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CYCLICITY AND INVARIANT SUBSPACES IN DIRICHLET SPACES

O. EL-FALLAH, Y. ELMADANI, K. KELLAY

Abstract. Let µ be a positive finite measure on the unit circle and D(µ) the associated
Dirichlet space. The generalized Brown-Shields conjecture asserts that an outer function
f ∈ D(µ) is cyclic if and only if cµ(Z(f)) = 0, where cµ is the capacity associated with
D(µ) and Z(f) is the zero set of f . In this paper we prove that this conjecture is true
for measures with countable support. We also give in this case a complete and explicit
characterization of invariant subspaces.

1. Introduction

The Dirichlet space D(µ), associated with µ, consists of holomorphic functions on the
unit disc whose derivatives are square integrable when weighted against the Poisson inte-
gral of µ. In this paper we study cyclic vectors and invariant subspaces of the shift operator
on D(µ). The corresponding problem for the Hardy space H2 was solved by Beurling in
[2]: the cyclic vectors are precisely the outer functions and the invariant subspaces are gen-
erated by inner functions. Brown–Shields in [4] studied cyclicity in the classical Dirichlet
space D. They proved that the set of zeros of cyclic functions in the Dirichlet space has
zero logarithmic capacity and this led them to ask whether any outer function with this
property is cyclic, see also [6, 7, 11, 16] on the study of cyclic vectors. A series of results
was obtained by Richter and Richter–Sundberg in [12, 13, 14, 15, 16] for Dirichlet spaces
D(µ) and especially for the description of their invariant subspaces. More recently, Guillot
in [10] obtained a precise characterization of cyclic vectors for Dirichlet spaces associated
with finitely atomic measures. We refer the reader to [8] on these problems. In this work,
we focus our attention in the study of the cyclic vectors and the invariant subspaces for
the shift operator acting on the Dirichlet space D(µ) associated with the measures with
countable support.

We now introduce the necessary notation. Let H2 be the classical Hardy space of the
open unit disc D. If µ is a positive Borel measure on T, the Dirichlet space D(µ) is the set
of all functions f ∈ H2 such that

Dµ(f) =
1

π

∫

D

|f ′(z)|2Pµ(z)dA(z) <∞
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where dA(reit) = (1/π)rdrdt denotes the normalized area measure on D and Pµ is the
Poisson integral of µ :

Pµ(z) =

∫

T

1− |z|2
|1− ζ̄z|2dµ(ζ).

The space D(µ) is endowed with the norm

‖f‖2µ := ‖f‖2H2 +Dµ(f).

The classical Dirichlet space D is precisely D(m) where m denotes the normalized Lebesgue
measure.

Given f ∈ D(µ), we denote by [f ]D(µ) the smallest invariant subspace of D(µ) containing
f ; namely,

[f ]D(µ) := {pf : p is a polynomial}.
We say that f is cyclic for D(µ) if [f ]D(µ) = D(µ). Denote by S the shift operator on D(µ),
that is the multiplication by z on D(µ). A closed subspace M of D(µ) is called invariant
if SM ⊂ M. The lattice of all closed invariant subspaces of the shift operator will be
denoted by Lat(S,D(µ)).

In this paper we are interested in a characterization of the cyclic functions of D(µ) and in
a description of Lat(S,D(µ)). If dµ(eit) = 0 then D(0) = H2, and, in this case, Beurling’s
theorem asserts that all closed invariant subspaces are given by ΘH2, where Θ is an inner
function. As a consequence, a function f ∈ H2 is cyclic for H2 if and only if f is outer. In
order to extend Beurling’s theorem to the classical Dirichlet space, Richter in [13] was led
to introduce Dirichlet type spaces. First, he proved that every cyclic, analytic 2-isometry
is unitarily equivalent to the shift operator on some D(µ). Recall that a bounded operator
on a Hilbert space is called 2-isometry if

T ∗2T 2 − 2T ∗T − I = 0

and it is called analytic if
⋂

n≥0 T
nH = {0}. T his result allowed him to prove that every

invariant subspace for D is of the form φD(|φ|2dm), where φ is an extremal function for
D, that is

‖φ‖µ = 1 and 〈φ, znφ〉D(µ) = 0, n ≥ 1.

This characterization does not allow to describe the cyclic functions for D. Brown and
Shields showed in [4] that if f is cyclic for D then f is outer and the zero set of its radial
limit

ZT(f) = {ζ ∈ T : lim
r→1−

f(rζ) = 0}

is of logarithmic capacity zero. Brown and Shields further conjectured that the converse is
also true. This problem remains open, some partial results of this conjecture can be found
in [8, 11, 16].
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Richter and Sundberg in [16] extended the characterization of invariant subspaces to all
Dirichlet spaces. Indeed, they proved that

Lat(S,D(µ)) =
{
φD(|φ|2dµ) : φ is an extremal function for D(µ)

}
.

