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sequences

Azadeh Saffarian, Mathieu Giraud, and Hélène Touzet

LIFL (UMR 8022 CNRS, University of Lille) and Inria Lille, France

Abstract. We introduce the concept of RNA multi-structures, that is a formal
grammar based framework specifically designed to model a set of alternate RNA
secondary structures. Such alternate structures can either be a set of suboptimal
foldings, or distinct stable folding states, or variants within an RNA family. We
provide several such examples and propose an efficient algorithm to search for
RNA multi-structures within a genomic sequence.

1 Introduction

Structural RNAs play a wide range of roles in the cell of all organisms. In many RNA
families the spatial architecture of the molecule is an important component of its func-
tion [1, 9]. This spatial architecture is mainly built upon the set of base pairings, that is
captured in the secondary structure. Over the years, a great number of computational
methods have been proposed to model consensus secondary structures. In many cases
however, the signature for an RNA family cannot be compiled into a single consensus
structure, and is mainly given by a set of alternate secondary structures. For example,
certain classes of RNAs adopt at least two distinct stable folding states to carry out their
function. This is the case of riboswitches, that undergo structural changes upon binding
with other molecules [5], and recently some other RNA regulators were proven to show
evolutionary evidence for alternative structure [11]. The necessity to take into account
multiple structures also arises when modeling an RNA family with some structural
variation across species, or when it comes to work with a set of predicted suboptimal
foldings. The objective of this paper is to propose a model to deal with such set of al-
ternate secondary structures. We introduce the formal concept of RNA multi-structures,
that represent a set of alternate RNA secondary structures in a compact and non redun-
dant way. The definition uses formal grammars. Formal grammars have been applied
extensively to the problem of RNA folding, aligning and homology searching [6,8,10].
Compared to other tools from language theory, such as deterministic finite automata
and HMMs, they are the method of choice because they are able to model long-range
interactions. Here we exploit the power of this formalism to encode alternative foldings.
The paper is organized as follows. In Section 2, we briefly recall some basic definitions.
Section 3 introduces RNA multi-structures. Section 4 presents some examples to illus-
trate the utility of the concept. Lastly, in Section 5, we describe an algorithm to search
for a RNA multi-structure in a genomic sequence.
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2 RNA secondary structures

Throughout this paper, we see RNA secondary structures as pure combinatorial objects,
composed of helices. Assume we have a linear sequence S provided with totally ordered
positions. An interval is a pair of positions 〈x,y〉 of S such that x≤ y. The interval 〈x,y〉
precedes the interval 〈x′,y′〉 if y < x′. A helix h is a pair of intervals (h1,h2) such that
h1 = 〈x,y〉 precedes h2 = 〈x′,y′〉. So a helix is characterized by four positions on S,
denoted h.5start, h.5end, h.3start, h.3end for x,y,x′ and y’ respectively. We say that
the helix g is nested in the helix h if h.5end < g.5start and g.3end < h.3start. We say g
is juxtaposed with h if g.3end < h.5start. A secondary structure is a set of helices that
are all pairwise nested or juxtaposed. Note that in general any relation between any two
helices is allowed: They can overlap, form a pseudoknot, or be included in each other.

(a) Set of helices

GUAAAUAUAGUUUAACCAAAACAUCAGAUUGUGAAUCUGACAACAGAGGCUUACGACCCCUUAUUUACC

1 (((((((......................................................))))))).

2 .........((((.....))))...............................................

3 .........((((((((..............................)).))).)))............

4 ....................(((......))).....................................

5 .......................(((((((...))))))).............................

6 ............................((((((................)))))).............

7 ...................................((((....))))......................

8 ..........................................((.((.......)).))..........

