
HAL Id: hal-01084238
https://hal.science/hal-01084238v1

Preprint submitted on 18 Nov 2014 (v1), last revised 24 Sep 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recursion based parallelization of exact dense linear
algebra routines for Gaussian elimination

Jean-Guillaume Dumas, Thierry Gautier, Clément Pernet, Jean-Louis Roch,
Ziad Sultan

To cite this version:
Jean-Guillaume Dumas, Thierry Gautier, Clément Pernet, Jean-Louis Roch, Ziad Sultan. Recursion
based parallelization of exact dense linear algebra routines for Gaussian elimination. 2014. �hal-
01084238v1�

https://hal.science/hal-01084238v1
https://hal.archives-ouvertes.fr

Recursion based parallelization of exact dense linear
algebra routines for Gaussian eliminationI

Jean-Guillaume Dumasa,, Thierry Gautierb,, Clément Pernetc,, Jean-Louis
Rochb,, Ziad Sultana,b,

aLJK-CASYS, UJF, CNRS, Inria, G’INP, UPMF
bLIG-MOAIS UJF, CNRS, Inria, G’INP, UPMF

cLIP-AriC UJF, CNRS, Inria, UCBL, ÉNS de Lyon

Abstract

We present block algorithms and their implementation for the paralleliza-
tion of Gaussian elimination over a finite field on shared memory architectures.
Specificities of exact computations over a finite field include the use of sub-
cubic matrix arithmetic and of costly modular reductions. As a consequence
coarse grain block algorithms perform more efficiently than fine grain ones and
recursive algorithms are preferred. We incrementally build efficient kernels, for
matrix multiplication first, then triangular system solving, on top of which a re-
cursive PLUQ decomposition algorithm is built. We study the parallelization of
these kernels using several algorithmic variants: either iterative or recursive and
using different splitting strategies. Experiments show that recursive adaptive
methods for matrix multiplication, hybrid recursive-iterative methods for tri-
angular system solve and recursive versions of PLUQ decompositions, together
with various data mapping policies, provide the best performance on a 32 cores
NUMA architecture. Overall, we show that the overhead of modular reductions
is compensated by the fast linear algebra algorithms and that exact dense linear
algebra matches the performance of full rank reference numerical software even
in the presence of rank deficiencies.

Keywords: PLUQ decomposition, Parallel shared memory computation,
Finite field, Dataflow task dependencies, NUMA architecture

1. Introduction

Dense Gaussian elimination over finite field is a main building block in com-
putational linear algebra. Driven by a large range of applications in computa-
tional sciences, parallel numerical dense LU factorization has been intensively

IThis work is partly funded by the HPAC project of the French Agence Nationale de la
Recherche (ANR 11 BS02 013). Corresponding author: clement.pernet@imag.fr, tel: +33 4
37 28 74 75; fax : +33 4 72 72 80 80

Preprint submitted to Elsevier December 3, 2014

mailto:clement.pernet@imag.fr

studied since several decades which results in software of great maturity (e.g.,
LINPACK is used for benchmarking the efficiency of the top 500 supercomput-
ers. As in numerical linear algebra, exact dense Gaussian elimination is a key
building block for problems that are dense by nature but also for large sparse
problems, for instance:

• When using sparse direct methods, blocks of new non-zero elements can
arise (fill-in) and one needs to switch to optimized dense methods on these
blocks;

• Sparse block iterative methods also induce dense elimination on blocks of
iterated vectors, like in the block-Wiedemann or block-Lanczos algorithms.

Recently, efficient sequential exact linear algebra routines have been devel-
oped [6]. The kernel routines run over small finite fields and are usually lifted
over Z, Q or Z[x]. They are used in algebraic cryptanalysis, computational num-
ber theory, or integer linear programming and they benefit from the experience
in numerical linear algebra. In particular, a key point there is to embed the
finite field elements in integers stored as floating point numbers, and then rely
on the efficiency of the floating point matrix multiplication dgemm of the BLAS.
The conversion back to the finite field, done by costly modular reductions, is
delayed as much as possible.

Block algorithms of dense linear algebra routines aggregate arithmetic op-
erations in matrix multiplication. They thus rely on the efficiency of vector
instructions and have a high computation per memory access rate.

