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A HALF-SPACE THEOREM FOR GRAPHS OF CONSTANT MEAN CURVATURE 0 < H < 1 2 IN H 2 × R

We study a half-space problem related to graphs in H 2 × R, where H 2 is the hyperbolic plane, having constant mean curvature H defined over unbounded domains in H 2 .

Introduction

The half-space theorem by Hoffman and Meeks [START_REF] Hoffman | The strong halfspace theorem for minimal surfaces[END_REF] states that if a properly immersed minimal surface S in R 3 lies on one side of some plane P , then S is a plane parallel to P . As a consequence, they proved the strong half-space theorem which says that two properly immersed minimal surfaces in R 3 that do not intersect must be parallel planes.

These theorems have been generalized to some other ambient simply connected homogeneous manifolds with dimension 3. For example, we have half-space theorems with respect to horospheres in H 3 [START_REF] Rodriguez | Half-space theorems for mean curvature one surfaces in hyperbolic space[END_REF], vertical minimal planes in N il 3 and Sol 3 [START_REF] Daniel | Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group[END_REF], [START_REF] Daniel | Halfspace theorems for minimal surfaces in N il3 and Sol3[END_REF] and entire minimal graph in N il 3 [START_REF] Daniel | Halfspace theorems for minimal surfaces in N il3 and Sol3[END_REF]. It is known that there is no half-space theorem for horizontal slices in H 2 × R, since rotational minimal surfaces (catenoids) are contained in a slab [START_REF] Nelli | Minimal surfaces in H 2 × R. Bull[END_REF]- [START_REF] Nelli | Minimal surfaces in H 2 × R[END_REF], but one has half-space theorems for constant mean curvature 1 2 surfaces in H 2 × R [START_REF] Hauswirth | On complete mean curvature 1 2 surfaces in H 2 × R[END_REF]. In [START_REF] Mazet | A general halfspace theorem for constant mean curvature surfaces[END_REF], the first author proved a general half-space theorem for constant mean curvature surfaces. Under certain hypothesis, he proved that in a Riemannian 3-manifold of bounded geometry, a constant mean curvature H surface on one side of a parabolic constant mean curvature H surface Σ is an equidistant surface to Σ.

In Euclidian spaces of dimension higher than 4, there is no strong half-space theorem, since there exist rotational proper minimal hypersurfaces contained in a slab.

In [START_REF] Menezes | A half-space theorem for ideal Scherk graphs in M × R[END_REF], Menezes proves a half-space theorem for some complete vertical minimal graphs, more precisely, she looks at some particular graphs Σ ⊂ M × R over a domain D ⊂ M , where M is a Hadamard surface with bounded curvature, these graphs are called ideal Scherk graphs and their existence was proved by Collin and Rosenberg in [START_REF] Collin | Construction of harmonic diffeomorphisms and minimal graphs[END_REF] for H 2 and by Galvez and Rosenberg in [START_REF] Galvez | Minimal surfaces and harmonic diffeomorphisms from the complex plane onto certain Hadamard surfaces[END_REF] in the general case. In this paper, we are interested in the case where the graph has constant mean curvature. More precisely, we consider graphs over H 2 with constant mean curvature 0 < H < 1 2 . In that case, we prove a result similar to the one of Menezes. We notice that the value H = 1 2 is critical in this setting (see [START_REF] Mazet | The half space property for cmc 1/2 graphs in E(-1, τ )[END_REF][START_REF] Nelli | A halfspace theorem for mean curvature H = 1 2 surfaces in H 2 × R[END_REF] for the H = 1 2 case). The graphs that we will work with are graphs of functions u defined in a domain D ⊂ H 2 whose boundary ∂D is composed of complete arcs {A i } and {B j }, such that the curvatures of the arcs with respect to the domain are κ(A i ) = 2H and κ(B j ) = -2H. These graphs will have constant mean curvature and u will assume the value +∞ on each A i and -∞ on each B j . These domains D will be called Scherk type domains and the functions u Scherk type solutions. The existence of these graphs is assured by A. Folha and S. Melo in [START_REF] Folha | The Dirichlet problem for constant mean curvature graphs in H × R over unbounded domains[END_REF]. There, the authors give necessary and sufficient conditions on the geometry of the domain D to prove the existence of such a solution. In this context, we prove the following result.