(b) Helix graph (c) Directed helix graph
1
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Fig. 1. Human mitochondrial tRNA sequence (source FJ004809.1/12137-12205 – RFAM,
RF0005 [3]). (a) Helices are numbered from 1 to 8 from 5’ to 3’, and are written in Vienna
bracket-dot format. (b) Helix graph. (c) Directed helix graph: h−−I g means that g is juxtaposed
with h, and h−. g means that g is nested in h.
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3 RNA multi-structures

Before proceeding to the formal definition, we illustrate our motivation with a simple
example taken from the Human mitochondrial tRNA sequence. This sequence is 69nt
long and has eight thermodynamically stable helices, which are represented in Figure 1-
(a). We denote this set of helices H0. The elements of H0 can combine to form a variety
of secondary structures. The question that we want to address is: How can we encode
this set of all secondary structures, or a given subset of these secondary structures, into
a single compact data structure? Furthermore we want to take advantage of the redun-
dancy between the structures, since the structures may share some structural modules,
and we want that the data structure can be efficiently used for further queries.

In first approach, the set of helices can be represented by a graph, called the helix
graph, whose vertices are helices, and there is an edge between every two vertices if
helices are either juxtaposed, or nested. This graph is represented in Figure 1-(b). In
this graph, the set of all secondary structures is exactly the set of cliques. However, this
representation does not convey the necessary information to understand the topology of
the set of helices. A better approach is to classify edges in two categories. This is what
is done in the directed graph of Figure 1-(c). Plain arcs are for juxtaposed helices, and
dotted arcs are for nested helices. Arcs are oriented in the same direction as the 3start
positions on the underlying sequence S. In this graph, any secondary structure can be
seen as a selection of plain paths, such that any two plain paths are linked by dotted
paths. Each plain path characterizes a flat structure.

Definition 1. A set of helices w is a flat structure if, for any two distinct helices h and g
in w, h and g are juxtaposed.

It is clear that any secondary structure can be partitioned into flat structures. We say that
a flat structure w is nested into a helix h if all helices of w are nested into h. We define
a multi-structure as a combination of flat structures, generated by a tree grammar.

Definition 2. A multi-structure is a pair M = (H ,G ), where H is a set of helices
and G is a tree grammar. The grammar alphabet contains a start symbol S, a binary
terminal symbol ◦, and for each helix h of H , a non-terminal symbol H and a terminal
symbol h. All its productions are of the form

(1) S→ H1 ◦ . . .◦Hq
(2) H → h(H1 ◦ . . .◦Hq)
(3) H → h

where h1 ◦ . . .◦hq is any flat structure on H in (1), and a flat structure that is nested in
h in (2).

In the definition of G , H1 ◦ . . .◦Hq indicates which plain paths from the helix graph are
authorized in the multi-structure, and h(. . .) which dotted paths are authorized in the
multi-structure. The ◦ symbol allows to generate trees of arbitrary arity. An instance of
the multi-structure M is any structure recognized by its grammar G . It is straightfor-
ward to verify that each instance of a multi-structure is a secondary structure.
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4 Examples of RNA multi-structures

4.1 Example on mitochondrial tRNA (cont’d)

We continue with our motivating example with Human mitochondrial tRNA sequence
introduced in Figure 1. If we want to have all possible secondary structures for the helix
set H0, productions for G0 are all possible rules that respect conditions (1), (2) or (3) in
Definition 2.

S → H1 | H2 | H2 ◦H5 | H2 ◦H5 ◦H8 | H2 ◦H6 | H2 ◦H7 | H2 ◦H8 | H3 | H4
| H4 ◦H7 | H4 ◦H8 | H5 | H5 ◦H8 | H6 | H7 | H8

H1 → h1(H2) | h1(H2 ◦H5) | h1(H2 ◦H5 ◦H8) | h1(H2 ◦H6) | h1(H2 ◦H7)
| h1(H2 ◦H8) | h1(H3) | h1(H4) | h1(H4 ◦H7) | h1(H4 ◦H8)
| h1(H5) | h1(H5 ◦H8 ◦H6) | h1(H7) | h1(H8) | h1

H2 → h2
H3 → h3(H4) | h3(H4 ◦H7) | h3(H5) | h3(H7) | h3
H4 → h4
H5 → h5
H6 → h6(H7) | h6
H7 → h7
H8 → h8

By construction, the language of this grammar is exactly the set of all secondary struc-
tures on H0. The reader is invited to check that it contains 43 structures.

