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Introduction

The Dirichlet space D(µ), associated with µ, consists of holomorphic functions on the unit disc whose derivatives are square integrable when weighted against the Poisson integral of µ. In this paper we study cyclic vectors and invariant subspaces of the shift operator on D(µ). The corresponding problem for the Hardy space H 2 was solved by Beurling in [START_REF] Beurling | On two problems concerning linear operators in Hilbert space[END_REF]: the cyclic vectors are precisely the outer functions and the invariant subspaces are generated by inner functions. Brown-Shields in [START_REF] Brown | Cyclic vectors in the Dirichlet space[END_REF] studied cyclicity in the classical Dirichlet space D. They proved that the set of zeros of cyclic functions in the Dirichlet space has zero logarithmic capacity and this led them to ask whether any outer function with this property is cyclic, see also [START_REF] El-Fallah | Cyclicity in the Dirichlet space[END_REF][START_REF] El-Fallah | On the Brown-Shields conjecture for cyclicity in the Dirichlet space[END_REF][START_REF] Hedenmalm | Invariant subspaces in Banach spaces of analytic functions[END_REF][START_REF] Richter | Invariant subspaces of the Dirichlet shift and pseudocontinuations[END_REF] on the study of cyclic vectors. A series of results was obtained by Richter and Richter-Sundberg in [START_REF] Richter | A representation theorem for cyclic analytic two-isometries[END_REF][START_REF] Richter | Invariant subspaces of the Dirichlet shift[END_REF][START_REF] Richter | A formula for the local Dirichlet integral[END_REF][START_REF] Richter | Multipliers and invariant subspaces in the Dirichlet space[END_REF][START_REF] Richter | Invariant subspaces of the Dirichlet shift and pseudocontinuations[END_REF] for Dirichlet spaces D(µ) and especially for the description of their invariant subspaces. More recently, Guillot in [START_REF] Guillot | Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces[END_REF] obtained a precise characterization of cyclic vectors for Dirichlet spaces associated with finitely atomic measures. We refer the reader to [START_REF] El-Fallah | A primer on the Dirichlet space[END_REF] on these problems. In this work, we focus our attention in the study of the cyclic vectors and the invariant subspaces for the shift operator acting on the Dirichlet space D(µ) associated with the measures with countable support.

We now introduce the necessary notation. Let H 2 be the classical Hardy space of the open unit disc D. If µ is a positive Borel measure on T, the Dirichlet space D(µ) is the set of all functions f ∈ H 2 such that

D µ (f ) = 1 π D |f ′ (z)| 2 P µ (z)dA(z) < ∞,
where dA(re it ) = (1/π)rdrdt denotes the normalized area measure on D and P µ is the Poisson integral of µ :

P µ (z) = T 1 -|z| 2 |1 -ζz| 2 dµ(ζ).
The space D(µ) is endowed with the norm

f 2 µ := f 2 H 2 + D µ (f ). The classical Dirichlet space D is precisely D(m)
where m denotes the normalized Lebesgue measure.

Given

f ∈ D(µ), we denote by [f ] D(µ) the smallest invariant subspace of D(µ) containing f ; namely, [f ] D(µ) := {pf : p is a polynomial}. We say that f is cyclic for D(µ) if [f ] D(µ) = D(µ). Denote by S the shift operator on D(µ), that is the multiplication by z on D(µ). A closed subspace M of D(µ) is called invariant if SM ⊂ M.
The lattice of all closed invariant subspaces of the shift operator will be denoted by Lat(S, D(µ)).

In this paper we are interested in a characterization of the cyclic functions of D(µ) and in a description of Lat(S, D(µ)). If dµ(e it ) = 0 then D(0) = H 2 , and, in this case, Beurling's theorem asserts that all closed invariant subspaces are given by ΘH 2 , where Θ is an inner function. As a consequence, a function f ∈ H 2 is cyclic for H 2 if and only if f is outer. In order to extend Beurling's theorem to the classical Dirichlet space, Richter in [START_REF] Richter | Invariant subspaces of the Dirichlet shift[END_REF] was led to introduce Dirichlet type spaces. First, he proved that every cyclic, analytic 2-isometry is unitarily equivalent to the shift operator on some D(µ). Recall that a bounded operator on a Hilbert space is called 2-isometry if

