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_____________________________________________________________________________________ 

Reliability Analysis Methods 

E. Bastidas-Arteaga and A.-H. Soubra 

 
University of Nantes – GeM Laboratory – UMR CNRS 6183 – Nantes 

– France 
____________________________________________________________________ 

There are numerous sources of uncertainties that should be considered in engineer-

ing design. Reliability analysis methods provide a framework to account for these 

uncertainties in a rational manner. This chapter presents the First Order Reliability 

Method (FORM) and the Second Order Reliability Method (SORM). These methods 

are illustrated by academic examples. 

 

 

1. Introduction 
 

Engineering design aims at providing minimum levels of serviceability and safety 

during the structural lifetime. This is a difficult task because there are important 

sources of uncertainty that could lead to over- or under-design solutions. For exam-

ple, there are uncertainties related to environmental exposure, loading, material 

properties, engineering models, etc. Reliability analysis methods offer the theoretical 

framework for considering uncertainties in a comprehensive decision scheme. The 

main goal of reliability analysis methods is to evaluate the ability of systems or 

components to remain safe and operational during their lifecycle.  

 
The main objective of this chapter is to present and illustrate various reliability anal-

ysis methods that can be used for engineering or research purposes. The chapter 

starts with a description of fundamental concepts for reliability analysis. After, we 

present the First Order Reliability Method (FORM) and the Second Order Reliabil-

ity Method (SORM). These methods are illustrated by academic examples.   

 

2. Basic concepts for reliability analysis 
 

Reliability methods have been established to take into account, in a rigorous manner, 

the uncertainties involved in the analysis of an engineering problem. The failure 

probability and the reliability index are used to quantify risks and therefore evaluate 

the consequences of failure. In this approach, the governing parameters of the prob-



lem are modeled as random variables. Random variables can be grouped in a ran-

dom vector X where fX(x) is the joint probability density function (PDF).  

 

For reliability analysis, the space D of random variables may be divided into the 

failure and the safety regions. The failure region Df is defined by Df = {X | g(X) ≤ 0} 

and the safety region, Ds, by Ds = {X | g(X) > 0} where g(X) represents the perfor-

mance function. Notice that g(X)=0 is the boundary between failure and safety re-

gions and it is called the limit state surface.  

 

In the simplest case, the performance function g(X) is expressed as the difference 

between the resistance R(X) and the demand or solicitation on the system S(X) – i.e., 

g(X) =R(X) – S(X). In reliability engineering analysis, g(X) is usually expressed in 

terms of displacement, strain, stress, etc. The performance functions can be related 

to the following structural conditions: 

 

1. Serviceability limit state: under this condition, ‘failure’ is related to a ser-

viceability loss that does not imply a significant decay of structural safety. 

For example, if the reliability analysis of a given structural component fo-

cuses on a maximum displacement vmax, the performance function can 

write: 

 

� � = �!"# − � �  (1) 

 

where vmax could be fixed by standards or particular serviceability con-

straints and v(X) is the displacement of the point of interest that depends on 

X random variables (material strength, geometry, load, etc.). In the case of 

failure, v(X) > vmax, but the structural component is still considered safe. 

 

2. Ultimate limit state: this condition describes the state at which structural 

safety is highly affected and may lead to total failure or collapse. For in-

stance, if the reliability analysis focuses on the bending moment of a beam, 

the performance function is: 

 

� � = �! � −�! (2) 

 

where Mr(X) is the resistant bending moment of the beam that depends on 

X random variables (material strength, sectional geometry, etc.), and Ms is 

the soliciting bending moment. Notice that although Ms is assumed to be 

deterministic in eq. (2), this variable may also be considered as a random 

variable. In the case of failure, Ms>Mr(X), leading to the collapse of the 

beam. 

 

By accounting for these definitions, the failure probability, Pf, is determined by: 

 

 

Pf = P[g(X)≤ 0]= f
X

g(X )≤0
∫ (x)dx

1
... dxn  (3) 



 

Notice that the limit state function can be a linear or a nonlinear function of the basic 

variables. FORM can be used to evaluate eq. (3) when the limit state function is a 

linear function of uncorrelated normal variables or when the nonlinear limit state 

function is represented by a first-order (linear) approximation with equivalent nor-

mal variables. SORM estimates the probability of failure by approximating the non-

linear limit state function (including a linear limit state function with correlated non-

normal variables) by a second-order representation. 

 

3. First Order Reliability Methods (FORM) 
 
The First Order Reliability Method (FORM) makes use of the first and second mo-

ments of the random variables. This method includes two approaches [Hal00]. These 

are First-Order Second-Moment (FOSM) and Advanced First-Order Second-

Moment (AFOSM) approaches. In FOSM, the information on the distribution of 

random variables is ignored; however, in AFOSM, the distributional information is 

appropriately used. 

    

3.1. First Order Second Moment (FOSM) 
 

The First Order Second Moment (FOSM) method makes use of only second-

moment statistics (i.e. mean and standard deviation) of the random variables and it 

requires a linearized form of the performance function at the mean values of the 

random variables. A first-order Taylor series approximation is used to linearize the 

performance function at the mean values of the random variables.  