We take this example a step further and address the problem of building a multi-
structure for all locally optimal secondary structures on H0. A locally optimal sec-
ondary structures is a secondary structure to which it is not possible to add a sup-
plementary helix [4, 12]. In other words, it is a maximal clique in our helix graph of
Figure 1. In [12], we have proved that locally optimal secondary structures are exactly
the secondary structures that are partitioned into some maximal flat structures (called
maximal for juxtaposition structures), corresponding to some maximal plain paths in
the helix graph. Here this result allows to define G1.

S→ H1
H1 → h1(H2 ◦H5 ◦H8) | h1(H2 ◦H6) | h1(H3) | h1(H4 ◦H8)
H2 → h2
H3 → h3(H4 ◦H7) | h3(H5)

H4 → h4
H5 → h5
H6 → h6(H7)
H7 → h7
H8 → h8

The number of instances is reduced to 5: h1(h2 ◦ h5 ◦ h8), h1(h2 ◦ h6(h7)), h1(h3(h4 ◦
h7)), h1(h3(h5)), h1(h4 ◦h8). These instances correspond to all maximal cliques in the
helix graph: {1,2,5,8},{1,2,6,7},{1,3,4,7},{1,3,5},{1,4,8}. As expected, none are
included in each other.

Lastly, multi-structures can be used to encode a pre-defined set of secondary struc-
tures. This time, we start from a set of candidate secondary structures with low free
energy level. We ran the mfold software with 20% suboptimality [13] on our tRNA
sequence, and get four suboptimal structures, shown in Figure 2. From this set of struc-
tures, we extracted the set of helices, that appears to be the same helix set as H0. To
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Fig. 2. Mfold output for the Human mitochondrial tRNA sequence

build the productions of the grammar G2, we consider for each helix h the flat structure
composed of all helices connected to the multibranch loop closed by h.

S→ H1
H1 → h1(H2 ◦H5 ◦H8) | h1(H2 ◦H6) | h1(H3)
H2 → h2
H3 → h3(H4 ◦H7) | h3(H5)

H4 → h4
H5 → h5
H6 → h6(H7)
H7 → h7
H8 → h8

Compared to G1, the production H1 → h1(H4 ◦H8) is missing since none of the four
suboptimal structures contains this combination of helices. This new multi-structure
has four distinct instances, that correspond exactly to the four suboptimal secondary
structures of Figure 2: {1,2,6,7}, {1,3,5}, {1,2,5,8} and {1,3,4,7}. This construction
is guaranteed to give all input structures. We will see in the following example that it
can happen that some new instances are created by the grammar.

4.2 Multi-structures for bacterial RNAse P RNAs

In this second example, we explain how to model an RNA family with a multi-structure.
Bacterial RNase P RNAs fall into two major classes that share a common catalytic core,
but also show some distinct structural modules: type A (represented by Escherichia
coli in Figure 3) is the common and ancestral form found in most bacteria, and type
B (represented by Bacillus subtilis in Figure 3) is found in the low-GC content gram-
positive bacteria [7]. We explain how to gather the two structures in a same multi-
structure. Following the nomenclature of the RNase P database, helices are labeled P1−
P18 from 5’ to 3’ in the E. coli structure. Helices P4 and P6 form pseudoknots and do not
belong to the secondary structure. B. subtilis features some additional helices, denoted
P5.1, P10.1, P15.1 and P19, and lacks helices P13, P14, P16 and P17. The corresponding
grammar is obtained by taking all flat structures of each of the two consensus secondary
structures for type A and type B.
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S → P1
P1 → p1(P2) | p1(P2 ◦P19)
P2 → p2(P3) | p2(P3 ◦P5 ◦P15 ◦P18) | p2(P3 ◦P5 ◦P15 ◦P15.1 ◦P18)
P3 → p3
P5 → p5(P5.1 ◦P7) | p5(P7)

P5.1 → p5.1
P7 → p7(P8 ◦P9 ◦P10)
P8 → p8
P9 → p9

P10 → p10(P10.1 ◦P11) | p11
P10.1 → p10.1

P11 → p11(P12) | p11(P12 ◦P13 ◦P14)
P12 → p12
P13 → p13
P14 → p14
P15 → p15(P16) | p15