The design of efficient exact Gaussian elimination differs from that in nu-
merical linear algebra in many ways. As shown for instance in [5], numerical
and exact approaches differ mainly in the pivoting strategies, in the cost of the
underlying arithmetic and in the treatment of rank deficiencies.

Our focus is on parallel implementations using various pivoting strategies
that will reveal the echelon form, i. e., the rank profile of the matrix [13, 7].
The latter is a key invariant used in many applications such as Gröbner basis
computations [8] and computational number theory [17].

Another difference with numerical strategies is the systematic use of fast ma-
trix multiplication variants, like Strassen and Strassen-Winograd algorithms [6].
They give better complexity for matrix multiplication and increase the perfor-
mance of the latter when executed on sufficiently large blocks. The threshold
from which fast variants take over classic variants can be automatically tuned.

As PLUQ decomposition reduces to matrix-matrix multiplication and trian-
gular matrix solve, we thus study several variants of the latter sub-routines as
single computations or composed in the higher level decomposition.

The sub-routines used for the computation of parallel PLUQ decomposition
are mainly:

• the fgemm routine that stands for Finite field General Matrix Multiplica-
tion and computes: C ← βC+αA×B where A, B, C are dense matrices.

2

• the ftrsm routine that stands for Finite field Triangular Solving Matrix
and computes: A← BU−1 where U is an upper triangular matrix, and B
a dense matrix (or A ← L−1B where L is a lower triangular matrix, and
B a dense matrix).

• the pluq routine that computes the triangular factorization P,L, U,Q =
A, where P and Q are permutation matrices, U is upper triangular and L
is unit invertible lower triangular.

Several schemes are used to design block linear algebra algorithms: the
splitting in blocks can occur on one dimension only, producing row or column
slabs [15], or both dimensions, producing tiles [3].

Algorithms processing blocks can also be either iterative or recursive. Fig-
ure 1 summarizes some of the various existing block splitting obtained by com-
bining these two aspects.

Slab iterative Slab recursive Tile iterative Tile recursive

Figure 1: Main types of block splitting

Finally, we study the impact of these cutting strategies with the implemen-
tation of parallel versions of the fgemm, ftrsm and pluq sub-routines. We use
the OpenMP library with task parallelization using two runtime implementa-
tions: libgomp [14], the GNU implementation of the OpenMP Application Pro-
gramming Interface and libkomp an implementation of the OpenMP standard
runtime based on the X-KAAPI library [10]. Expressing parallelism using tasks
allows the programmer to choose a finer grain parallelization. But the success
of such an approach depends greatly on the runtime system used. Indeed, the
X-KAAPI library handles better parallelization with fine-granularity as we show
in section 2 by comparing the libkomp and libgomp runtime systems. However,
over finite fields, with a fixed number of resources, we show that parallelization’s
priority is to focus on finding the best number of threads to be executed rather
than fixing a fine-granularity.

1.1. Methodology of experiments

All experiments have been conducted on a 32 cores Intel Xeon E5-4620
2.2Ghz (Sandy Bridge) with L3 cache(16384 KB). All implemented routines are
in the FFLAS-FFPACK library1. The numerical BLAS are ATLAS v3.11.4,
OpenBLAS r0.2.9, MKL sp1.1.106, LAPACK v3.4.2 and PLASMA v2.5.0. We

1http://linalg.org/projects/fflas-ffpack

3

http://linalg.org/projects/fflas-ffpack

used the X-KAAPI-2.1 version with last git commit: xkaapi 40ea2eb. The gcc
compiler version is 4.9.1 (supporting OpenMP 4.0), the clang compiler version
is 3.5.0 and the icpc compiler version is sp1.1.106 (using some gcc 4.7.4).

In our experiments, we use the effective Gfops (Giga field operations per
second) metric defined as Gfops = # of field ops using classic matrix product

time . This is
2mnk
time for the product of an m×k by a k×n matrix, and 2n3

3time for the Gaussian
elimination of a full rank n × n matrix. We note that the effective Gfops are
only true Gfops (consistant with the Gflops of numerical computations) when
the classic matrix multiplication algorithm is used. Still this metric allows
us to compare all algorithms on a uniform measure: the inverse of the time,
normalized by an estimate of the problem size; the goal here is not to measure
the bandwidth of our usage of the processor’s arithmetic instructions.