 

Cornell [Cor69] proposed the original FOSM formulation. Let us consider an ele-

mentary reliability case where a weight is hung by a cable. The load-carrying ca-

pacity or the resistance of the cable is R and the load effect is S. The resistance and 

the load will be modeled as independent Gaussian random variables with N(µR, σR) 

and N(µS, σS), respectively. In this case, the failure probability Pf is related to the 

failure event R < S, and is computed as: 

 

Pf = P(R < S) = P(R – S < 0) (4) 

 

A new random variable Z (called performance function) can be introduced: 

 

Z =R – S (5) 

 

The performance function Z is characterized by a mean µZ = µR – µS and a standard 

deviation σZ
2 

= σR
2
 + σS

2
. Since R and S are Gaussian, it can be demonstrated that Z 

also follows a Gaussian distribution. Figure 1 presents the PDF of Z. It is observed 

that the failure probability is related to the event P(Z < 0). Consequently, Pf could be 

estimated directly from: 

 

Pf = Φ[(0 – µZ)/σZ] = Φ[– µZ /σZ] =Φ[– β] (6) 



 

where Φ[.] represents the standard normal cumulative distribution function (CDF) 

and β = µZ /σZ is the ‘reliability index’ that is also used to quantify risks of failure.  

 

 

 
Figure 1: Probability density function of Z 

 

As may be easily seen from Figure 1, the reliability index computed by FOSM rep-

resents the number of standard deviations that separate the mean value of the per-

formance function from the limit state surface Z = 0.  

 

For lognormal random variables, an alternative formulation to eq. (6) could be de-

rived as follows: Assume that R and S are statically independent lognormal varia-

bles, that is, LN(λR, ξR) and LN(λS, ξS). In this case, another random variable Y can be 

introduced as 

 

Y = R / S (7) 

or 

 

lnY = Z =lnR – lnS (8) 

 

The failure event can be defined as Y < 1.0 or Z < 0. Since R and S are lognormal, 

lnR and lnS are normal; therefore, lnY or Z is a normal random variable with mean 

λR – λS and standard deviation 
  
ξ

R

2
+ξ

S

2 . The probability of failure can be defined 

(similar to eq. (6)) by 
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!
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!!

!!

= Φ −�   

(9) 

 

In the general case where the performance function Z is a function of a vector of n 

random variables, i.e.,  

 

Z = g(X) = g(X1, X2,…, Xn) (10) 

 

the Taylor series expansion about the mean value gives: 
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where the derivatives are evaluated at the mean values of the random variables (X1, 

X2,…, Xn), and 
 
µ
X
i

  is the mean value of Xi. By truncating eq. (11) at the linear 

terms, it is possible to obtain first-order approximations of the mean and variance of 

Z as follows: 

 

  
µ
Z
≈ g(µ

X1
,µ

X2
,...,µ

Xn
)  (12) 

 

and 

 

  

σ
Z

2
≈

∂g

∂X
i

∂g

∂X
j

Cov(X
i
,X

j
)

j=1

n

∑
i=1

n

∑  (13) 

 

where Cov(Xi, Xj) is the covariance of Xi and Xj. For uncorrelated random variables, 

the variance becomes: 

 

  

σ
Z

2 ≈
∂g

∂X
i

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

2

Var(X
i
)

i=1

n

∑  (14) 

 

Consequently, by estimating µZ and σZ from eqs. (12) and (13), respectively, the 

reliability index can be computed as β = µZ /σZ.  

 

The exact failure probability could be derived from the reliability index only in few 

cases:  

1. if all the Xi’s are statically independent normal variables and if Z is a linear 

function of the Xi, then, Z is normal and the probability of failure is given 

by eq. (6); 

2. if all the Xi’s are statically independent lognormal variables and if g(X) is a 

multiplicative function of the Xi’s, then Z = ln g(X) is normal and the prob-

ability of failure is also given by Pf = Φ(–β). 

  

To conclude, in most cases it is not likely that all the variables are statically inde-

pendent normal or lognormal. Nor is it likely that the performance function is a 

simple additive or multiplicative function of these variables. In such cases, the relia-

bility index cannot be directly related to the probability of failure; nevertheless, the 

equation Pf = Φ(–β) does provide a rough idea of the level of risk. Notice finally that 

FOSM approach has the following shortcomings: 

• the information about the distribution of the independent variables is not con-

sidered, 

• the truncation errors may be significant if g(.) is non-linear, 



• the assessment of reliability index varies when the limit state function is ex-

pressed in different but mechanically equivalent formulations – e.g., (R – S 

= 0) or (R / S = 1). 

 

Example 1  Reliability index of a steel beam using FOSM 
 

Let us consider a steel beam subjected to a deterministic bending moment of Ma 

=130 kNm. The yield stress Fy and the plastic modulus Zp of the beam are consid-

ered as random variables following normal distributions with the following parame-

ters: 

 

  
µ
Fy

= 250 MPa, σ
Fy

= 25 MPa  

  
µ
Z p

= 9×10
−4

 m
3
, σ

Z p
= 4.5×10

−5
 m

3

 
 

Question 1: Write two different performance functions by considering strength and 

stress formulations. 

 

For the strength formulation, the resistance of the beam is a random variable defined 

as R = FyZp and the solicitation S is deterministic where S = Ma. Then, the perfor-

mance function becomes 

 

 
g(Fy ,Z p )= R−S= FyZ p−M a  (15) 

 

For the stress formulation, the yield stress becomes the resistance of the perfor-

mance function, i.e.  R = Fy and the solicitation is computed as S = Ma/Z. In this 

case, both R and S are random variables and the performance function becomes 

 

 

g(Fy ,Z p )= R−S= Fy−
M a

Z p

 (16) 

 

Question 2: Estimate the reliability index using the strength formulation. 