P15.1 → p15.1
P16 → p16(P17)
P17 → p17
P18 → p18
P19 → p19

Green non-sulfur Bacteria RNase P RNAs are known to show some notable variation
against the forms A and B. The majority of them (represented here by H. auriantacus
in Figure 3) are of the type A class, except for the structural module P18/P15.1 that
is instead quite similar to that of the type B and for the helix P19. One exception is
represented by the sequence of T. roseum, which has independently converged with the
class B RNAs (presence of helices P10.1 and P15.1, and absence of helices P13, P14 and
P19). However, T. roseum RNA retains P16/P17 and does not contain P5.1 [7] (see Figure
3). Interestingly, these two variants appear as instances of the multi-structure designed
to encode solely types A and B. It means that in this example, these two new structures
created by the multi-structure are functional and have been selected by the evolution.

5 Searching multi-structures in genomic sequences

We now turn to the following problem: Given a multi-structure M = (H ,G ) and a
text such as a genomic sequence, how to identify occurrences of M in a text. For that,
we assume that the text is given by a list of putative helices K, that have been obtained
by preprocessing the genomic sequence. We define formally what is an occurrence of a
multi-structure in such a text.

Definition 3. Let H and K be two sets of helices. A helix mapping from H to K is
an injective function φ : H 7→ K such that, for any two helices h and h′ in H , if h is
nested in h′, then φ(h) is nested in φ(h′), and if h is juxtaposed with h′, then φ(h) is
juxtaposed with φ(h′).

Definition 4. Let M = (H ,G ) be a multi-structure and K be a text defined by a set of
helices. An occurrence of M in K is a pair (H ′,φ), where H ′ is a subset of H and φ
is a helix mapping from H ′ to K.
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Fig. 3. Secondary structures for bacterial RNase P RNA (source [2]).
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This definition allows for approximate search with errors, since H ′ is not required
to contain all helices of the instances of the multi-structure. Note also that in this general
definition, we do not specify whether one instance or all instances of the multi-structure
should appear in the text. This gives rise to two distinct searching problems, that are
formalized as follows.

Simple occurrence problem: Let e be a natural number. Find in the text K all occurrences
of M with at most e errors, where the number of errors of an occurrence (H ′,φ) is
defined as the minimal number of helices appearing in some instance of M and that are
not in H ′.

Universal occurrence problem: Let e be a natural number. Find in the text K all oc-
currences of M with at most e errors, where the number of errors of an occurrence
(H ′,φ) is defined as the maximal number of helices appearing in some instance of M
and that are not in H ′.

The simple occurrence problem consists in finding in the text K all positions where at
least one possible instance of the multi-structure matches the putative helices K. For ex-
ample, considering the multi-structure M = (H0,G2), the occurrence ({1,3,4,5},φ),
with φ(1) = 1, φ(3) = 3, φ(4) = 5 and φ(5) = 7, has no errors because it matches the
instance {1,3,5}. This applies typically to RNA sequences that are provided with a set
of potential secondary structures, such as suboptimal secondary structures of Figure 2,
or variants for bacterial RNase P RNA of Figure 3. When the multi-structure encodes a
set of suboptimal predicted structures, this can serve for example to improve homology
searching, even if the real structure is not know: Build the associated multi-structure,
then use this multi-structure to scan a genomic sequence in conjunction with sequence
similarity.

The universal occurrence problem asks that all instances of the multi-structure
match the same location in the text. This applies for example to RNA sequences that
support several stable folding states, such as riboswitches.

We need some preliminary definitions to describe the algorithms for the simple
occurrence and universal occurrence problems. We first define two total orders between
helices, that apply both on helices of the multi-structure and on helices of the text. 4 is
such that the start positions of the helices are sorted from 5’ to 3’: f 4 g⇐⇒ f .5start ≤
g.5start, and orders arbitrarily helices with the same 5start position. v is such that the
end positions of the helices are sorted from 5’ to 3’: f v g ⇐⇒ f .3end ≤ g.3end, and
orders arbitrarily helices with the same 3end position. In the text K, we denote K[k..`]
the set of helices that are greater than k for the 4 ordering and smaller than ` for the v
ordering: K[k..`] = { f ∈ K;k 4 f v `}.