Theorem 2. Let D ⊂ H 2 be a Scherk type domain and u be a Scherk type solution over D (for some value 0 < H < 1 2 ). Denote by Σ = Graph(u). If S is a properly immersed CMC H surface contained in D × R and above Σ, then S is a vertical translate of Σ.

The original idea of Hoffman and Meeks is to use the 1-parameter family of catenoids as a priori barriers to control minimal surfaces on one side of a plane (here a priori means that the choice of catenoids is independent of the particular minimal surface you want to control). In more general situations, it is not easy to construct such a continuous family of barriers so some authors use a discrete family (see for example [START_REF] Daniel | Halfspace theorems for minimal surfaces in N il3 and Sol3[END_REF][START_REF] Rosenberg | The half-space property and entire positive minimal graphs in M × R[END_REF]). Menezes works also with such a discrete family. In our case, it does not seem possible to construct such a family in an easy way. Our approach is based on the existence of only one barrier whose construction depends on the particular surface S.

This paper is organized as follows. In Section 2, we will give a brief presentation of the Scherk type graphs and the result of Folha and Melo. Section 3 contains the proof of Theorem 2, so one of the main step is the existence of the barriers which uses the Perron method. We also prove a uniqueness result for the constant mean curvature equation.

Constant mean curvature Scherk type graphs

In this section we present the theorem by A. Folha and S. Melo in [START_REF] Folha | The Dirichlet problem for constant mean curvature graphs in H × R over unbounded domains[END_REF] that assure the existence of constant mean curvature graphs which take the boundary value +∞ on certain arcs A i and -∞ on arcs B j . All along this section H will be a real constant in (0, 1 2 ). First, let us fix some notations. Let H 2 be the hyperbolic plane, and H 2 × R be endowed with the product metric. Let D be a simply connected domain in H 2 and u :

D -→ R a function. Denote by Σ = Graph(u) = {(x, u(x)), x ∈ D}. The upward unit normal to Σ is given by (1) N = 1 W ∂ t -∇u , where (2) 
W = 1 + |∇u| 2 .
The graph Σ has mean curvature H if u satisfies the equation ( 3)

Lu := div ∇u W -2H = 0,
where the divergence and the gradient are taken with respect to the metric on H 2 . Let us now give some definitions. Definition 1. We say that the boundary of a domain D in H 2 is a 2H-polygon if its boundary is made of a finite number of complete arcs with constant curvature 2H and the cluster points of D in ∂ ∞ H 2 are the end-points of these arcs. The arcs are called the edges of D and the cluster points are the vertices of D.

We notice that a complete curve in H 2 with constant curvature 2H is proper.

If Ω is a domain whose boundary is a 2H-polygon, we will denote by A i (resp. B i ) the arcs of the boundary whose curvature is 2H (resp. -2H) with respect to the inward pointing unit normal.

Definition 2. We say that a domain D in H 2 is a Scherk type domain if its boundary is a 2H-polygon and if each vertex is the end point of one arc A i and one arc B j . Such a domain D is drawn in Figure 1.

Definition 3.

Let Ω be a Scherk type domain. We say that P is an admissible inscribed polygon if P ⊂ Ω is a domain whose boundary is a 2H-polygon and its vertices are among the ones of Ω.

Let D be a Scherk type domain, in [START_REF] Folha | The Dirichlet problem for constant mean curvature graphs in H × R over unbounded domains[END_REF], Folha and Melo study the following Dirichlet problem (4)

     L(u) = 0 in D u = +∞ on A i u = -∞ on B i
In order to state the result of Folha and Melo, let us introduce some notations. Let P be an admissible inscribed polygon in D and let {d i } i∈I denote the vertices of P . Consider the set

Θ = {(H i ) i∈I | H i is a horodisk at d i and H i ∩ H j = ∅ if i = j}.
we notice that, by choosing sufficiently small horodisks, Θ is not empty. Let (H i ) i∈I be in Θ such that the following is true : each arc A i and B j meets exactly two of these horodisks. Denote by Ãi the compact arc of A i which is the part of A i outside these two horodisks. Let |A i | denote the length of Ãi . We introduce the same notations of the B j . For each arc η j ∈ ∂P , we also define ηj and |η j | in the same way.