As before, the description of cyclic functions remains an open problem. To state a gen-
eral Brown-Shields conjecture we will introduce a notion of capacity associated with these
spaces.

The harmonic Dirichlet space, Dh(µ), associated with µ is given by

Dh(µ) :=
{
f ∈ L2(T) : ‖f‖22 +Dµ(f) <∞

}
,

where Dµ(f) =
∫
D
|∇P [f ]|2PµdA. Note that Dh(µ) is a Dirichlet space in the sense of

Beurling–Deny, and following [3], the cµ-capacity of an open subset U ⊂ T is defined by

cµ(U) := inf
{
‖u‖2µ : u ∈ Dh(µ), u ≥ 0 and u ≥ 1 a.e. on U

}
.

As usual we define the cµ-capacity of any subset F ⊂ T by

cµ(F ) = inf{cµ(U) : U open, F ⊂ U}.
The capacity cµ is the Choquet capacity [5, 10] and so for every borelian subset E of T we
have

cµ(E) = sup{cµ(K) : K compact , K ⊂ E}.
In the case µ = m, it is well known that cm is comparable to the logarithmic capacity. For
more details see [1, Theorem 2.5.5].

We say that a property holds cµ-quasi-everywhere (cµ-q.e.) if it holds everywhere outside
a set of cµ -capacity 0. So, cµ-q.e. implies a.e. Note that for every function f ∈ D(µ), the
radial limits of f exist q.e., see [10]. Recall also that cµ satisfies a weak-type inequality.
Namely:

cµ({ζ ∈ T : |f(ζ)| ≥ t cµ-q.e.}) ≤
‖f‖2µ
t2

, f ∈ Dh(µ).

As consequence, the invariant subspace Mµ(E) defined by

Mµ(E) := {g ∈ D(µ) : g|E = 0 cµ-q.e}.
is closed in D(µ). Using these facts it is easy to verify that if f is cyclic in D(µ) then f is
outer and cµ(ZT(f)) = 0, where The generalized Brown-Shields conjecture claims that the
converse is also true.

For f ∈ D(µ), denote by Z(f) the zeros set of f on the disc and set

Z(f) := {ζ ∈ T : lim inf
z→ζ

|f(z)| = 0}.

In this paper we will prove the following two results:

Theorem 1. Let µ be a positive finite measure on T. Let f ∈ D(µ) be such that supp µ∩
Z(f) is countable. The following assertions are equivalent.
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(1) f is cyclic for D(µ).
(2) f is an outer function and cµ(ZT(f)) = 0.

This theorem asserts, in particular, that the generalized Brown–Shields conjecture is true
if the support of µ is countable. We also obtain, in this case, an explicit characterization
of invariant subspaces of D(µ).
Let M ∈ Lat(S,D(µ)), we denote by ΘM the greatest common inner divisor of the inner
parts of the non-zero functions of M and

ZT(M) =
⋂

f∈M

ZT(f).

We have the following characterization which completes the Richter–Sundberg result [16]
in the case when supp µ is countable.

Theorem 2. Let µ be a positive finite measure on T such that supp µ is countable. Let
M ∈ Lat(S,D(µ)) and let ΘM be the greatest common inner divisor of M. Then,

M = ΘMH2 ∩Mµ(E),

where E = {λ ∈ supp µ : cµ({λ}) > 0 and λ ∈ ZT(M)}.
Note that by [9, Corollary 5.2]

cµ({λ}) > 0 ⇐⇒
∫ 1

0

dr

(1− r)Pµ(rλ)
< +∞.

The plan of the paper is the following. The next section gives a background on Dirichlet
spaces. In Section 3, we give a description of invariant subspaces generated by polynomials.
In Sections 4 we collect some results on closed ideals of D(µ) ∩H∞. Sections 5 and 6 are
devoted to the proof of Theorems 1 and 2.

2. Background on the Dirichlet type spaces

In this section we recall some results from the Richter–Sundberg papers [14, 15, 16]
about Dirichlet type spaces which will be used in the proofs of our Theorems, see also [8].

Every function f ∈ H2 has non-tangential limits almost everywhere on the unit circle
T = ∂D. We denote by f(ζ) the non-tangential limit of f at ζ ∈ T if it exists.