T * 2 T 2 -2T * T -I = 0
and it is called analytic if n≥0 T n H = {0}. This result allowed him to prove that every invariant subspace for D is of the form φD(|φ| 2 dm), where φ is an extremal function for D, that is

φ µ = 1 and φ, z n φ D(µ) = 0, n ≥ 1.
This characterization does not allow to describe the cyclic functions for D. Brown and Shields showed in [START_REF] Brown | Cyclic vectors in the Dirichlet space[END_REF] that if f is cyclic for D then f is outer and the zero set of its radial limit

Z T (f ) = {ζ ∈ T : lim r→1- f (rζ) = 0}
is of logarithmic capacity zero. Brown and Shields further conjectured that the converse is also true. This problem remains open, some partial results of this conjecture can be found in [START_REF] El-Fallah | A primer on the Dirichlet space[END_REF][START_REF] Hedenmalm | Invariant subspaces in Banach spaces of analytic functions[END_REF][START_REF] Richter | Invariant subspaces of the Dirichlet shift and pseudocontinuations[END_REF].

Richter and Sundberg in [START_REF] Richter | Invariant subspaces of the Dirichlet shift and pseudocontinuations[END_REF] extended the characterization of invariant subspaces to all Dirichlet spaces. Indeed, they proved that Lat(S, D(µ)) = φD(|φ| 2 dµ) : φ is an extremal function for D(µ) .

As before, the description of cyclic functions remains an open problem. To state a general Brown-Shields conjecture we will introduce a notion of capacity associated with these spaces.

The harmonic Dirichlet space, D h (µ), associated with µ is given by

D h (µ) := f ∈ L 2 (T) : f 2 2 + D µ (f ) < ∞ , where D µ (f ) = D |∇P [f ]| 2 P µ dA. Note that D h (µ)
is a Dirichlet space in the sense of Beurling-Deny, and following [START_REF] Beurling | Dirichlet spaces[END_REF], the c µ -capacity of an open subset U ⊂ T is defined by

c µ (U) := inf u 2 µ : u ∈ D h (µ)
, u ≥ 0 and u ≥ 1 a.e. on U . As usual we define the c µ -capacity of any subset F ⊂ T by

c µ (F ) = inf{c µ (U) : U open, F ⊂ U}.
The capacity c µ is the Choquet capacity [START_REF] Carleson | Selected Problems on Exceptional sets[END_REF][START_REF] Guillot | Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces[END_REF] and so for every borelian subset E of T we have c µ (E) = sup{c µ (K) : K compact , K ⊂ E}. In the case µ = m, it is well known that c m is comparable to the logarithmic capacity. For more details see [START_REF] Adams | Function spaces and potential theory[END_REF]Theorem 2.5.5].

We say that a property holds c µ -quasi-everywhere (c µ -q.e.) if it holds everywhere outside a set of c µ -capacity 0. So, c µ -q.e. implies a.e. Note that for every function f ∈ D(µ), the radial limits of f exist q.e., see [START_REF] Guillot | Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces[END_REF]. Recall also that c µ satisfies a weak-type inequality, namely:

c µ ({ζ ∈ T : |f (ζ)| ≥ t c µ -q.e.}) ≤ f 2 µ t 2 , f ∈ D h (µ).
As consequence, the invariant subspace M µ (E) defined by

M µ (E) := {g ∈ D(µ) : g|E = 0 c µ -q.e}.
is closed in D(µ). Using these facts it is easy to verify that if f is cyclic in D(µ) then f is outer and c µ (Z T (f )) = 0, where the generalized Brown-Shields conjecture claims that the converse is also true.

For f ∈ D(µ), and M ∈ Lat(S, D(µ)), denote by Z(f ) the zeros set of f on the disc and set Z(f

) := {ζ ∈ D : lim inf z→ζ |f (z)| = 0}. and Z(M) := f ∈M Z(f ).
Note that both sets are closed. If f is an inner function, then Z(f ) is the spectrum of f , and then f admits analytic continuation through T \ Z(f ).