We define

α(∂P ) = A i ∈∂P |A i |, β(∂P ) = B i ∈∂P |B i | and l(∂P ) = j |η j |,
where ∂P = ∪ j η j . We remark that a Scherk type domain has finite area. So we can introduce A(D) the area of D and A(P ) the area of P .

With these definitions we can state the main theorem of [START_REF] Folha | The Dirichlet problem for constant mean curvature graphs in H × R over unbounded domains[END_REF]. It could seem that the conditions depend on the choice of the horodisks in Θ, actually they are independent of that choice if the horodisks are small enough. The details and the proof of this theorem can be found in [START_REF] Folha | The Dirichlet problem for constant mean curvature graphs in H × R over unbounded domains[END_REF].

The main Result

In this section we will prove the following result Theorem 2. Let D ⊂ H 2 be a Scherk type domain and u be a Scherk type solution over D (for some value 0 < H < 1 2 ). Denote by Σ = Graph(u). If S is a properly immersed CMC H surface contained in D × R and above Σ, then S is a vertical translate of Σ.

The proof of the theorem consists in constructing barriers to control the surface S. Before starting the proof, let us give some notations and preliminary results that we will use.

So we fix a value of H ∈ (0, 1 2 ), a Scherk type domain D and a Scherk type solution u. Let y ∈ D and B y and B y be open balls centered in y such that B y B y D (see Figure 1). The following result consists in constructing a first barrier to control S. Lemma 1. There exists a constant > 0 such that for all t ∈ [0, )

there exists v ∈ C 2 (B y \ B y ) ∩ C 0 (∂(B y \ B y )) such that v solves (3) and v = u in ∂B y and v = u + t over ∂B y . Proof. Consider the operator F : C 2,α (B y \B y ) × C 2,α (∂(B y \B y )) -→ C 0,α (B y \B y ) × C 2,α (∂(B y \B y )) given by F (v, φ) = (Lv, v -φ).
Observe that F (u, u) = 0. Moreover, consider the operator 

D B y B 2 B 3 B 1 A 1 A 2 A 3 B y
T := D 1 F (u, u) : C 2,α (B y \ B y ) -→C 0,α (B y \ B y ) × C 2,α (∂(B y \ B y )) h -→ lim t-→0 F (u + th, u) -F (u, u) t We have that T (h) = Div ∇h -∇u W ∇u W , ∇h W , h .
Observe that T is a linear operator, of the form T = (T 1 , T 2 ) where T 1 is an elliptic operator of the form

T 1 (v) = a ij (x)D ij v + b i (x)D i v; a ij = a ji .
Moreover, since |∇u| ≤ C, we have that |∇u| W ≤ C < 1, this implies that T 1 is uniformly elliptic. We also have that the coefficients of T 1 belong to C 0,α (B y \ B y ). It follows by Theorem 6.14 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] 

that if g ∈ C 0,α (B y \ B y ) and φ ∈ C 2,α (∂(B y \ B y )), then there exists a unique w ∈ C 2,α (B y \ B y ) such that T 1 (w) = g in B y \ B y and w = φ in ∂(B y \ B y ). Then, T 1 is invertible.
We conclude that T is invertible. It follows by the implicit function theorem that for all φ close to u there exists a solution of Lv = 0 in B y \ B y with v = φ in ∂(B y \ B y ). In other words, it exists > 0 such that for all t ∈ [0, ) there exists v such that v solves (3) and v = u over ∂B y and v = u + t over ∂B y .