Let µ be a positive finite measure on the unit circle, the associated Dirichlet space D(µ)
is the set of all analytic functions f ∈ H2, such that

Dµ(f) :=

∫

T

Dξ(f)dµ(ξ) <∞,

where Dξ(f) is the local Dirichlet integral of f at ξ ∈ T given by

Dξ(f) :=

∫

T

|f(eit)− f(ξ)|2
|eit − ξ|2

dt

2π
.
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Here f(λ) (λ = eitor ζ) is the radial limit of f at λ, that is f(λ) = limr→1− f(rλ).
Recall that a function I is inner if it is a bounded holomorphic function on D such that

|I| = 1 a.e. on T. The function O is called outer if it is of the form

O(z) = exp
1

2π

∫

T

ζ + z

ζ − z
logϕ(ζ)|dζ |, z ∈ D.

where ϕ is a positive function such that logϕ ∈ L1(T). Note that |f | = ϕ a.e. on T.

Theorem 2.1. Let f ∈ H2 and f = BSνfo with B a Blaschke product, ν a singular
measure associated with Sν a singular inner factor of f , fo an outer function and let ζ ∈ T

such that fo(ζ) exists. Then

Dζ(f) =
∑

γ∈Z(B)

Pδγ (ζ)|fo(ζ)|2 + 2

∫

T

dν(λ)

|λ− ζ |2 |fo(ζ)|
2

+

∫

T

|f(λ)|2 − |f(ζ)|2 − 2|f(ζ)|2 log |f(λ)/f(ζ)|
|λ− ζ |2

|dλ|
2π

, (1)

where δγ is the dirac measure on γ.

Proof. See [14, Theorem 3.1].
�

Theorem 2.2. Let f, g ∈ D(µ). If |f(z)| ≤ |g(z)| on D, then [f ]D(µ) ⊂ [g]D(µ).

Proof. See [14, Theorem 4.1].
�

If f and g are outer functions, then we define the outer function function f ∧ g by
min{|f(eit)|, |g(eit)|}.
Theorem 2.3. Let f, g ∈ D(µ) be outer functions and let h be the outer function given
by |h| := |f | ∧ |g| a.e on T. Then h ∈ D(µ) and [h]D(µ) = [f ]D(µ) ∩ [g]D(µ). If further
fg ∈ D(µ), then

[fg]D(µ) = [f ]D(µ) ∩ [g]D(µ).

Proof. See [15, Lemma 2.2 and Theorem 4.5].
�

Theorem 2.4. Let M ∈ Lat(S,D(µ)). Then there exists a multiplier φ of D(µ) such that
M = [φ]D(µ).

Proof. See [15, Theorem 3.5] and [16, Theorem 3.2].
�

Theorem 2.5. Let M ∈ Lat(S,D(µ), and let ΘM the greatest common inner divisor of
M. Then, there is an outer f ∈ D(µ) ∩H∞ such that

M = ΘMH2 ∩ [f ]D(µ).

In fact f can be chosen so that f and ΘMf are multipliers of D(µ).
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Proof. See [15, Theorem 5.3].
�

3. Invariant subspaces generated by polynomials

In this section we characterize closed invariant subspaces generated by polynomials.
Let ζ ∈ T. We will say that ζ is a bounded point evaluation of D(µ) if there exists a
constant M > 0 such that for every polynomial p

|p(ζ)| ≤ M‖p‖µ.
It means that the functional p → p(ζ) extends to a continuous functional on D(µ). Since
the polynomials are dense in D(µ), this extension is unique and will be denoted by Lζ(f) =
f(ζ).
Note also that by [10], cµ is comparable to caµ, where

caµ(E) = inf
{
‖f‖2µ : f ∈ D(µ) and |f | ≥ 1 a.e. on a neighborhood of E

}
.

Since

‖f‖µ ≥ ‖fo‖µ ≥ ‖fo ∧ 1‖µ,
where fo is the outer part of f , then

caµ(E) = inf
{
‖f‖2µ : f ∈ D(µ) is an outer function, |f | = 1 a.e. on a neighborhood of E

}
.

Using this fact, we have the following lemma.

Lemma 3.1. Let ζ ∈ T. The following properties are equivalent:

(1) ζ is a bounded point evaluation of D(µ).
(2) The polynomial z − ζ is not cyclic for D(µ).
(3) cµ(ζ) > 0.

Proof. (1) =⇒ (3): Suppose that ζ is a bounded point evaluation for D(µ). We will prove
that caµ(ζ) > 0. Let f ∈ D(µ) be an outer function such that |f | = 1 a.e. on an open arc I
centered at ζ . Then, there is λ ∈ T such that

f(z) = λ exp
1

2π

∫

T\I

η + z

η − z
log |f(η)|dη|, z ∈ D.

Hence f is analytic in a neighborhood of ζ . Since Lζ is bounded, we have |Lζ(f)| = |f(ζ)| =
1. So ‖f‖µ ≥ 1/‖Lζ‖, and consequently, caµ(ζ) ≥ 1/‖Lζ‖. This proves that (1) implies (3).