In this paper we will prove the following two results:

Theorem 1. Let µ be a positive finite measure on T. Let f ∈ D(µ) be such that supp µ ∩ Z(f ) is countable. The following assertions are equivalent.

(1) f is cyclic for D(µ).

(2) f is an outer function and c µ (Z T (f )) = 0.

This theorem asserts, in particular, that the generalized Brown-Shields conjecture is true if the support of µ is countable. We also obtain, in this case, an explicit characterization of invariant subspaces of D(µ). Let M ∈ Lat(S, D(µ)), we denote by Θ M the greatest common inner divisor of the inner parts of the non-zero functions of M and

Z T (M) = f ∈M Z T (f ).
We have the following characterization which completes the Richter-Sundberg result [START_REF] Richter | Invariant subspaces of the Dirichlet shift and pseudocontinuations[END_REF] (see Theorem 2.6) in the case when supp µ is countable.

Theorem 2. Let µ be a positive finite measure on T such that supp µ is countable. Let M ∈ Lat(S, D(µ)) and let Θ M be the greatest common inner divisor of M. Then, 

M = Θ M H 2 ∩ M µ (E),
c µ ({λ}) > 0 ⇐⇒ 1 0 dr (1 -r)P µ (rλ) + (1 -r) 2 < +∞.
The plan of the paper is the following. The next section gives a background on Dirichlet spaces. In Section 3, we give a description of invariant subspaces generated by polynomials. In Sections 4 we collect some results on closed ideals of D(µ) ∩ H ∞ . Sections 5 and 6 are devoted to the proof of Theorems 1 and 2.

Background on the Dirichlet type spaces

In this section we recall some results from the Richter-Sundberg papers [START_REF] Richter | A formula for the local Dirichlet integral[END_REF][START_REF] Richter | Multipliers and invariant subspaces in the Dirichlet space[END_REF][START_REF] Richter | Invariant subspaces of the Dirichlet shift and pseudocontinuations[END_REF] about Dirichlet type spaces which will be used in the proofs of our Theorems, see also [START_REF] El-Fallah | A primer on the Dirichlet space[END_REF].

Every function f ∈ H 2 has non-tangential limits almost everywhere on the unit circle T = ∂D. We denote by f (ζ) the non-tangential limit of f at ζ ∈ T if it exists.

Let µ be a positive finite measure on the unit circle, the associated Dirichlet space D(µ) is the set of all analytic functions f ∈ H 2 , such that

D µ (f ) := T D ξ (f )dµ(ξ) < ∞, where D ξ (f ) is the local Dirichlet integral of f at ξ ∈ T given by D ξ (f ) := T |f (e it ) -f (ξ)| 2 |e it -ξ| 2 dt 2π .
Here

f (λ) (λ = e it or ζ) is the radial limit of f at λ, that is f (λ) = lim r→1-f (rλ). Recall that a function I is inner if it is a bounded holomorphic function on D such that |I| = 1 a.e. on T. The function O is called outer if it is of the form O(z) = exp 1 2π T ζ + z ζ -z log ϕ(ζ)|dζ|, z ∈ D.
where ϕ is a positive function such that log ϕ ∈ L 1 (T). Note that |f | = ϕ a.e. on T. 

P δγ (ζ)|f o (ζ)| 2 + 2 T dν(λ) |λ -ζ| 2 |f o (ζ)| 2 + T |f (λ)| 2 -|f (ζ)| 2 -2|f (ζ)| 2 log |f (λ)/f (ζ)| |λ -ζ| 2 |dλ| 2π , (1) 
where δ γ is the dirac measure on γ. 

and f ∧ g 2 µ ≤ f 2 µ + g 2 µ and f ∨ g 2 µ ≤ f 2 µ + g 2 µ . Proof. see [17, Lemma 2.2]
Theorem 2.4. Let f, g ∈ D(µ) be outer functions and let h be the outer function given by |h| := |f | ∧ |g| a.e on T.

Then [h] D(µ) = [f ] D(µ) ∩ [g] D(µ) . If further f g ∈ D(µ), then [f g] D(µ) = [f ] D(µ) ∩ [g] D(µ) .
Using this fact, we have the following lemma. Lemma 3.2. Let ζ ∈ T. The following properties are equivalent:

(1) ζ is a bounded point evaluation of D(µ).