 

We assume that the random variables are independent. We will first estimate µR and 

σR by using eqs. (12) and (14) respectively: 

 

  
µ
R
≈µ
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µ
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= (250)(9×10
−4
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2
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2
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2
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−5( )

2
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2⎡

⎣
⎢

⎤

⎦
⎥

1

2

    = 25.16 kN ⋅m

 

   



The sollicitation is deterministic, then, µS = Ma and σS = 0. Consequently, the relia-

bility index is given by :  

 

  

β=
µ
R
−µ

S

σ
R

2
+σ

S

2
=

225−130

25.15
2

+ 0
2

= 3.77

 

 

Question 3: Estimate the reliability index using the stress formulation. 

 

According to the performance function given by eq. (16), we obtain directly the 

mean and the standard deviation of the resistance:  and . For the 

solicitation, µS and σS are computed from eqs. (12) and (14) respectively: 

 

  
µS ≈M a / µZ p

=130 / (9×10
−4

) =144.4 MPa

 

  

σS ≈ Var(Z p ) −
M a

µZ p

2

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟⎟

2⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1

2

= σZ p
M a

µZ p

2
= 4.5×10

−5 130

9×10
−4( )

2
= 7.22 MPa

 

 

And the reliability index becomes 

 

  

β=
µ
R
−µ

S

σ
R

2
+σ

S

2
=

250−144.4

25
2

+ 7.22
2

= 4.06

 

 

By comparing the reliability indexes, it is noted that the result depends on the for-

mulation of the performance function. This lack of invariance motivated the devel-

opment of other reliability methods such as that presented in the following sections.  

 

3.2. Advanced First Order Second Moment (AFOSM) 
 

AFOSM is also called ‘Hasofer-Lind’ method. In this method, the assessment of the 

reliability index is mainly based on the transformation/reduction of the problem to a 

standardized coordinate system. Thus, a random variable Xi is reduced as: 

 

  
X
i

'
= (X

i
−µ

X1
) /σ

X1
   (i=1,2,...,n)  (17) 

 

where Xi’ is a random variable with zero mean and unit standard deviation. Thus, 

Eq. (17) is used to transform the original limit state surface g(X) = 0 into a reduced 

limit state surface g(X’) = 0. Consequently, X denotes ‘original coordinate system’ 

and X’ describes the ‘transformed or reduced coordinate system’. In the standard-

ized coordinate system, the Hasofer-Lind reliability index βHL corresponds to the 

minimum distance from the origin of the axes (in the reduced coordinates system) to 

the limit state surface: 

 

  
µ
R

= µ
Fy   

σ
R

= σ
Fy



  
β
HL

= (x '*)
T
(x '*)  (18) 

 

The minimum distance point on the limit state surface is called the ‘design point’. It 

is denoted by vector x* in the original coordinate system and by vector x’* in the 

reduced coordinate system. These vectors represent the values of all the random 

variables, i.e. X1, X2, …, Xn at the design point corresponding to the coordinate sys-

tem being used.  

 

Figure 2 illustrates the reduction of the random variables R and S for a linear per-

formance function such as that described by eq. (5). According to eq. (17), R and S 

can be reduced as: 

 

  
′R = (R−µ

R
) /σ

R
  and  ′S = (S−µ

S
) /σ

S
 (19) 

 

The substitution of R’ and S’ into the limit state surface (Z=0) gives the new limit 

state surface in the reduced coordinate system (Figure 2b): 

 

  
Z = σ

R
′R −σ

S
′S + µ

R
−µ

S
=0 (20) 

 
Figure 2: Reduction of coordinates: (a) original coordinates, (b) reduced coordinates  

 

The reliability of the problem is estimated by using eq. (18). It corresponds to the 

minimum distance between the limit state surface and the origin (in the reduced 

coordinates system). By using simple trigonometry, this distance (reliability index) 

can be estimated as: 

 

  

β
HL

=
µ
R
−µ

S

σ
R

2
+σ

S

2

  (21) 

 

It should be emphasized here that in the present case of a linear limit state surface, 

the Hasofer-Lind reliability index corresponds exactly to the reliability index com-
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puted from FOSM if both R and S are normal variables. However, this is not the case 

for other limit state surfaces or random variable distributions.  

 

From Figure (2b), it is apparent that if the limit state line is closer to the origin in the 

reduced coordinate system, the failure region is larger, and if it is farther away from 

the origin, the failure region is smaller. Thus, the position of the limit state surface 

relative to the origin in the reduced coordinate system is a measure of the reliability 

of the system. Notice that the Hasofer-Lind reliability index can be used to calculate 

the failure probability as Pf = Φ(–βHL). This is the integral of the standard normal 

density function along the ray joining the origin and x’*. It is obvious that the nearer 

x’* is to the origin, the larger is also the most probable failure point. The point of 

minimum distance from the origin to the limit state surface, x’*, represents the worst 

combination of the stochastic variables and is appropriately named the ‘design 

point’ or the ‘most probable point MPP’ of failure.    

 

Finally, it should be noted that the Hasofer-Lind reliability index is invariant, be-

cause regardless of the form in which the limit state equation is written [e.g., (R–

S=0) or (R/S=1)], its geometric shape and the distance from the origin remain con-

stant.  