Let S be as in Theorem 2. Give p ∈ D, define g(p) by

g(p) = inf t∈R {(p, t) ∈ S} ∈ R ∪ {+∞}.
Observe that g is a lower semicontinuous functions and g ≥ u. From now on, we will assume that g > u (the case where g(p) = u(p) for a point p ∈ D will be considered in the proof of the theorem). Then for > 0 sufficiently small, we have that [START_REF] Galvez | Minimal surfaces and harmonic diffeomorphisms from the complex plane onto certain Hadamard surfaces[END_REF] g > u + on ∂B y . Now, let be as in Lemma 1, fix < where satisfies (5) and v given by Lemma 1 associated to . We will construct a second barrier to control the surface S. More precisely, we will prove the existence of a function β that satisfies

Lβ = 0 in D\B y , (6) 
β = u + in ∂B y . (7) Proposition 1. There is a solution β ∈ C 2 (D \ B y ) ∩ C 0 (D \ B y ) for the Dirichlet problem (6)-(7) such that max(u, v) ≤ β ≤ min(u + , g).
Proof. To prove this proposition we will use the Perron method. Let us recall the framework of this method. A function w ∈ C 0 (D \ B y ) is called a subsolution for L if for any compact subdomain U ⊂ D\B y and any solution h of ( 3) with w ≤ h on the boundary of U , we have w ≤ h on U.

First, observe that u is a subsolution for (3). Moreover, if w and w are subsolutions, the continuous function max(w , w) is also a subsolution.

Let ∆ ⊂ D \ B y be a geodesic disk of small radius such that κ(∂∆) ≥ 2H. Theorem 3.2 in [START_REF] Hauswirth | Infinite boundary value problems for constant mean curvature graphs in H 2 × R and S 2 × R[END_REF] implies that the Dirichlet problem for Equation (3) can be solved in ∆. So, for any such disk ∆ and subsolution w, we can define a continuous function M ∆ (w) as

M ∆ (w)(x) = w(x) if x ∈ D \ ∆ ν(x) if x ∈ ∆
where ν is the solution of Lν = 0 in ∆, with ν = w in ∂∆. Also, define u + = min(u + , g) and u -= max(u, v). Denote by Γ the set of all subsolutions w such that w ≤ u + on D \ B y ,

Claim 1. If w ∈ Γ,then M ∆ (w) ∈ Γ.
Proof of Claim 1. First we have to prove that M ∆ (w) is a subsolution. So, take a arbitrary compact subdomain U ⊂ D \ B y , and let h a solution of (3

) in U with M ∆ (w) ≤ h on ∂U . Since w = M ∆ (w) in U \ ∆ we have that M ∆ (w) ≤ h in U \ ∆.
Moreover, M ∆ (w) is a solution of (3) in ∆. Then, by the maximum principle, we have that

M ∆ (w) ≤ h in U ∩ ∆. So, M ∆ (w) ≤ h in U . Since U is arbitrary, it follows that M ∆ (w) is a subsolution in D \ B y .
Now we have to prove that M ∆ (w) ≤ u + . Observe that in D \ ∆, M ∆ (w) = w, since w ∈ Γ, then w ≤ u + , and so, M ∆ (w) ≤ u + in D \ ∆.

On the other hand, M ∆ (w) = ν in ∆, where ν is a solution of L(ν) = 0 in ∆ and ν = w on ∂∆. Thus ν ≤ u + = min(u + , g) on ∂∆. It follows by the maximum principle that ν ≤ u + in ∆. So, we have to prove that ν ≤ g in ∆.

Suppose that there exists q ∈ ∆ such that (ν -g)(q) < 0. Then, there exists p ∈ ∆ such that (ν -g)(p) = min(ν -g) = C < 0. Now, observe that the graph of g in ∆ is a piece of the surface S, let us denote it by S g . Since g ≥ ν + C, then the graph Σ ν+C of ν + C is a CMC 2H surface which is bellow the surface S g . Moreover, (p, g(p)) is a point of contact of Σ ν+C and S g , and by the maximum principle, S g = Σ ν+C . It follows that g = ν + C in ∆, since ν ≤ g on ∂∆ then C ≥ 0, and this contradicts C < 0. Then ν ≤ g in ∆.