(2) The polynomial zζ is not cyclic for D(µ).

(3) c µ (ζ) > 0.

Proof. 

f (z) = λ exp 1 2π T\I η + z η -z log |f (η)|dη|, z ∈ D. Hence f is analytic in a neighborhood of ζ. Since L ζ is bounded, we have |L ζ (f )| = |f (ζ)| = 1. So f µ ≥ 1/ L ζ , and consequently, c a µ ≥ 1/ L ζ 2 .
This proves that (1) implies ( 3).

(3) =⇒ ( 2): Suppose that c µ (ζ) > 0. Then M µ ({ζ}) is a proper closed invariant subspace of D(µ) and zζ is not cyclic.

(2) =⇒ (1): Suppose now that zζ is not cyclic for D(µ). The space D(µ)/[(zζ)] D(µ) is of dimension one. Let π be the canonical surjection defined by To state the characterization of closed invariant subspaces generated by polynomials, we need some notations. To any Λ = {(z 1 , n 1 ), (z 2 , n 2 ), . . . , (z k , n k )}, where z j ∈ D and n j ∈ N * , we associate a polynomial

π : D(µ) → D(µ)/[(z -ζ)] D(µ) f → π(f ) = f + [(z -ζ)] D(µ)
p Λ = Π k j=1 (z -z j ) n j . Let E ⊂ T, we define M µ (Λ, E) = {f ∈ D(µ) : f ∈ p Λ H 2 and f |E = 0}.
For a polynomial p, let Λ p = {(z, n) ∈ D × N * : z is a zero of p of order n}. We have Theorem 3.4. Let p be a polynomial. Then Proof. The proof is based on classical arguments and on the Lemma 3.3.

Closed ideals of D(µ) ∩ H ∞

First, we will state the following lemmas which will be used in the sequel. where V is a closed neighborhood of supp(µ). Then h ∈ D(µ) and

D µ (h) ≤ D µ (f ) + µ(T) dist(T \ V, supp(µ)) 2 g 2 2 + 2 log 1/|g| L 1 (T) . ( 2 
)
Proof. Note that h 2 2 ≤ f 2 2 + g 2 2 , so h ∈ H 2 . Since f ∈ D(µ), D ζ (f ) < ∞ for µ-almost every ζ ∈ T. By (1), for ζ ∈ supp µ, let δ = dist(T \ V, supp(µ)), we have D ζ (h) = λ∈V + λ∈T\V |h(λ)| 2 -|h(ζ)| 2 -2|h(ζ)| 2 log |h(λ)/h(ζ)| |λ -ζ| 2 |dλ| 2π ≤ D ζ (f ) + 1 δ 2 λ∈T\V |g(λ)| 2 + 2|f (ζ)| 2 log 1 |g(λ)| -|f (ζ)| 2 log e |f (ζ)| 2 |dλ| 2π ≤ D ζ (f ) + 1 δ 2 ||g|| 2 2 + 2|f (ζ)| 2 T log 1 |g(λ)| |dλ| 2π .
It's clear that (2) follows from this inequality and thus h ∈ D(µ).

Lemma 4.2. Let V = (e ia , e ib ), and let f ∈ D(µ) ∩ H ∞ be an outer function. Let f V be the outer function defined by

|f V (ζ)| = |(ζ -e ia )(e ib -ζ)||f (ζ)|, a.e. on V , |(ζ -e ia )(e ib -ζ)|, on T \ V . Then f V ∈ D(µ) ∩ H ∞ .
Proof. Set u(z) = (ze ia )(e ibz), again by ( 1), for ζ ∈ supp µ, we have

D ζ (f V ) = λ∈V + λ∈T\V |u(λ)| 2 -|u(ζ)| 2 -2|u(ζ)| 2 log |u(λ)/u(ζ)| |λ -ζ| 2 |dλ| 2π ≤ D ζ (uf ) + D ζ (u). Clearly, f V ∈ D(µ) ∩ H ∞ .
Recall that D(µ) ∩ H ∞ is a Banach algebra endowed with the pointwise multiplication and equipped with the norm

f ∞,µ = f ∞ + D µ (f ) 1/2 . Theorem 4.3. Let J be a closed ideal of D(µ) ∩ H ∞ . Let π : D(µ) ∩ H ∞ -→ D(µ) ∩ H ∞ /J , be the canonical surjection. Then σ(π(u)) = Z(J )
where u : z → z is the identity map and σ(π(u)) is the spectrum of π(u).

