.,  ip p  

where  i t ip P q S  , 1 i N   
A complete HMM is often represented by a compact 

notation  , ,p A B   for convenience. 
There exist several types of HMMs, such as ergodic or 

left-right (Bakis) HMMs [4].  Since the deterioration processes 
are often irreversible in practice, meaning that equipment 

cannot come back from a worse health state to a better one as 
time progresses, the left-right topology is chosen for the 
deterioration modeling purpose in this paper. 

In the framework of machine condition monitoring, 
measures are usually continuous signals, such as the vibration 
amplitudes, motor current, etc.  The observation sequences 
should therefore be modeled by continuous probability density 
functions (pdf) to obtain a better performance in the diagnosis 
and the prognosis [3].  For this reason, the Gaussian 
distribution will be adopted for the observations in this paper. 

2.2 Hidden semi-Markov Model (HSMM) 

In standard HMM models, due to the Markovian 
assumption the sojourn time in a state is either geometrical 
distributed in the discrete time case or exponential distributed 
in the continuous time case. As argued in [10], this can be a 
source of inaccurate duration modeling with the HMMs since 
most real-life systems do not exhibit this property.  To 
overcome this problem, the underlying Markov process can be 
replaced with a semi-Markov one resulting in a more general 
model called Hidden semi-Markov Model (HSMM).  

Unlike the standard HMM, the state sojourn time in 
HSMMs can follow any arbitrary distribution, such as Gamma 
or Gaussian, etc.  Once entering a state, the process stays in 
the state for a period of time whose length is determined by 
the arbitrary distribution.  At the end of this period, the 
process randomly moves to another state according to the state 
transition probability matrix A .  Clearly, HMMs are a special 
class of HSMMs. 

As in the previous section, the underlying semi-Markov 
process in the HSMM is assumed to be strictly left-right and 
the observations are Gaussian distributed.  Furthermore, the 
sojourn time in a state is also modeled by continuous Gaussian 
distributions.  Similarly to the standard HMM, an HSMM can 
be characterized by the following parameters: the initial state 
distribution p , the transition model A , the state duration 
distribution denoted by D , and the observation model B .  
Thus, an HSMM can be written as  , , ,p A D B  . 

2.3 Multi-branch Hidden semi-Markov model (MB-HSMM) 

As already stated, standard HSMMs are only suitable for 
modeling one deterioration mode at a time.  To deal with the 
co-existence of multiple competing deterioration modes, the 
concept of multi-branch model has recently been introduced 
[15].  However, due to the Markovian assumption in the 
model, limitation in the sojourn time modeling still exists.  In 
this section, we extend the model in [15] to a so called multi-
branch HSMM for modeling multiple deterioration 
mechanisms of equipment.  An example of a left-right multi-
branch HSMM is illustrated in Figure 1. 

The proposed model consists of several branches, each 
one representing one deterioration mode.  Some important 
assumptions have been made in constructing the model.  
Firstly, it is assumed that once the degradation has started 
following a given path, the equipment follows this 
deterioration mode until it reaches the end of life, i.e. there is 



no allowed switch between branches.  The second assumption 
is that, the normal condition can last very long with no 
abnormal sign in the observations.  The observations emitted 
in this state are not hence of interest in the framework of 
deterioration modeling. Furthermore, once the equipment has 
failed, it is stopped and no more measures can be obtained.  
From these points, the initial 0S  as well as the failed fS  
states are considered as dummy states with no emission of 
observation in our model.  Therefore, each branch can be seen 
as a single HSMM model and is assigned an a priori 
probability, Figure 1. 

 
Figure 1 – A left-right multi-branch HSMM model. 

From a training data set, these a priori probabilities can 
be estimated by: 

  /k k kPp K K  ,      
1

1
M

k
k

p


                (2) 

where k  denotes the constituent HSMM for branch k , kK  
is the number of training data sequences corresponding to the 
mode k , K  is the number of the total training data sequences 
and M  is the total number of the branches. 