In section 2 we detail the main parameters that we consider. In section 3
we study different iterative and recursive variants and cutting strategies for the
parallel matrix multiplication pfgemm and compare them with our best iterative
standard parallel matrix multiplication [5]. In section 4 we show three parallel
algorithms for the pftrsm routine: an iterative variant, a recursive variant and
a hybrid combination. We then study the impact of these variants when they
are composed in the PLUQ factorization, in section 5. Overall, our focus is on
the computation of echelon forms in the case of rank deficient matrices. We
show in this section that the performance of exact factorization can match that
of reference numerical software when no rank deficiency occurs. Furthermore,
even in the most heterogeneous case, namely when all pivot blocks are rank
deficient, we show that it is possible to maintain a high efficiency.

2. Ingredients for the design of parallel kernels

The parallelization of standard versions of basic linear algebra routines has
attained great maturity in numerical computation [16, 3]. Over finite fields,
while some aspects are similar to numerical computation there remain some
specificities that are different. We list concisely these specificities on which
parallel efficiency of exact algorithms relies:

Impact of modular reductions. Computations over finite fields are done, first,
by embedding finite field elements in integers stored as floating point numbers.
Secondly, modular reduction operations are applied to convert back elements
over finite fields. To minimize the number of modular reductions in these algo-
rithms, the technique is to accumulate several multiplications before reducing
while keeping the result exact. Moreover, for further improvement we consider
block algorithms that have better cache efficiency. The best implementations
of floating point matrix multiplication are given by the BLAS that we thus use
in our framework. This approach is only valid as long as integer computation
does not exceed the size of the mantissa. For instance in the multiplication
of A × B over Z/pZ, with n the common dimension, we control overflowing
if n(p − 1)2 < 2mantissa. Furthermore, block algorithms of LU factorization

4

require eliminations on blocks. This induces a choice of the best block size k.
Table 1 [5] shows the impact of block size for iterative and recursive algorithms
on the number of modular reductions. This table demonstrates that the number
of modular reduction is smaller in the case of tiled recursive LU factorization.
This is one of the reasons that motivated us to look for tiled recursive variants
over finite fields.

k
≥

1 Tile Iterative Right looking 1
3kn

3 +
(
1− 1

k

)
n2 +

(
1
6k −

3
2 + 1

k

)
n

Tile Iterative Left looking
(
2− 1

2k

)
n2 − 5

2kn+ 2k2 − 2k + 1

Tile Iterative Crout
(

5
2 −

1
k

)
n2 +

(
−2k − 3

2 + 1
k

)
n+ k2

Tiled Recursive 2n2 − n log2 n− 2n

Slab Recursive (1 + 1
4 log2 n)n2 − 1

2n log2 n− n

Table 1: Counting modular reductions in full rank block LU factorization of an n× n matrix
modulo p for a block size of k dividing n.

Fast variants for matrix multiplication. Numerical stability is not an issue over a
finite field, and asymptotically fast matrix multiplication algorithms, like Wino-
grad’s variant of Strassen algorithm [9, §12] can be systematically used on top
of the BLAS.

Table 2 shows the impact on performance of fast variants compared to stan-
dard matrix multiplication. In this table we compare the sequential speed ob-

1024 2048 4096 8192 16384

sgemm OpenBLAS 27.30 28.16 28.80 29.01 29.17

O(n3)-fgemm Mod 37 21.90 24.93 26.93 28.10 28.62

O(n2.81)-fgemm Mod 37 22.32 27.40 32.32 37.75 43.66

dgemm OpenBLAS 15.31 16.01 16.27 16.36 16.40

O(n3)-fgemm Mod 131071 15.69 16.20 16.40 16.43 16.47

O(n2.81)-fgemm Mod 131071 16.17 18.05 20.28 22.87 25.81

Table 2: Effective Gfops (2n3/time/109) of matrix multiplications: fgemm vs OpenBLAS
d/sgemm on one core of a Xeon E5-4620 0 @ 2.20GHz

tained of classical fgemm algorithm of the fflas-ffpack library. The efficiency of
the fgemm routine rely on the efficiency of the BLAS. We compile our codes link-
ing with OpenBLAS. In table 2 computations are done over small finite fields,

5

large finite fields and without modular reductions, to see the impact of modular
reductions compared to openBLAS dgemm sequential execution.