 

For the general case of a non-linear limit state surface, the assessment of the mini-

mum distance can be written as an optimization problem:  

 

 

minimize D= ′x
T
′x

subject to g( ′x ) = 0  

(22) 

 

By using Lagrange’s multipliers, the minimum distance (for n random variables) 

could be estimated as: 

 

  

β
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=−

′x
i

* ∂g

∂ ′X
i

⎛

⎝
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⎞

⎠
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*
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n

∑

∂g

∂ ′X
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⎛

⎝
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2*
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n

∑

  (23) 

 

where (∂g/∂X’i)
*
 is the i

th
 partial derivative evaluated at the design point (x1’

*
, 

x2’
*
,…, xn’

*
). The design point in the reduced coordinates is: 

 

  
′x
i

*
=−α

i
β
HL

    (i=1,2,...,n)   (24) 

 

where αi are the direction cosines along the coordinate axes X’i. They are given by: 

 



  

α
i
=

∂g

∂ ′X
i

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟

*

∂g

∂ ′X
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⎛

⎝
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⎞

⎠
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2*

i=1

n
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  (25) 

 

By using eq. (17), the design point (in the original space) is given by:  

 

  
x
i

*
= µ

X
i

−α
i
σ
X
i

β
HL

    (26) 

 

An algorithm was formulated by [Rac76] to compute βHL and xi’
*
 as follows: 

 

Step 1: Define the appropriate performance function g(X). 

 

Step 2: Assume initial values for the design point x
*

i. The initial design point 

is usually assumed to be at the mean value of the n –1 random variables. 

For the last random variable, its value is obtained from the performance 

function to ensure that the design point is located on the limit state surface 

g(X) = 0.  

 

Step 3: Obtain the design point in the reduced space x’
*
= [x1’

*
, x2’

*
,…, xn’

*
] as 

 

  
′x
i

*
= (x

i

*
−µ

X
i

) /σ
X
i

    (i=1,2,...,n)   (27) 

 

Step 4: Estimate the partial derivatives of the performance function (∂g/∂X’i)
*
 

with respect to the variables in the reduced space and evaluate them at xi’
*
. 

These derivatives can be estimated from the performance function in the 

original space by using the chain rule of differentiation 

 

  

∂g

∂ ′X
i

=
∂g

∂X
i

∂X
i

∂ ′X
i

=
∂g

∂X
i

σ
Xi

 (28) 

 

Define the column vector A such that 

 

 

Ai =
∂g

∂ ′Xi

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟
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 (29) 

 

Step 5: Compute the reliability index as 

 

  

β
HL

=−
A

T
′x
*

A
T
A

  (30) 

 



Step 6: Determine a vector of directional cosines as  

 

  

α=
A

A
T
A

  (31) 

 

Step 7: Obtain the new design point xi’
*
 for the n –1 random variables. 

 

Step 8: Determine the coordinates of the new design point in the original 

space for the n –1 random variables considered in Step 7 as 

 

  
x
i

*
= µ

X
i

+ ′x
i

*
σ
X
i

    (i=1,2,...,n)   (32) 

 

Step 9: Determine the value of the last random variable in the original space 

such that the estimated point belongs to the limit state surface g(X) = 0. 

 

Step 10: Repeat Steps 3 to 9 until convergence of βHL. 

 

Finally, notice that the Hasofer-Lind reliability index βHL can be used to estimate a 

first-order approximation of the failure probability as Pf ≈ Φ(–βHL). 

 

Example 2   Assessment of the reliability index by using FORM 

(Adapted from [San10]) 
 

Let us suppose that the performance function of a problem is defined by  

 

g(X1, X2, X3) = 6.2 X1 – X2 X3
2
 

 

where the random variables X1, X2, X3 follow normal distributions with means µX1 = 

20, µX2 = 5, and µX3 = 4; and standard deviations σX1 = 3.5, σX2 = 0.8, and σX3 = 0.4.  

 

Question 1: Estimate the reliability index by using FORM. 

 

Once the performance function is defined (Step 1), we define the coordinates of the 

design point in the original space (Step 2): 

 

  

x
* = x

1

* = µ
X1

, x
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1

*

x
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*
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= 20,5,4.979[ ]  
 

 

The Step 3 consists of obtaining the design points in the reduced space: 
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X1
) /σ
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′x
2

*
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2

*
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X2
) /σ
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′x
3

*
= (4.979−µ

X3
) /σ
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= 2.448

 

 

Then, (x’
*
)

T 
= [0, 0, 2.448]. In the Step 4, we estimate the vector containing the 

derivatives of the performance function evaluated at the design point (eqs. 28-29): 
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⎠

⎟⎟⎟⎟

*

=
∂g

∂X2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

*

σX2
=−(x3

*
)
2
σX2

=−19.84

A3 =
∂g

∂ ′X3

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

*

=
∂g

∂X3

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

*

σX3
=−2x2

*
x3
*
σX3

=−19.92

 

 

 

Therefore, A
T
 = [21.7, –19.84, –19.92]. The first estimate of the reliability index 

becomes (Step 5): 

 

  

β
HL

=−
A

T
′x
*

A
T
A

=1.374  

 

We estimate the vector of directional cosines in Step 6: 

 

  

α=
A

A
T
A

=

0.611

−0.559

−0.561

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

 

The new design point in the reduced space is estimated for the n – 1 random varia-

bles (Step 7): 

 

  