3 MB-HSMM FOR DIAGNOSIS AND PROGNOSIS 

In this section, a two-phase framework based on the MB-
HSMM model is proposed for the diagnosis and the prognosis 
(c.f. Figure 2).  It consists of two phases: off-line and on-line. 

 
Figure 2 – MB-HSMM framework for diagnosis and prognosis 

3.1 Off-line phase 

This phase aims to learn an MB-HSMM model from the 
historical data.  The idea is to train each branch individually 
and then combine them to obtain a final model.  To do this, we 
firstly divide the training data set into M  different groups in 
which each one corresponds to a deterioration mode.  In this 
study, we suppose that the number of modes M  is known 
beforehand thanks to the expert knowledge.  Clustering 
techniques such as “kmeans” or “k-NN”, etc. can hence be 

employed for the classification.  Each data group is then used 
to train a constituent HSMM by using the Baum-Welch 
algorithm [4] in which the forward-backward (FB) procedure 
is the key process for parameters learning and likelihood 
estimation.  We adopt the FB procedure proposed by Yu and 
Kobayashi in [14], which stands out to be the most efficient 
one. 

After having trained the constituent branches, the a priori 
probabilities can be estimated by Equation (2) and a full MB-
HSMM model is obtained. 

3.2 On-line phase 

In this phase, the trained model is used to assess the actual 
health state of the monitored equipment as well as to estimate 
its RUL.  Due to the co-existence of multiple deterioration 
mechanisms, one must firstly identify the underlying one that 
is occurring.  Indeed, wrong mode detection can lead to a 
wrong state assessment and inaccurate RUL estimation as 
well.  In order to minimize the misclassification rate, the 
branch having the maximum a posterior probability given the 
data can be considered to correspond to the actual 
deterioration mechanism [11], that is:  ˆ arg max k

k
k P  O∣         (3) 

Using Bayes’ theorem, these probabilities can be given by: 

     
   

1

k k
k M

k k
k

P P
P

P P

 
 



 
O

O
O

∣

∣

∣

  (4) 

where  kP O∣  is the likelihood of the model k  given the 

data O  and can be calculated through the forward-backward 
algorithm [14].   kP   is calculated by Equation (2).  After 
having identified the deterioration mode, the next diagnosis 
stage is to recognize the actual health state of the equipment.  
This can be carried out thanks to the Viterbi algorithm [4].  
Given the detected mode, the most probable single state 
sequence (path) is the one that gives the maximum joint 
probability of the path and the observations:  

ˆ

ˆ ˆarg max ,
Qk

k kQ P Q   O ∣        (5) 

where kQ  represents a possible path under the mode k .  The 
actual health state of the equipment is considered as the final 
one of the path *Q . 

3.3 RUL calculation 

Given the deterioration mode and the current health state 
estimated from the diagnostic stage, the RUL can be estimated 
in the same way as in a single HSMM case.  However in the 
MB-HSMM framework, this estimation depends strongly on 
the mode detection results.  Indeed, detecting the wrong mode 
may lead to a large bias in the RUL estimation.  For example, 
if a crack is propagating with a high rate, the wrong detection 
of a low deterioration mode will lead to a quite high RUL 
value with respect to the actual one.  This phenomenon often 



occurs at the beginning of the defect propagation since 
observations are insufficient to show an obvious trend of the 
deterioration.  In this study, the Bayesian Model Averaging 
(BMA) technique [12] is adopted to tackle the problem.  The 
RUL distribution is calculated as an average of the posterior 
distributions under constituent modes, weighted by their 
posterior mode probabilities: 

      
1

RUL RUL ,
M

k k
k

P P P 


 O O O∣ ∣ ∣     (6) 

where  kP  O∣  is given from Equation (4). 
The procedure can now turn to the estimation of the RUL 

for each individual constituent HSMM model, which is 
straightforward.  Assuming that equipment goes through 
degraded states 1 2, ,..., NS S S  before reaching the failure state 

fS  and is in the state iS  at the current time t .  Since the 

model is strictly left-right, the RUL can be calculated as the 
summation of two terms: the residual time of staying in the 
current state and the duration for the equipment to stay in the 
future health states before entering the failure one.  Denote 

iD  and t
iD  the random variables representing respectively 

the total and the residual sojourn time in the state iS  for 
1,2,i N  , we have: 