(3) =⇒ (2): Suppose that cµ(ζ) > 0. Then M(ζ) is a proper closed invariant subspace
of D(µ) and z − ζ is not cyclic.

(2) =⇒ (1): Suppose now that z− ζ is not cyclic for D(µ). The space D(µ)/[(z− ζ)]D(µ)

is of dimension one. Let π be the canonical surjection defined by

π : D(µ) → D(µ)/[(z − ζ)]D(µ)

f → π(f) = f + [(z − ζ)]D(µ)



CYCLICITY AND INVARIANT SUBSPACES IN DIRICHLET SPACES 7

and let ρ be the isomorphism from D(µ)/[(z − ζ)]D(µ) to C satisfying ρ(π(1)) = 1. It is
easy to verify that Lζ = ρ ◦ π, which proves that Lζ is continuous.

�

Lemma 3.2. Let ζ ∈ T and let n be an integer n ≥ 1. We have

(1) If cµ(ζ) = 0 then [(z − ζ)n]D(µ) = D(µ).
(2) If cµ(ζ) > 0 then [(z − ζ)n]D(µ) = Mµ(ζ).

Proof. By Theorem 2.3, we have [(z − ζ)n]D(µ) = [(z − ζ)]D(µ). The two assertions come
from Lemma 3.1.

�

To state the characterization of closed invariant subspaces generated by polynomials, we
need some notations.
To any Λ = {(z1, n1), (z2, n2), . . . , (zk, nk)}, where zj ∈ D and nj ∈ N∗, we associate a
polynomial pΛ = Πk

j=1(z − zj)
nj . Let E ⊂ T, we define

Mµ(Λ, E) = {f ∈ D(µ) : f ∈ pΛH
2 and f|E = 0}.

For a polynomial p, let Λp = {(z, n) ∈ D× N∗ : z is a zero of p of order n}. We have

Theorem 3.3. Let p be a polynomial. Then

[p]D(µ) = Mµ(Λp, E),

where E = {ζ ∈ T : p(ζ) = 0 and cµ(ζ) > 0}.

Proof. The proof is based on classical arguments and on the Lemma 3.2.
�

4. Closed ideals of D(µ) ∩H∞

First, we will state the following lemmas which will be used in the sequel.

Lemma 4.1. Let f ∈ D(µ)∩H∞ and g ∈ H∞ be outer functions such that ‖f‖∞ ≤ 1 and
‖g‖∞ ≤ 1. Let h be the outer function given by

|h(ζ)| =
{

|f(ζ)|, ζ ∈ V,
|g(ζ)|, ζ /∈ V,

where V is a closed neighborhood of supp(µ). Then h ∈ D(µ) and

Dµ(h) ≤ Dµ(f) +
µ(T)

dist(T \ V, supp(µ))2
(
‖g‖22 + 2‖ log 1/|g|‖L1(T)

)
. (2)
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Proof. Note that ‖h‖22 ≤ ‖f‖22 + ‖g‖22, so h ∈ H2. By (1), for ζ ∈ suppµ, let δ = dist(T \
V, supp(µ)), we have

Dζ(h) =

∫

λ∈V

+

∫

λ∈T\V

|h(λ)|2 − |h(ζ)|2 − 2|h(ζ)|2 log |h(λ)/h(ζ)|
|λ− ζ |2

|dλ|
2π

≤ Dζ(f) +
1

δ2

∫

λ∈T\V

(
|g(λ)|2 + 2|f(ζ)|2 log 1

|g(λ)| − |f(ζ)|2 log e

|f(ζ)|2
) |dλ|
2π

≤ Dζ(f) +
1

δ2

(
||g||22 + 2|f(ζ)|2

∫

T

log
1

|g(λ)|
|dλ|
2π

)
.

It’s clear that (2) follows from this inequality and thus h ∈ D(µ).
�

Lemma 4.2. Let V = (eia, eib), and let f ∈ D(µ) ∩ H∞ be an outer function. Let fV be
the outer function defined by

|fV (ζ)| =
{

|(ζ − eia)(eib − ζ)||f(ζ)|, ζ ∈ V,
|(ζ − eia)(eib − ζ)|, ζ ∈ T \ V.

Then fV ∈ D(µ) ∩H∞.

Proof. Set u(z) = (z − eia)(eib − z), again by (1), for ζ ∈ suppµ, we have

Dζ(fV ) =

∫

λ∈V

+

∫

λ∈T\V

|u(λ)|2 − |u(ζ)|2 − 2|u(ζ)|2 log |u(λ)/u(ζ)|
|λ− ζ |2

|dλ|
2π

≤ Dζ(uf) +Dξ(u).