We also can activate or deactivate the option that allows to use fast variants
in fgemm Mod 37 and fgemm Mod 131071. The difference between the small
and large moduli is that the routine realizes that for a small modulus and a
small matrix dimension, it can use floats instead of doubles: thus over small
moduli (here modulo 37), field elements are stored in single precision floating
point numbers. Table 2 shows that in both cases, single or double precision, a
speed-up of more than 40% can easily be attained.

We of course can also benefit from Strassen-Winograd algorithms in parallel
versions of matrix multiplication. In practice, we will for now restrict ourselves
to a parallel cutting of blocks that uses the naive algorithm, but when it de-
generates to a sequential call, then it can use Strassen-Winograd variants. In
the following, we thus mainly study the trade-off between having fine grain par-
allelization for load and communication balancing and the best size of blocks
suited for the fast variants.

Further experiments would have to be made in order to use fast parallel vari-
ants also. The cost of sequential matrix multiplication over finite field is there-
fore not associative: a larger granularity delivers better sequential efficiency [1].
So to take advantage of these fast variants in parallel standard matrix multi-
plication, we need to limit the cutting of matrices into sufficiently large blocks.
In this case trade-offs are to be made between having fine-grain parallelization
to generate more parallelism and having coarce-grain to take benefit from fast
variants.

The impact of grain size. The granularity is the block dimension (or the dimen-
sion of the smallest blocks in recursive splittings). Matrices with dimensions
below this threshold are treated by a base-case variant (often referred to as the
panel factorization, in the case of the PLUQ decompostion). It is an important
parameter for optimizing efficiency: a finer grain allows more flexibility in the
scheduling when running on numerous cores, but it also challenges the efficiency
of the scheduler and can increase the bus traffic. In numerical linear algebra, the
cost of arithmetic operations is more or less associative: with dimensions above
a rather low threshold (typically a few hundreds), the BLAS sequential matrix
multiplication attains the peak efficiency of the processor. Hence the granular-
ity has very little impact on the efficiency of a block algorithm run sequentially.
On the contrary, over a finite field, a small granularity can imply a larger num-
ber of costly modular reductions. The cost of sequential matrix multiplication
over finite field is therefore not associative: a larger granularity delivers better
sequential efficiency [1]. Over finite fields, we showed that using fast variants
improves greatly the computation performance for matrix multiplication, when
called on sufficiently large blocks. With fixed number of resources, rather than
fixing a small grain, we fix the number of threads to be executed i.e. having
fixed cutting for iterative variants and fixed number of recursion for recursive
variants. If the matrix dimension gets larger, with fixed number of threads, the
granularity is larger. Calling fast variants on these large blocks gives even better

6

performance than considering small granularity and counting on an optimized
runtime system that executes more tasks efficiently.

The impact of the runtime system and dataflow parallelism. Generating a large
number of tasks causes overheads that severely impacts parallel execution, if
the runtime does not handle it efficiently. This penalizes the use of fine-grain
parallelization. Based on the X-KAAPI library, the libkomp runtime [2] system
comes with very little task creation and scheduling overheads and implements
recursive tasks in a very efficient way. In table 3 we show the overhead of using
libgomp and libkomp runtime systems on one core compared to a sequential
execution of block algorithm. We use for this comparison the best recursive
algorithm for matrix multiplication, the 2D recursive adaptive, that is detailed
in section 3, with seven recursive calls. But even if we use optimized runtime
systems for OpenMP tasks, the cost of creating tasks should not be neglected.

matrix dimension block sequential 1 core libgomp 1 core libkomp

2000 13.87 13.58 13.67

4000 15.10 14.63 14.68

6000 15.50 15.44 15.47

Table 3: Execution speed(Gfops) on 1 core: overhead of using runtime systems on block
algorithms (using 128 tasks).

Using the latest version of gcc compiler we can also benefit from the data-
flow features of OpenMP-4.0. In our experiments we use the depend clause of
OpenMP-4.0 to express dependencies between data produced and/or consumed
by tasks. This allows to construct the DAG (directed acyclic graph) diagram
that precomputes dependencies of all tasks before execution. This feature helps
reducing the idle time of resources by removing unnecessary synchronizations.
We see in next sections the impact of dataflow parallelization using the libkomp
runtime that also implements the latest norms of OpenMP-4.0.