1
RUL

N
t t
i i j

j i
D D

 
         (7) 

Intuitively, the residual time is a conditional random 
variable |t

i i i i iD D D D D    where iD  is the time that the 
equipment has spent in the state iS  which can be calculated 
thanks to the Viterbi algorithm from the diagnostic stage.  
Given that iD  is Gaussian distributed, e.g.  ,i i iD   , it 

can be deduced that the residual time | 0t t
i iD D   follows a 

Normal distribution with mean i iD   and standard deviation 

i  but truncated to the left of zero. 
Besides that, due also to the Gaussian assumption, the 

sum element in Equation (7) is Normal distributed.  Denote 

1

N
j

j i
Z D

 
  , we have  ,z zZ    where 

1

N
z j

j i
 

 
   

and 2

1

N
z j

j i
 

 
  .  The RUL becomes the summation of a 

truncated Normal distribution t
iD  and a Normal distributed 

variable Z .  The cumulative distribution function of the RUL 
is therefore given by [16]: 

     1

1

x a

RUL
x u aF x u du

a
 





                  

    (8) 

where i i

z

D
a



  , i

z

   and   2 /21
2

e   
  is the 

probability density function of the standard normal 
distribution and     is its cumulative distribution function. 

After evaluating all the individual branches, the RUL 
estimation under the MB-HSMM can be accomplished by 
Equation (6). 

4 NUMERICAL EXAMPLES 

To evaluate the proposed MB-HSMM-based diagnosis 
and prognosis performance, the data representing several 
different deterioration paths have been generated by the 
Fatigue Crack Growth (FCG) model.  The FCG model is 
chosen since it has been widely used in the literature to 
describe the propagation process of a crack within a bearing 
[13].  The bearing is supposed to operate under different 
operation conditions so that the crack can propagate at 
different rates, which represent different deterioration modes. 

4.1 Simulated fatigue crack growth data 

In this section, we use the discretized and randomized 
FCG model in [13]:  1 1

ti e
i i i

nw
t t b tx x e C e x t     (9) 

where 
itx  represents crack depth at time it , C  and n  are 

constants depending on the material property, the exponential 

element tiwe  helps to take into account the stochastic aspect 
of the crack propagation, b  is the base stress level of 
component, the values 0,  1,2, ,e e M     determine the 
level of extra stress linking with the state e  of the 
environment. 

Since it is often difficult to measure directly and 
accurately the crack depth in practice, an observation model 
has been adopted to represent the relationship between the 
actual values and the measure ones: 

i i it t ty x      (10) 

where 
ity  is the measurement at time it  and  2~ 0,

it N    is 

the measurement error. 

4.2 Diagnosis and prognosis results 

In this section, the bearing is supposed to operate under 
two different environments and therefore cracks propagate 
possibly at two different rates.  A two-branch HSMM model 
(cf. figure 1) is implemented to represent these two modes. 

The following parameters of the FCG model are chosen: 
0.005C , 1.3n , 1b  , 1.7w  , 1t  , 2 10  , 

 0  0.75 T
e  , 100L  , 1 2 0.5p p   where L  represents 

the critical level beyond which the bearing is supposed to fail 
and the superscript T  denotes the transpose of a vector. For 
training purpose, 100 data paths are generated (Figure 3). 

Based on the times to failure information, this data set can 
be separated in two different “clusters” thanks to the k-means 
algorithm.  The a priori probabilities for the branches are then 



calculated (c.f. Equation (2)) and we obtain: 1ˆ 0.45p   and 

2ˆ 0.55p  . 

 
Figure 3 – Two-mode training data 

To determine the number of states for each branch, the 
Bayesian Information Criterion (BIC) can be adopted as 
detailed in [15].  The candidate model having the minimum 
value of BIC will be chosen.  In this study, the value 8N   is 
obtained for every constituent model. 