Remark. Note that σ(π(u)) = ∅ if and only if J = D(µ) ∩ H ∞ , see Lemma 5.1 for more general statement.

Proof Theorem 4.3. First, we prove that Z(J ) ⊂ σ(π(u)). Let λ / ∈ σ(π(u)), then there exists f ∈ D(µ) ∩ H ∞ and g ∈ J such that (λz)f (z) = 1g(z). Which gives obviously that lim z→λ g(z) = 1 and λ / ∈ Z(J ).

Conversely, let λ / ∈ Z(J ). We suppose that |λ| = 1 since the case |λ| = 1 is obvious. Hence there exists g ∈ J and c > 0 such that |g(z 

)| ≥ c on a neighborhood of λ, V λ = {z ∈ D : |z -λ| ≤ δ/2}. Note that if w ∈ C 2 (T)
gf w = g i (g o ∧ f w ) × (g o ∨ f w ) = g i h × h on D and h ∈ D(µ) ∩ H ∞ is invertible. So g i h ∈ J . Since |g(z)| ≥ c on V λ , then λ doesn't
belong to the spectrum of the inner function g i . Therefore g i is analytic across an arc that contains λ, so g i (λ) is well-defined and

|g i (λ)| = 1. Let ψ = 1 (g i h)(λ) g i h -g i h(λ) u -λ .
Since (g i h)(λ) = 0, the function ψ is well-defined. Note that the function

|g o | ∧ |f w | = |f w | on {ζ ∈ T : |ζ -λ| ≤ δ/2} is C ∞ on V λ and h(z) = exp |ζ-λ|≤δ/2 ζ + z ζ -z log c |dζ| 2π × exp |ζ-λ|≥δ/2 ζ + z ζ -z log |h(ζ)| |dζ| 2π ,
the two functions are clearly C ∞ on V λ and hence ψ is

C 2 on V λ . Thus ψ ∈ D(µ) ∩ H ∞ . So π(ψ)(λ -π(u)) = π(1)
and we get λ / ∈ σ(π(u)) which finishes the proof. Proof. We suppose that ζ 0 = 1. Consider again the canonical surjection

π : D(µ) ∩ H ∞ -→ D(µ) ∩ H ∞ /J ,
and let u : z → z be the identity map. Given λ ∈ D and f ∈ J , we define

L λ (f )(z) =    f (z) -f (λ) z -λ , z ∈ D \ {λ}, f ′ (λ) , z = λ. Since L λ f -L 0 f = λL λ L 0 f , it is obvious that L λ (f ) ∈ D(µ) ∩ H ∞ . So π(L λ (f ))(λπ(1) -π(u)) = f (λ)π(1), λ ∈ D.
The operator T defined on

D(µ) ∩ H ∞ /J by π(f ) → π(u)π(f ),
has the spectrum σ(T ) = {1} and for n ≥ 0

T n = π(u) n ≤ u n µ = 1 + nµ(T). (3) 
On the other hand, let f ∈ J be an outer function. So (λπ(1)π(u))

-1 = (1/f (λ))π(L λ (f )), λ ∈ D. Since f ∈ H ∞ is outer, for all ε > 0, 1/|f (λ)| = O(e ε/(1-|λ| ) as |λ| → 1-. Therefore, (λI -T ) -1 = O exp ε 1 -|λ| , |λ| → 1-,
where I is the identity operator. On the other hand, by Cauchy inequality, see [2, Lemma 2], for all ε > 0

T -n = O(e ε √ n ), n → +∞. ( 4 
) Therefore the operator T is invertible, σ(T ) = {1} satisfies (3) and ( 4), then it follows from Phragmén Lindelöf principle [2, Corollary 1], that (I -T ) 2 = 0, which means that

(1 -z) 2 ∈ J .
Let a functional ℓ in the dual space of D(µ) ∩ H ∞ be such that ℓ is orthogonal to J . We have ℓ, z n (1z) 2 = 0, n ≥ 0.