We define our solution by the following formula

β(q) = sup w∈Γ w(q).
Observe that u -is a subsolution, since u and v are subsolutions. Also, u ≤ u + = min(u+ , g). Moreover, in the proof of Claim 1 we see that v ≤ u + . Then u -= max(u, v) ≤ u + . We conclude that u -∈ Γ, then Γ is non empty, and u + is an upper bound for any w in Γ, thus β is well defined.

The method of Perron claims that β is a solution of Equation ( 3).

Claim 2. The function β is a solution of (3) in D \ B y .
Proof of Claim 2. Let p ∈ D \ B y and ∆ ⊂ D \ B y a geodesic disk of small radius centered at p as above. By definition of β there exists a sequence of subsolutions (w n ) such that w n (p) -→ β(p). Then, consider the sequence of subsolutions M ∆ (w n ), we have that M ∆ (w n )(p) -→ β(p). Also, we have that M ∆ (w n ) is a bounded sequence of solutions of (3) in ∆, so, by considering a subsequence if necessary, we can assume that it converges to a solution w on ∆ with β ≥ w and w(p) = β(p). Let us prove that β = w on ∆, then β will be a solution of (3).

We have that β ≥ w. Suppose that there is a point q ∈ ∆ where β(q) > w(q). So, there is a subsolution s such that s(q) > w(q). Now consider the sequence of subsolutions M ∆ (max(s, w n )). We have that M ∆ (max(s, w n )) is a sequence of solutions of (3) in ∆. Thus, considering a subsequence, it converges to a solution s ≥ w of (3) in ∆.

So, we have w and s solutions of (3) in ∆, with w(p) = β(p) = s(p), thus by the maximum principle we have that w = s in ∆.

But, since M ∆ (max(s, w n )) ≥ s, we have that s ≥ s. This implies that s(q) ≥ s(q) > w(q), which contradicts w = s in ∆.

Until now we have a function β ∈ C 2 (D \ B y ) solution of (3) in D \ B y such that u ≤ β ≤ min(u + , g). But we don't have any information about β on the boundary ∂B y . So, the next step is prove that β is continuous up to ∂B y and β = u + in ∂B y . Claim 3. The function β is continuous up to the boundary ∂B y and takes the value u + on it.

Proof of Claim 3. We have that β(q) = sup w∈Γ w(q), then, β(q) ≤ u + (q) ≤ u + . On the other hand, u -(q) = max(u, v) ∈ Γ, then u -(q) ≤ β(q). Moreover, in ∂B y we have that u -(q) = u + . Thus, let p ∈ ∂B y , and {x n } a sequence such that x n -→ p. We have

u -(x n ) ≤ β(x n ) ≤ u + (x n ), since lim xn-→p u -(x n ) = lim xn-→p u + (x n ) = u(p) + , we have that lim xn-→p β(x n ) = u(p) + .
Then we define β(p) to be continuous on D \ B y and β = u + in ∂B y . This concludes the proof of Proposition 1.

We have proved the existence of a function β defined on D\B y such that max(u, v) ≤ β ≤ min(u + , g) and β ∈ C 2 (D \ B y ) ∩ C 0 (D \ B y ). Now we observe that, since v ≤ β ≤ u + we have by Theorem 1.1 in [START_REF] Spruck | Interior gradient estimates and existence theorems for constant mean curvature graphs in H n × R[END_REF] that ∇β is uniformly bounded close to ∂B y . This implies that β is a solution of a linear uniformly elliptic equation. It follows by Corollary 8.36 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] that β ∈ C 1,α (D \ B y ), and then β ∈ C 1 (D \ B y ).

In the next result we will prove a uniqueness result for CMC graphs in H 2 × R defined over unbounded domain in H 2 whose the existence was proved by A. Folha and S. Melo in [START_REF] Folha | The Dirichlet problem for constant mean curvature graphs in H × R over unbounded domains[END_REF]. 