The algorithm works by decomposing the multi-structure into smaller structures.
Given a flat structure w = h1 ◦ . . .◦hq, M [h1 ◦ . . .◦hq] denotes the structures that origi-
nate from h1 ◦ . . .◦hq : All structures that are generated from H1 ◦ . . .◦Hq in G .

We define S(w,k, `) as the minimal number of errors to match M [w] with text he-
lices in K[k..`] in the simple occurrence problem, and T (h,k, `) as the minimal number
of errors to matches structures nested in h with text helices in K[k . . . `]:

T (h,k, l) = min {S(w,k, `),H→ h(w) ∈ G )} (�)
Equations for calculating S are given in Figure 4.
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S(λ ,k, `) = 0
S(h1 ◦h2 ◦ . . .◦hq,k, `) =

Case 1: if K[k..`] is empty, then ||M [h1 ◦ . . .◦hq]||
Case 2: otherwise, if `@ k, then S(h1 ◦ . . .◦hq,k+1, `)

Case 3: otherwise

min





3-a: Helix k of the text is not in the multi-structure
S(h1 ◦ . . .◦hq,k+1, `)

3-b: Helix h1 is not present in the text, but some helix of M [h1]
is found in the text
min

k4pv`
1 + T (h1,k, p) + S(h2 ◦ . . .◦hq,firstJuxt(p), `)

3-c: No helix of M [h1] is found in the text
||M [h1]|| + S(h2 ◦ . . .◦hq,k, `)

3-d: Helix h1 is matched with helix k of the text
T (h1,firstNested(k), lastNested(k)) + S(h2 ◦ . . .◦hq,firstJuxt(k), `)

Multi-structure Text

. . .

h1

. . .

h2

. . .

hq

last

`
�rstJuxt(k)k+1

k

Nested(k)
�rst

Nested(k)

Case 3-a: Helix k is not in the Case 3-b: Helix h1 is not in the
multi-structure text but some helix of M [h1] is

. . .. . . . . .

k+1

h1 h2 hq

`

. . .. . . . . .

h1 h2 hq

`
�rstJuxt(p)

pk

Case 3-c: No helix of M [h1] is found Case 3-d: Helix h1 is matched with k
in the text

. . .. . . . . .

h1

k

h2 hq

`

. . .. . . . . .

Nested(k) Nested(k)
�rst last

h1 h2 hq

`
�rstJuxt(k)

k

Fig. 4. Recurrence equations to compute S values for the simple occurrence problem. λ denotes
the empty flat structure, k+1 the helix succeeding k for 4, firstJuxt(k) the first helix according
to 4 that is juxtaposed with k, firstNested(k) the first helix according to 4 that is nested in k, and
lastNested(k) the last helix according tov that is nested in k. ||M [w]||1+ min {||M [w]||;H→
h(w) ∈ G } and ||M [h1 ◦ . . . ◦ hq]|| = ||M [h1]||+ ||M [h2 ◦ . . . ◦ hq]||. Cases 1 and 2 are initial
cases. We give below an example for case 3.
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Property 1: The value min{S(w,k0, `0),S→ w ∈ G }, where k0 is the smallest helix of
K for the 4 ordering and `0 the largest helix of K for the v ordering, gives the number
of errors to match M against K, such as defined in the simple occurrence problem.

For the universal occurrence problem, analogous equations hold, where the two min
operators in Equation (�) and in the caption of Figure 4 have to be replaced by max
operators when computing T and ||M [w]||. The number of errors to match M against
K is then given by max{S(w,k0, `0),S→ w ∈ G }.

Initialization of all values in T to +∞

For each helix ` in the text K in increasing order for v
wold := λ
For each �at structure w = h1 ◦ . . .◦hq in W in increasing order for vlex

s := length of the longest common su�x between w and wold

For each helix k in K[1..`] in decreasing order for 4
For i := s+1 to q

compute S′[i,k] := S(hq−(i−1) ◦ . . .◦hq,k, `) with Equations of Fig. 4 (?)
End for i
For each helix h in H such that H→ h(w) ∈ G