Clearly, fV ∈ D(µ) ∩H∞.
�

In order to state our result, we introduce some notions. Let f ∈ D(µ) and let M ∈
Lat(S,D(µ)). Set

Z(f) := {z ∈ D : lim inf
w→z

|f(w)| = 0}
and

Z(M) :=
⋂

f∈M

Z(f).

Recall that D(µ)∩H∞ is a Banach algebra endowed with the pointwise multiplication and
equipped with the norm

‖f‖∞,µ = ‖f‖∞ +Dµ(f)
1/2.

Theorem 4.3. Let J be a closed ideal of D(µ) ∩H∞. Let

π : D(µ) ∩H∞ −→ D(µ) ∩H∞/J,

be the canonical surjection. Then

σ(π(u)) = Z(J )

where u : z → z is the identity map and σ(π(u)) is the spectrum of π(u).
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Proof. First, we prove that Z(J ) ⊂ σ(π(u)). Let λ /∈ σ(π(u)), then there exists f ∈
D(µ) ∩ H∞ and g ∈ J such that (λ − z)f(z) = 1 − g(z). Which gives obviously that
lim
z→λ

g(z) = 1 and λ /∈ Z(J ).

Conversely, Let λ /∈ Z(J ). Hence there exists g ∈ J and c > 0 such that c ≤ |g(z)| on
a neighborhood of λ, Vλ = {z ∈ D : |z − λ| ≤ δ/2}.

Note that if w ∈ C2(T) and log |w| ∈ L1(T) then the outer function fw defined by
|fw| = w, a.e. on T, belongs to C2(D)∩Hol(D) ⊂ D(µ). Now consider the smooth function
w ∈ C2(T) w ≥ c > 0 defined by

w(ζ) =

{
c if |ζ − λ| ≤ δ/2,
1 if |ζ − λ| ≥ δ.

Suppose that ‖g‖∞ ≤ 1. Write g = gigo the inner–outer factorization of g. Consider the
outer function

|h| = |go| ∧ |fw| = |go| ∧ |w|,
by Theorem 2.3, h ∈ D(µ). Now consider the outer function

|h̃(eit)| = (|go| ∨ |fw)(eit) = max{|go(eit)|, w(eit)}.
Clearly,

gfw = gi(go ∧ fw)× (go ∨ fw) = gih× h̃ on D

and h̃ ∈ D(µ) ∩H∞ is invertible. So gih ∈ J . Let

ψ =
1

(gih)(λ)

gih− gih(λ)

u− λ
.

Note that the function go ∧ fw = fw on {ζ ∈ T : |ζ − λ| ≤ δ/2} is C∞ on Vλ and

h(z) = exp

∫

|ζ−λ|≤δ/2

ζ + z

ζ − z
log c

|dζ |
2π

× exp

∫

|ζ−λ|≥δ/2

ζ + z

ζ − z
log |h(ζ)| |dζ |

2π
,

the two functions are clearly C∞ on Vλ and hence ψ is C2 on Vλ. Thus ψ ∈ D(µ) ∩ H∞.
So π(H)(λ− π(u)) = π(1) and we get λ /∈ σ(π(u)) which finishes the proof.

�

Lemma 4.4. Let J be a closed ideal of D(µ)∩H∞ such that J contains an outer function,
and Z(J ) = {ζ0} ⊂ T. Then (z − ζ0) ∈ J .

Proof. Consider again the canonical surjection

π : D(µ) ∩H∞ −→ D(µ) ∩H∞/J ,
and let u : z → z be the identity map. Given λ ∈ D and f ∈ J , we define

Lλ(f)(z) =





f(z)− f(λ)

z − λ
, z ∈ D \ {λ},

f ′(λ) , z = λ.



10 O. EL-FALLAH, Y. ELMADANI, K. KELLAY

Since Lλf − L0f = λLλL0f , It is obvious that Lλ(f) ∈ D(µ) ∩H∞. So

π(Lλ(f))(λπ(1)− π(u)) = f(λ)π(1), λ ∈ D.

Let

Ψ(λ) = (λπ(1)− π(u))−1π(1), λ ∈ C\{1}.
This function is well defined and analytic in C\{1} by Theorem 4.3. Let f ∈ J be an
outer function. So

(λπ(1)− π(u))−1 = (1/f(λ))π(Lλ(f)), λ ∈ D.