′x1
*

=−α1βHL = (−0.611)(1.374)=−0.840

′x2
*

=−α2βHL = (0.559)(1.374)= 0.768
 

 

Consequently, the corresponding values in the original space are (Step 8): 

 

  

x1
*

= µ
X1

+ ′x1
*
σ
X1

= 20+ (−0.840)3.5=17.06

x2
*

= µ
X2

+ ′x2
*
σ
X2

= 5+ (0.768)0.8= 5.614  

 



We estimate afterwards the value of x3
*
 such that it belongs to the limit state func-

tion (Step 9): 

 

 

x
3

*
=

6.2x
1

*

x
2

*
= 4.34  

 

The algorithm is repeated until convergence of the reliability index (Step 10). Table 

1 presents the results of various iterations. Convergence is reached after three itera-

tions for this example. We found a reliability index βHL = 1.413 that corresponds to a 

failure probability Pf ≈ 0.079 computed based on a first-order approximation.  

 

Table 1: Summary of the iterative process to estimate βHL 

Variable Iteration Number 

 1 2 3 

x1
*
 20 17.06 16.732 

x2
*
 5 5.614 5.519 

x3
*
 4.98 4.34 4.335 

    

βHL 1.374 1.413 1.413 

    

x1
*
 17.06 16.732 16.709 

x2
*
 5.614 5.519 5.521 

x3
*
 4.34 4.335 4.332 

 

3.2.1. Extension of AFOSM to the case of non-normal random varia-

bles 
 

To extend the Hasofer-Lind method to the case of non-normal random variables, 

Rackwitz and Fiessler [Rac78] proposed to transform each non-normal random 

variable into an equivalent normal random variable with a mean 
 
µ
X
i

e  and standard 

deviation
  
σ
X
i

e . This transformation allows estimating a solution in the reduced space 

by using the procedure explained in the previous paragraphs. The equivalent param-

eters evaluated at the design point xi
*
 are given by: 

 

  
µ
X
i

e = x
i

*
−Φ

−1
F
X
i

x
i

*( )⎡
⎣⎢

⎤
⎦⎥
σ
X
i

e
  (33) 

  

  

σXi
e =
φ Φ

−1
FXi xi

*( )⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥

fXi xi
*( )

 (34) 

 

where Φ[.] and ϕ[.] are the CDF and the PDF of the standard variate, respectively, 

and F
X
i

(.)  and fXi (.)  are the CDF and PDF of the original non-normal random vari-



able (some useful Matlab commandes may be found in Appendix). Notice that eqs. 

(33-34) are derived by equating the cumulative distribution functions and the proba-

bility density functions of the actual variables and the equivalent normal variables at 

the design point on the limit state surface. 

 

Since the equivalent parameters are evaluated at the design point, each iteration 

should include the assessment of the equivalent parameters. The before presented 

algorithm is thus modified as follows: 

 

• Steps 1 and 2 remain similar. 

 

• Step 3 should include the assessment of the equivalent parameters 
 
µ
X
i

e  and 

 
σ
X
i

e

 
at the design point for each non-normal random variable. These 

equivalent parameters will be used to determine the design point in the re-

duced space as follows  

 

  
′x
i

*
= (x

i

*
−µ

X
i

e
) /σ

X
i

e   (35) 

 

• Steps 4 to 7 remain exactly similar. 

 

• In Step 8, the assessment of the coordinates in the original space becomes 

 

  
x
i

*
= µ

X
i

e
+ ′x

i

*
σ
X
i

e   (36) 

 

• Finally, Steps 9 and 10 remain similar. 

 

 

3.3. Ellipsoid Approach 
 

The Hasofer-Lind reliability index can be formulated in a matrix form: 

 

   
β
HL

= min
g(X )=0

(X−µ)
T
C
−1
(X−µ)   (37) 

 

where X is a vector containing the n random variables, µ is a vector containning 

their mean values, and C is the covariance matrix. 

 

An intuitive interpretation of the reliability index was suggested in Low and Tang 

(cf. [Low97] and [Low04]), where the concept of an expanding ellipse (Figure 3) led 

to a simple method for computing the Hasofer-Lind reliability index in the original 

space of the random variables using an optimization tool available in most spread-

sheet software packages.  

 



When there are only two uncorrelated non-normal random variables X1 and X2, these 

variables span a two-dimensional random space, with an equivalent one-sigma dis-

persion ellipse (corresponding to βHL=1 in Eq. (37) without the min.), centered at the 

equivalent mean values �!
! and �!

!

 
and whose axes are parallel to the coordinate 

axes of the original space. For correlated variables, a tilted ellipse is obtained.  

 

Low and Tang (cf. [Low97] and [Low04]) reported that the Hasofer-Lind reliability 

index βHL may be regarded as the codirectional axis ratio of the smallest ellipse 

(which is either an expansion or a contraction of the 1−σ ellipse) that just touches 

the limit state surface to the 1−σ dispersion ellipse. They also stated that finding the 

smallest ellipse that is tangent to the limit state surface is equivalent to finding the 

most probable failure point. 