Let ℓ(n) = ℓ, z n , the last equality implies that

ℓ(n) -2 ℓ(n + 1) + ℓ(n + 2) = 0 n ≥ 0.
So ℓ(n) = (a + bn) for some constants a, b ∈ C. In the other hand

| ℓ(n)| ≤ ℓ z n D(µ)∩H ∞ = O( √ n).
Hence b = 0 and ℓ, (1z) = 0. Which gives 1z ∈ J and completes the proof.

Remark. The preceding result can be extended to closed ideals such that their greatest common inner divisor is 1. 

Cyclicity in

D(µ) Lemma 5.1. Let f ∈ D(µ) ∩ H ∞ be an outer function. If Z(f ) ∩ supp(µ) = ∅ then f is cyclic for D(µ). Proof. Suppose that f ∞ ≤ 1. Since Z(f )∩supp µ = ∅, there exists a closed neighborhood V of supp µ such that Z(f ) ∩ V = ∅. Consider the following outer functions |h(ζ)| = 1, on V, |f ( 
D µ (h δ h(ζ)) ≤ 1 dist(supp µ, T \ V ) 2 µ(T) + 2 log |f | + δ |f | L 1 (T) ≤ 1 dist(supp µ, T \ V ) 2 µ(T) + 4 | log |f || L 1 (T) . So lim inf δ→0 D µ (h δ h) < ∞.

  where E = {λ ∈ supp µ : c µ ({λ}) > 0 and λ ∈ Z T (M)}.Note that by[START_REF] El-Fallah | Kernel estimates and capacity in the Dirichlet spaces[END_REF] Corollary 5.2] 

Proof. See [ 16 ,Theorem 2 . 2 .Theorem 2 . 3 .

 162223 Theorem 3.1]. Let f, g ∈ D(µ). If |f (z)| ≤ |g(z)| on D, then [f ] D(µ) ⊂ [g] D(µ) . Proof. See [16, Theorem 4.1]. If f and g are outer functions, then we define the outer function function f ∧ g by min{|f (e it )|, |g(e it )|} and f ∨ g by max{|f (e it )|, |g(e it )|} . Let f, g be outer functions in D(µ), then f ∧ g and f ∨ g belongs to D(µ)

( 1 )

 1 =⇒ (3): Suppose that ζ is a bounded point evaluation for D(µ). We will prove that c a µ (ζ) > 0. Let f ∈ D(µ) be an outer function such that |f | = 1 a.e. on an open arc I centered at ζ. Then, there is λ ∈ T such that

and let ρLemma 3 . 3 .

 33 be the isomorphism from D(µ)/[(zζ)] D(µ) to C satisfying ρ(π(1)) = 1. It is easy to verify that L ζ = ρ • π, which proves that L ζ is continuous. Let ζ ∈ T and let n be an integer n ≥ 1. We have (1) If c µ (ζ) = 0 then [(zζ) n ] D(µ) = D(µ).(2) If c µ (ζ) > 0 then [(zζ) n ] D(µ) = M µ (ζ).Proof. By Theorem 2.4, we have[(zζ) n ] D(µ) = [(zζ)] D(µ). The two assertions come from Lemma 3.2.

[

  p] D(µ) = M µ (Λ p , E), where E = {ζ ∈ T : p(ζ) = 0 and c µ (ζ) > 0}.

Lemma 4 . 1 .