Since f is outer, we have

‖Ψ(λ)‖ ≤





c1
(|λ| − 1)2

if |λ| > 1.

c2 exp
ε

1− |λ| if |λ| < 1,

where c1, c2 are positive constant depending on f . Then by Phragmén-Lindelöf principal,
we get that Ψ is a polynomial of 1/(1 − λ) of degree at most 2. Let g(z) = (ζ0 − z)2, we
have

π(g)− g(λ)π(1) = (λπ(1)− π(u))π(Lλ(g))

so

π(g)(λπ(1)− π(u))−1 = π(Lλ(g)) + g(λ)(λ− π(u))−1

and π(g)(λπ(1)− π(u))−1 is bounded. It follows that π(g) = 0 and (ζ0 − z)2 ∈ J .
Let a functional ℓ in the dual space of D(µ) ∩ H∞ be such that ℓ is orthogonal to J .

We have

〈ℓ, zn(ζ0 − z)2〉 = 0, n ≥ 0.

Let ℓ̂(n) = 〈ℓ, zn〉, the last equality implies that

ζ20 ℓ̂(n)− 2ζ0ℓ̂(n+ 1) + ℓ̂(n+ 2) = 0 n ≥ 0.

So ℓ̂(n) = (a+ bn)ζn0 for some constants a, b ∈ C. In the other hand

|ℓ̂(n)| ≤ ‖ℓ‖ ‖zn‖D(µ)∩H∞ = O(
√
n).

Hence b = 0 and 〈ℓ, (ζ0 − z)〉 = 0. Which gives z − ζ − 0 ∈ J and completes the proof.

�

Remark. The preceding result can be extended to closed ideals such that there greatest
common inner divisor is 1.
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5. Cyclicity in D(µ)

Lemma 5.1. Let f ∈ D(µ) ∩H∞ be an outer function. If Z(f) ∩ supp(µ) = ∅ then f is
cyclic for D(µ).

Proof. Suppose that ‖f‖∞ ≤ 1. Since Z(f)∩suppµ = ∅, there exists a closed neighborhood
V of supp µ such that Z(f) ∩ V = ∅. Consider the following outer functions

|h(ζ)| =
{

1, ζ ∈ V
|f(ζ)|, ζ /∈ V

and

|g(ζ)| =
{

|f(ζ)|, ζ ∈ V
1, ζ /∈ V.

By Lemma 4.1, h, g ∈ D(µ) ∩H∞ and by Theorem 2.3

[f ]D(µ) = [hg]D(µ) = [h]D(µ) ∩ [g]D(µ).

Note that Z(g) = Z(f) ∩ V = ∅. Hence |g(z)| ≥ c > 0 on D, and then g is cyclic for
D(µ) ∩H∞. So

[f ]D(µ) = [h]D(µ). (3)

Let δ > 0, and consider the following outer function

|hδ(ζ)| =
{

1, ζ ∈ V
1/(|f(ζ)|+ δ), ζ /∈ V

We have limδ→0 |hδh(ζ)| = 1 a.e on T. Since Z(f) ∩ supp(µ) = ∅, By Lemma 4.1

Dµ(hδh(ζ)) ≤ 1

dist(suppµ,T \ V )2

(
µ(T) + 2

∥∥∥ log |f |+ δ

|f |
∥∥∥
L1(T)

)

≤ 1

dist(suppµ,T \ V )2

(
µ(T) + 4‖ | log |f || ‖L1(T)

)
.

So

lim inf
δ→0

Dµ(hδh) <∞.

Since hδ and h are outer, |hδh(z)| ≤ |h(z)|/δ for z ∈ D, by Theorem 2.2, we have hδh ∈
[h]D(µ)∩H∞ for all δ > 0. So h is cyclic for D(µ) and by (3) f is also cyclic for D(µ).

�

Lemma 5.2. Let f ∈ D(µ) ∩H∞ be outer function. Then

Z([f ]D(µ)) ⊂ Z(f) ∩ supp µ.

Proof. Let ζ ∈ Z(f)\supp(µ), There exists a neighborhood Vζ of ζ such that Vζ∩supp(µ) =
∅. Write

f = f1 × f2, f1, f2 ∈ D(µ) ∩H∞
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where Z(f2) ⊂ T \ Vζ and Z(f1) ⊂ Vζ , so Z(f1) ∩ supp(µ) = ∅. By Proposition 5.1, f1 is
cyclic for D(µ). So

[f ]D(µ) = [f1f2]D(µ) = [f1]D(µ) ∩ [f2]D(µ) = [f2]D(µ).

Hence ζ /∈ Z([f ]D(µ)). �

Proof Theorem 1. If f is cyclic for D(µ), then it’s clear that f is an outer function and
cµ(Z(f)) = ∅.

Conversely, if cµ(ZT(f)) = 0. By Lemma 5.2 we have

Z([f ]D(µ)) ⊂ supp µ ∩ Z(f).

If Z([f ]D(µ)) = ∅. then by Lemma 5.2 and Lemma 5.1 f is cyclic and the theorem is
proved.