 

 
Figure 3: Ellipsoid approach for the computation of the Hasofer-Lind reliability 

index  

 

3.3.1. Ellipsoid Approach via Spreadsheet 
 

Low and Tang (cf. [Low97] and [Low04]) showed that the minimization of the Has-

ofer-Lind reliability index can be efficiently carried out in the Excel spreadsheet 

environment. The spreadsheet approach is simple and easy to understand because it 

works in the original space of random variables and does not require the additional 

step of transforming X to X’ where X’ is a transformed vector of the random varia-

bles in the uncorrelated Gaussian space. Notice however that the optimization in 

original space is not preferred from a computational perspective. This is because the 

optimization in a standardized space is mathematically more desirable in nonlinear 

optimization. For example, when minimizing the quadratic form of Eq. (37) in the 

original space; in some cases, the correct solution is obtained only when the solver 

option “use automatic scaling” is activated. As an alternative, Cholesky factorization 

of the covariance matrix can be used.  

 



When the random variables are non-normal, the Rackwitz-Fiessler equivalent nor-

mal transformation can be used to compute the equivalent normal mean �! and the 

equivalent normal standard deviation �!. The iterative computations of �! and �! 

for each trial design point are automatic during the constrained optimization search. 

For non-normal random variables, Eq. (37) may be rewritten as 

 

   

β
HL

= min
g(X )=0

X−µ
e

σ
e

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

T

R
−1 X−µ

e

σ
e

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
  (38) 

 

where µ
e
 and σ

e
 are vectors containning the equivalent mean and standard deviations 

values, respectively, and R
−1

 is the inverse of the correlation matrix. This equation 

will be used instead of Eq. (37) since the correlation matrix R displays the correla-

tion structure more explicitly than the covariance matrix C. 

 

Additional information on Solver’s options and algorithms can be found in the Mi-

crosoft Excel Solver’s help file and at www.solver.com. The implementation proce-

dure of the ellipsoid approach in the spreadsheet is described in [Low97] and 

[Low04] among others. Some Excel files are available at 

http://alum.mit.edu/www/bklow. 

 

3.4. Response Surface Method (RSM)  
 

In case of analytically-unknown system response (such as the responses computed 

using a finite element/finite difference method), several approaches based on the 

Response Surface Method (RSM) can be found in the literature with the aim of cal-

culating the reliability index and the corresponding design point. We present herein 

the approach by Tandjiria et al. [Tan00]. The basic idea of this method is to approx-

imate the system response Y(x) by an explicit function of random variables, and to 

improve the approximation via iterations. The system response can be approximated 

(in the original space of random variables) by: 

 

 

Y (x)= a
0

+ a
i
x
i

i=1

n

∑ + b
i
x
i

2

i=1

n

∑  (39) 

 

 

where xi are the random variables (µi and σi being their mean and standard deviation 

values, respectively); n is the number of random variables; and (ai, bi) are coeffi-

cients to be determined. The RSM algorithm is summarized as follows: 

 

Step 1: Evaluate the system response Y(x) at the mean value point µ and at the 

2n points each at µ ± kσ where k can be arbitrarily chosen (k = 1). 

 



Step 2: The above 2n+1 values of Y(x) are used to solve eq. (39) and find the 

coefficients (ai, bi). Then, the performance function g(x) can be constructed 

to give a tentative response surface function. 

 

Step 3: Solve eq. (37) to obtain a tentative design point and a tentative βHL 

subjected to the constraint that the tentative performance function of step 2 

be equal to zero. 

 

Step 4: Repeat Steps 1 to 3 until convergence of βHL. Each time, Step 1 is re-

peated, the 2n + 1 sampled points are centered at the new tentative design 

point of Step 3. 

 

Concerning the numerical implementation of the RSM algorithm described above, 

the determination of βHL requires (i) the resolution of eq. (39) for the 2n+1 sampled 

points, and (ii) the minimization of βHL given by Eq. (37). These two operations 

constitute a single iteration and can be done using the optimization toolbox available 

in Excel. Several iterations should be performed until convergence of βHL. Conver- 

gence is considered to be reached when the absolute difference between two succes-

sive values of the reliability index becomes smaller than 10
–2

. 

 

4. Second Order Reliability Method (SORM) 
 
Reliability assessment is relatively simple if the limit state function is linear. How-

ever, most of the limit state functions are nonlinear. The nonlinearity is due to non-

linear relationship between random variables, to the consideration of non-normal 

random variables, and/or to the transformation from correlated to uncorrelated ran-

dom variables. Indeed, a linear limit state in the original space becomes non-linear 

when transformed to the standard normal space if any of the variables is non-normal. 

Also, the transformation from correlated to uncorrelated variables might induce 

nonlinearity. 

 
Figure 4 presents examples of linear and nonlinear limit state functions in the re-

duced space. Both limit state functions have the same minimum distance point β, but 

the failure regions are different in both cases. The failure probability of the nonlinear 

limit state should be less than that of the linear limit state. The FORM approach 

approximates the limit state function with a linear function and will therefore pro-

vide the same assessment of the probability of failure for both cases. This approxi-

mation introduces errors in the assessment of the probability of failure. Consequent-

ly, it is preferable to use a higher order approximation for the failure probability 

computation.  

 

The SORM method improves the assessment given by FORM by including infor-

mation about the curvature (which is related to the second-order derivatives of the 

limit state function with respect to the basic variables). The Taylor series expansion 

of a general nonlinear function g(X1, X2,…, Xn) at the design point (x
*

1, x
*

2,…, x
*

n) is 

given by: 



 

 

g(X
1
,X

2
,...,X

n
) = g(x

1

*
, x

2

*
,..., x

n

*
)+

∂g

∂X
i

(x
i
− x

i

*
)

i=1

n

∑

                             +
1

2

∂
2
g

∂X
i
∂X

j

(x
i
− x

i

*
)(x

j
− x

j

*
)+ ...

j=1

n

∑
i=1

n

∑

 (40) 

 
where the derivatives are evaluated at the design point.  