A i ) = +∞ = β(A i ) and u(B i ) = -∞ = β(B i ).
For each i, let H i (n) be a horodisk asymptotic to the vertex 

d i of D such that H i (n+1) ⊂ H i (n) and ∩ n H i (n) = ∅.
= P n \By Div ∇u W u - ∇β W β = ∆ n ∇u W u - ∇β W β • η
where W 2 u = 1 + |∇u| 2 and W 2 β = 1 + |∇β| 2 . Thus 0 =

A n i ∇u W u - ∇β W β • η + B n i ∇u W u - ∇β W β • η + C n i ∇u W u - ∇β W β • η + ∂By ∇u W u - ∇β W β • η.
By theorem 5.1 in [START_REF] Folha | The Dirichlet problem for constant mean curvature graphs in H × R over unbounded domains[END_REF], these integrals can be estimated. We have

0 < |A n i | -|A n i | + |B n i | -|B n i | + 2|C n i | + ∂By ∇u W u - ∇β W β • η.
Then

∂By ∇u W u - ∇β W β • η > -2|C n i |.
Now, we have that β ≤ u + , suppose that β < u + , it follows by Lemmas 1 and 2 in [START_REF] Collin | Le problème de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés[END_REF] that ∂By ∇u Wu -∇β W β • η < 0. This yields a contradiction, since |C n i | -→ 0 when n -→ ∞, so we conclude that β = u + . Now we are able to prove our main theorem.

Proof of Theorem 2. We know that S is a properly immersed CMC surface contained in D × R above Σ. Then, let y ∈ D, B y ⊂ D and as above. We have three cases to analyze 1) Suppose that there exists p ∈ D such that g(p) = u(p) (is this the case we had let aside before Proposition 1). In this case, by the maximum principle, we conclude that u = β.

2) Suppose that g > u and inf(g -u) = 0. In this case, by the Proposition 1 there exists β solution of ( 6)-( 7) defined over D \ B y such that u ≤ β ≤ g. Moreover, Proposition 2 assures that β = u + . This yields a contradiction, since we assume that inf(g -u) = 0.

3) Finally, suppose that g > u and inf(g -u) = α > 0. Then, pushing up Σ by a vertical translations, that is, by considering u + α instead of u, we have now that g ≥ u + α and inf(g -α -u) = 0, this case reduces to cases (1) and ( 2) and we conclude that β = u + α, where α is a constant.

Theorem 1 .

 1 Let M denote a Hadamard surface with bounded curvature and let Σ = Graph(u) be an ideal Scherk graph over an admissible polygonal domain D ⊂ M . If S is a properly immersed minimal surface contained in D × R and disjoint from Σ, then S is a translate of Σ.

Theorem 3 .

 3 Let D be a Scherk type domain. Then there exists a solution u for the Dirichlet problem (4) in D if and only if for some choice of the horodisks (in Θ) at the vertices, α(∂D) = β(∂D) + 2HA(D) and for any admissible inscribed polygons P = D, 2α(∂P ) < l(∂P ) + 2HA(Ω) and 2β(∂P ) < l(∂P ) -2HA(Ω).

Figure 1 .

 1 Figure 1. The Scherk type domain D and the balls B y and B y

Proposition 2 .

 2 Let β ∈ C 1 (D \ B y ) solution of the Dirichlet problem (6)-(7) such that u ≤ β ≤ u + . Then, β = u + .Proof. Let us first analyze the boundary ∂D. As in section 2, let A 1 , B 1 , ..., A k , B k be the edges of the ∂D with u(

  For each side A i , let us denote by A n i the compact subarc of A i which is the part of A i outside the two horodisks, and by |A n i | the length of A n i . Analogously, we define B n i for each side B i . Denote by C n i the compact arc of ∂H i (n) contained in the domain D and let P n be the subdomain of D bounded by the closed curve formed by the arcs A n i , B n i and C n i and let us denote ∆ n = ∂(P n \ B y ). We have by the theorem of Stokes that 0
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