Suppose now that

Z([f ]D(µ)) 6= ∅.
Since Z([f ]D(µ)) is a countable set, Z([f ]D(µ)) have an isolated point, noted by ζ0. Let
V = (eia, eib) be a neighborhood of ζ0 such that V ∩Z([f ]D(µ)) = {ζ0}. Consider the outer
functions h = fV and g = fT\V :

|h(ζ)| =
{

|(ζ − eia)(eib − ζ)||f(ζ)|, ζ ∈ V
|(ζ − eia)(eib − ζ)|, ζ /∈ V

and

|g(ζ)| =
{

|(ζ − eia)(eib − ζ)|, ζ ∈ V
|(ζ − eia)(eib − ζ)||f(ζ)|, ζ /∈ V.

By Lemma 4.2, h, g ∈ D(µ) ∩ H∞ and hg ∈ [f ]D(µ). Define the closed division ideal J
by

J := {ψ ∈ D(µ) ∩H∞ : ψg ∈ [f ]D(µ)}.
Since [f ]D(µ) ∩H∞ ⊂ J and h ∈ J ,

Z(J ) ⊂ Z([f ]D(µ)) ∩ Z(h) ⊂ {ζ0}.
Hence by Lemma 4.4, z − ζ0 ∈ J and then (z − ζ0)g ∈ [f ]D(µ). Since by Theorem 2.3, we
have [(z − ζ0)g]D(µ) = [(z − ζ0)]D(µ) ∩ [g]D(µ). We get

[(z − ζ0)]D(µ) ∩ [g]D(µ) ⊂ [f ]D(µ).

Now we distinguish 2 cases.

• If cµ({ζ0}) = 0, then z − ζ0 is cyclic and hence g ∈ [f ]D(µ).
• If cµ({ζ0}) > 0, since cµ(ZT(f)) = 0, then ζ0 /∈ ZT(f) and so h(ζ0) 6= 0. Now write

g =
h

h(ζ0)
g

︸ ︷︷ ︸
∈[f ]D(µ)

+
h(ζ0)− h

h(ζ0)
g

︸ ︷︷ ︸
∈[f ]D(µ)

∈ [f ]D(µ).
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In the two cases g ∈ [f ]D(µ) which gives a contradiction since and ζ0 ∈ Z [f ] and g(ζ0) 6= 0.
So Z([f ]D(µ)) = ∅ and By Lemma 4.3, we obtain that f is cyclic for D(µ).

2

6. Invariant subspaces of D(µ)

This section is devoted to the proof of Theorem 2. Let f ∈ D(µ) be an outer function.
Note that the outer function h = f ∧ 1 belongs to D(µ)∩H∞ and Z(h) = Z(f). Without
loss of generality we can suppose that f ∈ D(µ) ∩H∞.

By Theorem 2.5, there exists an inner function Θ and an outer function f ∈ D(µ)∩H∞

such that

M = ΘH2 ∩ [f ]D(µ).

Let Mµ(E) be the closed invariant subspace of D(µ) given by

Mµ(E) = {ψ ∈ D(µ) : ψ|E = 0},
where E = {λ ∈ Z(f) ∩ supp µ : cµ({λ}) > 0}.

We need to show that

Mµ(E) = [f ]D(µ).

Let ψ ∈ [f ]D(µ), and let λ ∈ E, since cµ(λ) > 0, ψ(λ) exists and ψ(λ) = 0. So ψ ∈ Mµ(E)
and we have [f ]D(µ) ⊂ Mµ(E).

Now we show the opposite inclusion. By Theorem 2.4, there exists an outer function
φ ∈ Mµ(E) ∩H∞ such that Mµ(E) = [φ]D(µ). Consider the closed division ideal

J = {ψ ∈ D(µ) ∩H∞ : ψφ ∈ [f ]D(µ)}.
We have f ∈ J and by Lemma 5.2,

Z(J ) ⊂ Z(f) ∩ supp µ.

• If Z(J ) = ∅, then by Theorem 4.3, we get J = D(µ) ∩H∞.

• If Z(J ) 6= ∅. Since supp µ is countable, the set Z(J) have an isolated point ζ0. Let
V = (eia, eib) be a neighborhood of ζ0 such that V ∩ Z(J ) = {ζ0}. Consider again the
outer functions h = fV and g = fT\V . By Lemma 4.2, g, h ∈ D(µ) ∩H∞. Now let

J̃ := {ψ ∈ D(µ) ∩H∞ : ψg ∈ J }.

We have h ∈ J̃ and so Z(J̃ ) ⊂ {ζ0}. Since h is an outer function, by Lemma 4.4,

(z − ζ0) ∈ J̃ . Thus

(z − ζ0)gφ ∈ [f ]D(µ).

As before we distinguish 2 cases.