Data mapping on NUMA architecture. The efficiency of computations on a
NUMA machine architecture can be disrupted due to remote accesses between
different NUMA nodes. This led us to focus on data placement strategies to
reduce as much as possible distant memory accesses.

In our experiments data are allocated, initialized and then computed. El-
ements of the matrices are mapped on a specific core or node only during the
initialization phase. There data mapping can be handled. Data are initialized
with two parallel for loops. Each iteration is incremented with a fixed chunk
size. To see the impact of remote accesses, we conducted experiments with
different mapping strategies of matrices A, B and C in the case of matrix mul-
tiplication. First we map all the data on a single NUMA node, and execute the

7

program on all nodes. Then we conduct the same experiments by mapping on
two, three and then all four NUMA nodes.

For the sake of clarity and simplicity we show only the different mapping
strategies for one variant of matrix multiplication 2D recursive adaptive, with
four levels of recursion, in table 4. Experiments are done on 32 cores (4 NUMA
nodes with 8 cores each). By placing data on a single node, computation speed
is affected by the time data are accessed from distant NUMA nodes. Whereas
by dispatching all matrices on different NUMA nodes execution time is faster.
Moreover, when 32 threads try to access data on the same NUMA node, con-
tentions on data access also degrade execution performance.

matrix dimension 1 node 2 nodes 3 nodes all nodes numactl -i all

4000 233.99 275.97 291.18 307.68 295.60

6000 247.10 303.44 329.05 347.21 310.119

8000 265.66 292.02 342.85 350.72 310.147

Table 4: Execution speed(Gfops): with different data mapping.

3. Parallel matrix multiplication

In this section, we study different variants of parallel matrix multiplication
algorithms. We present various cutting strategies of block recursive and iterative
algorithms for the pfgemm operation: computing C ← αA×B+βC, where A, B
and C are dense matrices with dimensions respectively (m, k), (k, n) and (m,n).
In this section, experiments are done with β = 0 and α = 1.

3.1. Algorithmic variants

The 2D partitioning. This strategy splits the row dimension of A and the col-
umn dimension of B and thus generates independent tasks. More precisely, we
distinguish an iterative and two recursive variants, as shown in Figure 2.

The 2D iterative partitioning splits A in s row slabs and B in t column
slabs, and splits the matrix C in s × t tiles. The values for s and t are
chosen such that their product equals the number of threads available.

The 2D recursive partitioning performs a 2 × 2 splitting of the matrix C
at each level of recursion. Each recursive call is then allocated a quarter
of the number of threads available. This constrains the total number of
tasks created to be a power of 4 and the splitting will work best when the
number of threads is also a power of 4.

The 2D recursive adaptive partitioning cuts the largest dimension between
m and n, at each level of recursion, creating two independent recursive

8

calls. The number of threads is then divided by two and allocated for each
separate call (with a discrepancy of allocated threads of at most one). This
splitting better adapts to an arbitrary number of threads provided.

A1

A2

B1 B2

C11 C12

C21 C22

A

B

Cs

t

A1

A2

B1 B2

C11 C12

C21 C22

1st recursion cutting

2nd recursion cutting

Figure 2: 2D partitioning: recursive (left), iterative (middle) and recursive adaptive (right)
cutting.

The 3D partitioning. This strategy splits the three dimensions m, n and k.
Again we present three variants:

A11 A12

A21
A22

B11 B12

B21 B22

C11 C12

C21 C22

Figure 3: 3D partitioning : cutting A and B according to dimensions m, n and k.

The 3D in-place recursive variant performs 4 multiply calls, waits until
blocks elements are computed and then performs 4 multiply and accumula-
tion. This variant is called inplace since blocks of matrix C are computed
in place. We show two implementations of this variant using OpenMP
tasks and using dependencies.