 

 

 
Figure 4: Linear and nonlinear limit state functions  

 
For reliability analysis, the space of standard normal variables is more convenient 

for a second order approximation of g(). In the following, Xi and Yi will refer to 

random variables in the original and equivalent uncorrelated standard normal spaces, 

respectively. If all the variables are uncorrelated, 
  
Y
i
= (X

i
−µ

X
i

e
) /σ

X
i

e  where 
 
µ
X
i

e  and 

 
σ
X
i

e  are the equivalent normal mean and standard deviation of Xi at the design point 

xi
*
. 

 

In the Taylor series approximation given by eq. (40), FORM ignores the terms be-

yond the first order term, and SORM ignores the terms beyond the second-order 

term (involving second-order derivatives). 

 

Breitung [Bre84] proposed a simple closed-form solution for the probability compu-

tation using the theory of asymptotic approximation as:  

 

  

Pf ≈Φ(−βFORM ) (1+β
FORM
κi )

−1/2

i=1

n−1

∏
 

(41) 

 

where κi represents the principal curvatures of the limit state function at the mini-

mum distance point, and βFORM is the reliability index computed by the FORM 

method.  
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The assessment of Pf requires the computation of κi. Towards this aim, the random 

variables Yi (in the Y  reduced space) are rotated to another set of variables Yi’, such 

that the last Yi’ variable coincides with the vector α where α is the unit gradient 

vector of the limit state at the minimum distance point.  

 

Figure 5 describes the problem for two random variables indicating that the problem 

consists of a simply rotation of coordinates. This rotation can be carried out by an 

orthogonal transformation: 

 

 ′Y =RY  (42) 

 

where R is the rotation matrix. For instance, in the case of two random variables: 

 

  

R=
cosθ sinθ

−sinθ cosθ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
 (43) 

 

where θ is the counterclockwise angle of rotation of the axes (Figure 5). For n ran-

dom variables, the reader may refer to [Hal00] for the determination of the matrix R. 

 

 

 
Figure 5: Rotation of axis in the standardized space  

 

The matrix R is after used to estimate a matrix A, whose elements are denoted aij, as 

follows: 

 

 

aij =
RDR

T( )
ij

∇G(y
*
)

,      i, j =1,2,...,n−1  (44) 

 

where D is the n × n second-derivative matrix of the limit state function in the 

standard normal space evaluated at the design point and |∇G(y
*
)| is the length of the 

gradient vector in the standard normal space. 
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The last variable Yn coincides with the β vector computed with the FORM approach 

in the rotated normal space. In the next step, the last row and last column in the A 

matrix and the last row in the Y’ vector are dropped to take this factor into account. 

The limit state can be rewritten in terms of a second-order approximation in this 

rotated standard normal space Y’ as:  

 

  

′y
n

= β+
1

2

′y
T
A ′y  (45) 

 

where the matrix A has now the size (n – 1) × (n – 1). Afterwards, the curvatures κi 

of eq. (41) are computed as the eigenvalues of the matrix A, to estimate the proba-

bility of failure.  

 

Breitung’s SORM method uses a parabolic approximation (it does not consider a 

general second order approximation) by ignoring the mixed terms and their deriva-

tives in the Taylor series approximation in eq. (40). This approach uses the theory of 

asymptotic approximation to derive the probability estimate. This approximation is 

accurate for large values of β (which is the case for engineering purposes). However, 

the assessment is less accurate for smaller β.  

 

Example 3  Assessment of the reliability index by using SORM 

(Adapted from [San10]) 
 

Suppose that the performance function of a problem is defined by  

 

g(X1, X2) = X1X2 – 80 

 

where X1 follows a normal distribution with mean µX1 = 20 and standard deviation 

σX1 = 2. X2 follows a lognormal distribution with mean µX2 = 7 and standard devia-

tion σX2 = 1.4.  

 

The results of the FORM approach provide a reliability index βFORM =2.402 and the 

two following vectors x* and α:  

 

  

x
*

= (17.612,4.542)

α= (0.497,0.868)
 

 

where x* is the final design point in the original space and α is the vector of direc-

tion cosines.  

 

Question 1: Estimate the probability of failure by using SORM and compare the 

results with the probability of failure estimated from FORM. 

 



We already have the results of the FORM approach. We will transform X1 and X2  

from the original to the standard normal space. Since X2 is lognormal, we use the 

Rackwitz and Fiessler procedure to estimate the equivalent parameters: 

 

  

σX2
e =
φ Φ

−1
FX2 x2

*( )⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥

fX2 x2
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=
φ Φ

−1
FX2 4.542( )⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

fX2 4.542( )
= 0.9

µX2

e = x
2

*
−Φ

−1
FX2 x2

*( )⎡
⎣⎢

⎤
⎦⎥
σX2
e = 4.542−Φ

−1
FX2 4.542( )⎡
⎣⎢

⎤
⎦⎥
0.9= 6.418

 

 

Transforming X1 and X2 from the original to the reduced space gives: 

 

  

Y
1

= (X
1
−µ

X1
) /σ

X1

Y
2

= (X
2
−µ

X2

e
) /σ

X2

e
 

 

Then the values of the design point for each random variable in the reduced space 

are: 

 

 

y1
*

= (17.612−20) / 2=−1.194

y2
*

= (4.542−6.418) / 0.9=−2.085
 

 
The first step in SORM is to determine the matrix R from eq. (43). In the rotated 

coordinates, the second coordinate need to coincide with the unit gradient vector α. 