 41 Let f ∈ D(µ) ∩ H ∞ and g ∈ H ∞ be outer functions such that f ∞ ≤ 1 and g ∞ ≤ 1. Let h be the outer function given by |h(ζ)| = |f (ζ)|, a.e. on V, |g(ζ)|, a.e. on T \ V,

  and log |w| ∈ L 1 (T) then the outer function f w defined by |f w | = w, a.e. on T, belongs to C 2 (D) ∩ Hol(D) ⊂ D(µ). Now consider the smooth function w ∈ C 2 (T) such that w ≥ c > 0 and w(ζ) = c if |ζ -λ| ≤ δ/2, 1 if |ζ -λ| ≥ δ. Suppose that g ∞ ≤ 1. Write g = g i g o the inner-outer factorization of g. Consider the outer function |h| = |g o | ∧ |f w | = |g o | ∧ |w| a.e. on T. Note that |h| = c near λ and by Theorem 2.4, 0 = h ∈ D(µ). Now consider the outer function | h(e it )| = (|g o | ∨ |f w |)(e it ) = max{|g o (e it )|, w(e it )}, a.e. on T Clearly,

Lemma 4 . 4 .

 44 Let J be a closed ideal of D(µ)∩H ∞ such that J contains an outer function, and Z(J ) = {ζ 0 } ⊂ T. Then (zζ 0 ) ∈ J .

  ζ)|, a.e. on T \ V, and |g(ζ)| = |f (ζ)|, a.e. on V, 1, on T \ V. By Lemma 4.1, h, g ∈ D(µ) ∩ H ∞ and by Theorem 2.4 [f ] D(µ) = [hg] D(µ) = [h] D(µ) ∩ [g] D(µ) . Note that Z(g) = Z(f ) ∩ V = ∅. Hence |g(z)| ≥ c > 0 on D, and then by Theorem 2.2, g is cyclic for D(µ). So [f ] D(µ) = [h] D(µ) . (5) Let δ > 0, and consider the following outer function |h δ (ζ)| = 1, on V, 1/(|f (ζ)| + δ), a.e. on T \ V We have lim δ→0 |h δ h(ζ)| = 1 a.e on T. Since Z(f ) ∩ supp(µ) = ∅, by Lemma 4.1

Since h δ 6 .

 6 and h are outer, |h δ h(z)| ≤ |h(z)|/δ for z ∈ D, by Theorem 2.2, we have h δ h ∈ [h] D(µ)∩H ∞ for all δ > 0. So h is cyclic for D(µ) and by[START_REF] Brown | Cyclic vectors in the Dirichlet space[END_REF] f is also cyclic for D(µ).By Lemma 4.2, h, g ∈ D(µ) ∩ H ∞ and hg ∈ [f ] D(µ) . Define the closed division ideal J by J := {ψ ∈ D(µ) ∩ H ∞ : ψg ∈ [f ] D(µ) }. Since [f ] D(µ) ∩ H ∞ ⊂ J and h ∈ J , Z(J ) ⊂ Z([f ] D(µ) ) ∩ Z(h) ⊂ {ζ 0 }. Hence by Lemma 4.4, zζ 0 ∈ J (In fact, if Z(J ) = ∅ then J = D µ ) and then (zζ 0 )g ∈ [f ] D(µ) . Since by Theorem 2.4, we have [(zζ 0 )g] D(µ) = [(zζ 0 )] D(µ) ∩ [g] D(µ) . We get [(zζ 0 )] D(µ) ∩ [g] D(µ) ⊂ [f ] D(µ) . Now we distinguish 2 cases. • If c µ ({ζ 0 }) = 0, then zζ 0 is cyclic and hence g ∈ [f ] D(µ) . • If c µ ({ζ 0 }) > 0, since c µ (Z T (f )) = 0, then ζ 0 / ∈ Z T (f )and by Lemma 3.2, h(ζ 0 ) exists and h(ζ 0 ) = 0. Note also that g(ζ 0 ) exists, indeed |g(ζ)| = |f T\V (ζ)| = |(ζe ia )(ζe ib )| on V , so the outer function g can be continued holomorphically across V , see [9, p. 65]. Now writeg = h h(ζ 0 ) g ∈[f ] D(µ) + h(ζ 0 )h h(ζ 0 ) g ∈[f ] D(µ) ∈ [f ] D(µ) .In the two cases g ∈ [f ] D(µ) which gives a contradiction since and ζ 0 ∈ Z([f ] D(µ) ) and g(ζ 0 ) = 0. Thus we have completed the proof of the first main result. Invariant subspaces of D(µ)This section is devoted to the proof of Theorem 2. Let M ∈ Lat(S, D(µ)) be a closed invariant subspace of D(µ). By Theorem 2.6, there exists an inner function Θ M and an outer functionf ∈ D(µ) ∩ H ∞ such that M = Θ M H 2 ∩ [f ] D(µ) .We need to show that [f ] D(µ) = M µ (E), here M µ (E) be the closed invariant subspace of D(µ) given byM µ (E) = {ψ ∈ D(µ) : ψ|E = 0}, where E = {λ ∈ supp µ : c µ ({λ}) > 0 and λ ∈ Z T (M)}. Note that if λ ∈ supp µ such that c µ ({λ}) > 0 then λ ∈ Z T (M) ⇐⇒ λ ∈ Z T (f ). Let ψ ∈ [f ] D(µ), and let λ ∈ E, since c µ ({λ}) > 0, the evaluation is continuous and by Lemma 3.2, ψ(λ) exists and ψ(λ) = 0. So ψ ∈ M µ (E) and we have [f ] D(µ) ⊂ M µ (E).
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Proof. See [START_REF] Richter | Multipliers and invariant subspaces in the Dirichlet space[END_REF]Theorem 4.5].