After having determined the number of states, each model 
is trained thanks to the Baum-Welch algorithm.  An MB-
HSMM is obtained and the offline phase is terminated. 

We now move to the on-line phase.  One data curve 
serving as the test data is also generated by the FCG model.  
In this study, the diagnosis and the prognosis procedures are 
repeated after each 50h as time progresses.  The mean values 
of the estimated RUL associated with the 95% confidence 
interval are represented in Figure 4. 

 
Figure 4 – RUL estimation at different time instances. 

It can be seen that at early time instances, the lack of 
information due to the limited observations results in the bias 
and large variance in the RUL estimation.  Even though, the 
real RUL values always lie within the 95% confidence 
interval.  As the time passes, the width of the confidence 
interval significantly decreases and the estimated RUL values 
converge to the real ones.  This demonstrates the accuracy of 
the proposed RUL estimation method. 

4.3 Multi-branch vs average HSMM 

An interesting question naturally rises in evaluating the 
advantage of the proposed approach: between the MB-HSMM 
and an “average” HSMM, which one does give the better RUL 
prediction results given the same data set.  To answer such 
question, a comparative study is conducted in this section with 
100 test deterioration paths.  The prognostic performance is 
evaluated by the root mean squared error (RMSE) metric, 
where the errors are the differences between the mean 
estimated RULs and the actual values.  

For notation convenience, we denote the average HSMM 
by AVG-HSMM.  The training data set in the previous section 
is not grouped and is used to train only one AVG-HSMM.  
The trained model is then used in the on-line phase to estimate 
the RUL.  The test data is the same as in the previous section.  
At the time 100t h , we obtain 106.74AVGRMSE   and 

64.72MBRMSE   for the AVG-HSMM and the MB-HSMM 
models respectively.  It can be concluded that the proposed 
model give a better performance in RUL estimation than the 
average model in this case. 
Another question raises naturally: does the above conclusion 
still hold in case that the two propagation rates are similar, or 
in case that they are quite different?  To answer this question, 
it is necessary to define a “distance” between two deterioration 
modes.  In this study, the mode “distance” is defined by the 
difference between the propagation rates in the FCG model.  
From Equation (9), it can be seen that the propagation rate of a 
crack is directly proportional to e : the greater the value of 

e  is, the more quickly the crack propagates.  Therefore, by 
fixing 1  and varying 2 , the mode distance can be changed. 

 
Figure 5 –RMSE at different mode distances. 

Figure 5 shows that at the beginning when the two 
deterioration modes are similar, the multi-branch model gives 
a less accurate result than the one obtained with the average 
model.  In this case, the simple average model is well-adapted 
to the data.  Conversely, the multi-branch model may appear 
overly complex, leading to over fitting and poor predictive 
performances.  However, once the mode distance increases, 
the MB-HSMM becomes more and more relevant and its 
RMSE decreases while it increases with AVG-HSMM.  
Hence, it can be concluded that the larger the distance between 
deterioration modes the better the performance in RUL 
estimation given by the proposed MB-HSMM approach, as 
compared to an “average” HSMM. 

5 CONCLUSION 

The present paper proposes a novel model called multi-
branch Hidden semi-Markov Model (MB-HSMM) to deal 
with the deterioration modeling problem in case that there are 
several competing modes existing in the deterioration 
mechanisms of an equipment.  A diagnostic and prognostic 
framework based on the proposed model is also given.  The 
actual health state recognition and the RUL estimation can be 
implemented in the same way as in the traditional HSMM 
approach.  However, by using different HSMM models for 



different modes, together with the a priori probabilities of 
each model, the MB-HSMM shows a very promising result in 
dealing with the multi-mode deterioration mechanism. 

Future research will be focused on the extension of the 
MB-HSMM to allow the switching between the states of the 
different branches.  The proposed model and the extension 
should also be validated on the data of real systems. 
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