Figure 6 presents the example in the reduced space including the performance func-

tion and the design point. It also includes the geometrical description of the assess-

ment of θ. Thus, it can be noted that θ = 270º + tan
–1

(–2.085/–1.194) = 330.194º, and 

R becomes 

 

  

R=
cosθ sinθ

−sinθ cosθ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

0.868 –0.497

0.497 0.868

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
 

 

Notice that the elements of R are also easily available from the direction cosines, i.e. 

the components of the unit gradient vector α. 
 



 
Figure 6: Rotation of the axis in the reduced space  

 
The next step is to construct the matrix D that contains the second derivatives of the 

performance function with respect to each variable in the standard normal space. We 

use the chain rule of differentiation for determining the derivatives from the limit 

state function in the original space 
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Consequently 
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We estimate the following partial derivatives for the assessment of A  

 

-5 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

4 

5 

-5 -4 -3 -2 -1 0 1 2 3 4 5 

Y
2
 

Y
1 

Performance function 

Design point 

!

!

θ 

Y’
1
 

Y’
2
 



  

∂g

∂Y
1

=
∂g

∂X
1

∂X
1

∂Y
1

= X
2
σ
X
1

∂g

∂Y
2

=
∂g

∂X
2

∂X
2

∂Y
2

= X
1
σ
X
2

e

 

 
These derivatives evaluated at the design point are 
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and the length of the vector is 

 

 
∇G(y

*
) = 35.223

2
+ 4.086

2
= 35.46  

 

Therefore by applying eq. (44), the matrix A is  

 

 

A=
−0.044 0.026

0.026 0.044

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
 

 

Afterwards, we modify the matrix A by deleting the last row and column. In this 

case, we have only one element a11 = –0.044. Then, the eigenvalue of this one ele-

ment matrix is simply the same element: κ1 = a11 = –0.044.  

 

The approximation of the failure probability is estimated from eq. (41) 

 

  

Pf ≈Φ(−β
FORM

) (1+β
FORM
κi )

−1/2

i=1

n−1

∏

     ≈Φ(−2.402)
1

1+ (2.402)(−0.044)
≈ 8.609 ⋅10

−3

 

 

The probability of failure estimated from FORM is Pf = Φ(–2.402) = 8.144·10
–3

. The 

probability of failure estimate from the SORM procedure is about 5% larger. This 

result is expected because of the curvature of the performance function (Figure 6). ∎ 

 

5. Conclusions 
 

This chapter presented the First Order Reliability Method (FORM) and the Second 

Order Reliability Method (SORM). The First Order Reliability Method (FORM) 

makes use of the first and second moments of the random variables. This method 

includes two approaches. These are First-Order Second-Moment (FOSM) and Ad-



vanced First-Order Second-Moment (AFOSM) approaches. In FOSM, the infor-

mation on the distribution of random variables is ignored; however, in AFOSM 

(called also Hasofer-Lind approach), the distributional information is appropriately 

used. It was shown that contrary to FOSM, the Hasofer-Lind method led to an invar-

iant reliability index regardless of the form in which the limit state equation is writ-

ten. 

 

While AFOSM requires the transformation of the limit state surface to a standard 

space of random variables, the recent ellipsoid approach led to a simple method for 

computing the Hasofer-Lind reliability index in the original space of random varia-

bles using an optimization tool available in most spreadsheet software packages.  

 

In case of analytically-unknown system response (i.e. when the system response is 

computed using a finite element/finite difference method), the Response Surface 

Method (RSM) can be used to calculate the Hasofer-Lind reliability index and the 

corresponding design point. The basic idea of this method is to approximate the 

system response by an explicit function of random variables, and to improve the 

approximation via iterations.  

 

For the computation of the failure probability, it was shown that the Hasofer-Lind 

reliability index can be used to evaluate the failure probability when the limit state 

function is a linear function of uncorrelated normal variables or when the nonlinear 

limit state function is represented by a first-order (linear) approximation with equiv-

alent normal variables. SORM estimates the probability of failure by approximating 

the nonlinear limit state function (including a linear limit state function with corre-

lated non-normal variables) by a second-order representation.  
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Appendix: Summary of Matlab® functions for the nor-

mal distribution 
 

 

Function Description 

normpdf(X,mu,sigma) computes the PDF at each of the values in X using the 

normal distribution with mean mu and standard deviation 

sigma. X, mu, and sigma can be vectors, matrices, or mul-

tidimensional arrays that all have the same size. A scalar 

input is expanded to a constant array with the same dimen-

sions as the other inputs. The parameters in sigma must be 

positive. 

normcdf(X)  returns the standard normal CDF at each value in X. The 

standard normal distribution has parameters mu = 0 and 

sigma = 1. 

norminv(P,mu,sigma)  computes the inverse of the normal CDF using the corre-

sponding mean mu and standard deviation sigma at the 

corresponding probabilities in P. P, mu, and sigma can be 

vectors, matrices, or multidimensional arrays that all have 

the same size. A scalar input is expanded to a constant 

array with the same dimensions as the other inputs. The 

parameters in sigma must be positive, and the values in P 

must lie in the interval [0 1]. 

 

 