Theorem 2.5. Let M ∈ Lat(S, D(µ)). Then there exists a multiplier φ of D(µ) such that M = [φ] D(µ) .

Proof. See [START_REF] Richter | Multipliers and invariant subspaces in the Dirichlet space[END_REF]Theorem 3.5] and [START_REF] Richter | Invariant subspaces of the Dirichlet shift and pseudocontinuations[END_REF]Theorem 3.2].

Theorem 2.6. Let M ∈ Lat(S, D(µ)), and let Θ M the greatest common inner divisor of M. Then, there is an outer f ∈ D(µ) ∩ H ∞ such that

In fact f can be chosen so that f and Θ M f are multipliers of D(µ).

Proof. See [START_REF] Richter | Multipliers and invariant subspaces in the Dirichlet space[END_REF]Theorem 5.3].

Invariant subspaces generated by polynomials

In this section we characterize closed invariant subspaces generated by polynomials. Let ζ ∈ T. We will say that ζ is a bounded point evaluation of D(µ) if there exists a constant M > 0 such that for every polynomial p

It means that the functional p → p(ζ) extends to a continuous functional on D(µ). Since the polynomials are dense in D(µ), this extension is unique and will be denoted by

, where f o is the outer part of f , see for instance [9, Corollary 7.6.2], then

. on a neighborhood of E . Note that c µ (E) ≤ c a µ (E). In fact c a µ is comparable to c µ by the following Lemma (see [START_REF] Guillot | Comportement au bord dans les espaces de Dirichlet avec poids harmonique et espaces de de Branges-Rovnyak[END_REF]Theorem 38]). For the sake of completeness, we give the proof

and so for i = 1 or i = 2, we have Suppose now that Z([f ] D(µ) ) = ∅. We will show that this leads to a contradiction. Since Z(

Now we show the opposite inclusion. By Theorem 2.5, there exists an outer function

We have [f ] D(µ) ∩ H ∞ ⊂ J and by Lemmas 5.2 and 5.3 (3)

We have h ∈ J , so Z( J

Since h is an outer function, by Lemma 4.4, (z

As before we distinguish 2 cases.

In all cases we have gφ ∈ [f ] D(µ) . We get, as before in the proof of Theorem 1, that

. Now the proof is complete.

Final remarks

• Note that if µ is a positive finite measure such that supp µ ⊂ E 1 ∪ E 2 , where E 1 and E 2 are disjoint closed subsets of T, then D(µ) = D(µ |E 1 ) ∩ D(µ |E 2 ). In this case every closed invariant subspace M of D(µ) can be written as M = M 1 ∩ M 2 , where M i is an invariant subspace of D(µ |E i ) (i = 1, 2).

• A closed set E is union of a countable set and perfect set. Using the same argument as in the proof of Theorem 1, one can prove that Brown-Shields conjecture is true for D(µ) if and only if Brown-Shields conjecture is true for D(µ |P(supp µ) ) where P(supp µ) is the perfect core of the support of µ.