• If cµ({ζ0}) = 0, then z − ζ0 is cyclic . Hence gφ ∈ [f ]D(µ).
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• If cµ({ζ0}) > 0, we distinguish again 2 cases.
- if f(ζ0) = 0 then ζ0 ∈ E, Mµ({ζ0}) = Mµ(E) and

[(z − ζ0)φ]D(µ) = [(z − ζ0)]D(µ) ∩ [φ]D(µ)

= Mµ(E)

= [φ]D(µ).

So

[gφ]D(µ) = [g]D(µ) ∩ [φ]D(µ)

= [g]D(µ) ∩ [(z − ζ0)φ]D(µ)

= [(z − ζ0)gφ]D(µ)

⊂ [f ]D(µ).

- if f(ζ0) 6= 0 then h(ζ0) = fV (ζ0) 6= 0 and h ∈ J̃ . As before

gφ =
h

h(ζ0)
gφ+

h(ζ0)− h

h(ζ0)
gφ ∈ [f ]D(µ).

In all cases we have gφ ∈ [f ]D(µ). We get g ∈ J , but this is absurd, since g(ζ0) 6= 0. So
Z(J ) = ∅. By Theorem 4.3, we get J = D(µ) ∩H∞.

So D(µ) ∩H∞ ⊂ J and
Mµ(E) ⊂ [f ]D(µ).

Now the proof is complete.
2

7. Final remarks

• Note that if µ is a positive finite measure such that supp µ ⊂ E1 ∪ E2, where E1

and E2 are disjoint closed subsets of T, then D(µ) = D(µ|E1) ∩ D(µ|E2). In this
case every closed invariant subspace M of D(µ) can be written as M = M1∩M2,
where Mi is an invariant subspace of D(µ|Ei

) (i = 1, 2).

• A closed set E is union of a countable set and perfect set. Using the same argument
as in the proof of Theorem 1, one can prove that Brown-Shields conjecture is true
for D(µ) if and only if Brown-Shields conjecture is true for D(µ|P(suppµ)) where
P(supp µ) is the perfect core of the support of µ.

References

[1] D. Adams, L. Hedberg, Function spaces and potential theory, Springer, Berlin 1996.
[2] A. Beurling, On two problems concerning linear operators in Hilbert space, Acta Math. 81 (1949),

239–255.
[3] A. Beurling, J. Deny, Dirichlet spaces, Proc. Nat. Acad. Sci. USA 45 (1959) 208–215.
[4] L. Brown, A. Shields. Cyclic vectors in the Dirichlet space, Trans. Amer. Math. Soc. 285 (1984),

269-304.
[5] L. Carleson, Selected Problems on Exceptional sets. Van Nostrand Mathematical Studies, No. 13.

Princeton, NJ: Van Nostrand.



CYCLICITY AND INVARIANT SUBSPACES IN DIRICHLET SPACES 15

[6] O. El-Fallah, K. Kellay, T. Ransford. Cyclicity in the Dirichlet space, Ark. Mat. 44 (2006), 61-86.
[7] O. El-Fallah, K. Kellay, T. Ransford. On the Brown-Shields conjecture for cyclicity in the Dirichlet

space. Adv. Math., 222 (2009) (6): 2196-2214.
[8] O. El-Fallah, K. Kellay, J. Mashreghi, T. Ransford. A primer on the Dirichlet space. Cambridge Tracts

in Mathematics. Cambridge University Press, Cambridge, 2014.
[9] O. El-Fallah, Y. Elmadani, K. Kellay, Kernel estimates and capacity in the Dirichlet spaces.

http://arxiv.org/abs/1411.1036
[10] D. Guillot, Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces.

Complex Anal. Oper. Theory. To appear
[11] H. Hedenmalm, A. Shields. Invariant subspaces in Banach spaces of analytic functions, Michigan

Math. J. 37 (1990), 91-104.
[12] S. Richter, A representation theorem for cyclic analytic two-isometries, Trans. Am. Math. Soc., 328

(1994) 1–26.
[13] S. Richter, Invariant subspaces of the Dirichlet shift, J. Reine Angew. Math., 386 (1988) 205-220.
[14] S. Richter and C. Sundberg, A formula for the local Dirichlet integral, Michigan Math. J., 38 (1991)

355-379.
[15] S. Richter, C. Sundberg, Multipliers and invariant subspaces in the Dirichlet space, J. Operator

Theory 28 (1992) 167-186.
[16] S. Richter and S. Sundberg, Invariant subspaces of the Dirichlet shift and pseudocontinuations, Trans.

Am. Math. Soc., 341 51984) 863-879.

O.El-Fallah & Y. ElMadani, Laboratoire Analyse et Applications URAC/03, Université
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