T [h,k, `] := min(T [h,k, `],S′[q−1,k])
End for h

End for k
wold := w

End for w
End for `

Fig. 5. Implementation of equations of Figure 4

It is possible to implement equations of Figure 4 using dynamic programming for T
and S. There are mn2 values to compute for function T , where m and n are the numbers
of helices in H and K respectively. Considering S, one can note that the first parameter
w is always a suffix of some flat structure. A suffix of w = h1 ◦ . . .◦hq is any flat structure
of the form hi ◦ · · · ◦ hq for any 1 ≤ i ≤ q. If we denote by W the set of flat structures
on H that appears in a right-hand-side of a production of G , the total number of all
different suffixes of W is bounded by σ = ∑w∈W |w|. So the total number of different
values to compute for S and T is in O(mn2 +σn2). We still have to discuss the order
of execution to compute T and S. When computing T (h,k, `), we need to access values
of S of the form S(w,k, `), where w is a flat structure nested in h. When computing
S(w,k, `), and supposing that all required values for T are known, we only need to
access values of S that are of the form S(w′,k′, `), where w′ is always a suffix of w.
More precisely, either w′ = w and k ≺ k′, or w′ is a proper suffix of w and k 4 k′. Note
also that the last parameter ` is unchanged. This means that to compute S(w,k, `), we can
forget all previously computed values for S whose first parameter is not a suffix of w and
whose last parameter is not `. However, as some flat structures of W may share common
suffixes, some S(w′,k′, `) values are used several times. To prevent redundant useless
computations, it is thus necessary to order flat structures according to their suffixes. We
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define the vlex order on W as the lexicographic ordering built on v, starting from the
rightmost helices: h1 ◦ · · · ◦hq−1 ◦hq vlex h′1 ◦ · · · ◦h′q′−1 ◦h′q′ if, and only if, hq @ h′q′ , or
hq = h′q′ and h1 ◦ · · · ◦hq−1 vlex h′1 ◦ · · · ◦h′q′−1.

It follows from these remarks that helices ` should be enumerated in increasing or-
der for v, flat structures w of W in increasing order for the lexicographic ordering vlex,
helices k in decreasing order for 4, and suffixes of a given flat structure in decreasing
order for 4. Figure 5 shows the resulting algorithm, using a permanent two-dimensional
table for T of size mn2 and a temporary two-dimensional table S′ for S. For a given helix
` and a flat structure w, we eventually store in S′[ j,k] the value of S for the suffix of w
of size j, compared to the text K[k..`], that is S′[ j,k] = S(hq−( j−1) ◦ . . . ◦ hq,k, `). The
table S′ is of size y×n, where y≤ m is the maximal length of a flat structure in W , and
n is the number of helices in K. This algorithm thus requires space O(mn2). As for the
time complexity, the loop on ` has O(n) iterations, and, for each ` and w, the loop on
k has also O(n) iterations. In the worst case, there is no common suffixes between flat
structures of W : for each flat structure w, the loop on i covers all helices of w, in O(y)
executions of the (?) line. For any fixed ` and k, the total number of executions of the
(?) line is thus bounded by σ . Finally, each execution of the (?) line takes at worst O(n)
time (loop on p with k 4 pv `, see case 3b of Figure 4). Taking all together, the algo-
rithm runs is in O(σn3) worst-case time. Note that the algorithm of Figure 5 computes
the minimal number of errors. Retrieving the actual best alignments of the pattern with
the text is done through backtracking in the T table, recomputing only the relevant S
tables.

6 Conclusion

We have shown that our definition of RNA multi-structure can faithfully model several
situations where alternate structures naturally arise. This result suggests many ques-
tions for future research: How to build automatically multi-structures? How to sample
or enumerate them? How to compare them? How to search for structural elements in a
multi-structure? In this paper, we have investigated the pattern matching problem, and
have provided an algorithm to search for RNA multi-structures in a text. We have made
the decision to stay at a abstract level. The RNA sequence and the text are both defined
as sets of helices, that can be either nested or juxtaposed. However, there are several
directions to make the model more realistic, such as adding compatibility relations or
distance contraints between helices. This additional information also makes the algo-
rithm significantly faster in practice. A prototype has been implemented and is available
upon request.

Acknowledgments: The authors would like to thank Robert Giegerich (Bielefeld Uni-
versität) for fruitful discussions and valuable suggestions, which helped to improve
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