In this 3D scheme we generate more tasks than in the 2D scheme. But
with the 3D-Inplace recursive variant we add synchronizations between
tasks at each level of recursion. This can slow down the performance of
this variant. The ”#pragma omp taskwait” directive synchronizes all four

9

Implementation 1 3D-Inplace recursive with OpenMP tasks
Input: A = (aij) a m× k matrix over a field

B = (bij) a k × n matrix over a field
Output: C: m× n matrix over a field

#pragma omp task shared(C11, A11, B11)
C11 = A11.B11

#pragma omp task shared(C12, A12, B22)
C12 = A12.B22

#pragma omp task shared(C21, A22, B21)
C21 = A22.B21

#pragma omp task shared(C22, A21, B12)
C22 = A21.B12

#pragma omp taskwait
#pragma omp task shared(C11, A12, B21)
C11+ = A12.B21

#pragma omp task shared(C12, A11, B12)
C12+ = A11.B12

#pragma omp task shared(C21, A21, B11)
C21+ = A21.B11

#pragma omp task shared(C22, A22, B22)
C22+ = A22.B22

#pragma omp taskwait
Return (C)

Implementation 2 3D-Inplace recursive using OpenMP4.0 dependencies
Input: A = (aij) a m× k matrix over a field

B = (bij) a k × n matrix over a field
Output: C: m× n matrix over a field

#pragma omp task shared(C11, A11, B11) depend(in:A11, B11) depend(out:C11)
C11 = A11.B11

#pragma omp task shared(C12, A12, B22) depend(in:A12, B22) depend(out:C12)
C12 = A12.B22

#pragma omp task shared(C21, A22, B21) depend(in:A22, B21) depend(out:C21)
C21 = A22.B21

#pragma omp task shared(C22, A21, B12) depend(in:A21, B12) depend(out:C22)
C22 = A21.B12

#pragma omp task shared(C11, A12, B21) depend(in:A12, B21) depend(inout:C11)
C11+ = A12.B21

#pragma omp task shared(C12, A11, B12) depend(in:A11, B12) depend(inout:C12)
C12+ = A11.B12

#pragma omp task shared(C21, A21, B11) depend(in:A21, B11) depend(inout:C21)
C21+ = A21.B11

#pragma omp task shared(C22, A22, B22) depend(in:A22, B22) depend(inout:C22)
C22+ = A22.B22

#pragma omp taskwait
Return (C)

tasks created before. So, the second task that rewrites in the block C11,
for instance, needs to wait for all data of the matrix to be produced.

In this OpenMP Implementation 1, each task calls recursively the 3D-
Inplace recursive routine. Using OpenMP 4.0 directives helps specifying
dependencies between tasks. This allows to start the computations on a

10

block once its data are produced. We show the OpenMP code of the 3D-
Inplace recursive routine using the clause ”depend” in Implementation 2.

The 3D recursive variant performs 8 multiply calls in parallel and then per-
forms the add at the end. To perform 8 multiplications in parallel we need
to store the block results of 4 multiplications in temporary matrices. As
in the previous routine, each task calls recursively the routine.

The 3D recursive adaptive variant cuts the largest of the three dimensions
in halves. When the dimension k is split, a temporary is allocated to per-
form the two products in parallel. As the split the k dimension introduces
some overhead, one can introduce a weighted penalty system to only split
this dimension when it is largely great than the other dimensions.: with
a penatly factor of p, the dimension k is split only when max(m,n) < pk.

In all these recursive schemes, the recursion is stopped when the number
of threads is less than or equal to one or when the matrix dimension becomes
below a threshold (set to 220 in the experiments).

Even if the 3D recursive variants suffers from an additional cost for tem-
porary matrix allocation, we will show that it behaves better in parallel than
the 3D-Inplace recursive. Using dependencies provides better scheduling of the
tasks. Each add task is launched immediately once its block elements are pro-
duced.

3.2. Experiments on square matrices

3.2.1. Comparison of all variants

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000 20000 25000 30000

G
fo

p
s

matrix dimension

pfgemm on 32 cores Xeon E4620 2.2Ghz with libgomp

2D iterative
2D recursive

2D recursive adaptive
3D in-place recursive

3D recursive
3D recursive adaptive

Figure 4: Speed of different matrix multiplication routines using libgomp

Experiments are conducted on square matrices with dimensions between
1000 and 32000 and elements are over the finite field Z/131071Z, using 32 cores.
Figures 4 and 5 show the execution speed of all variants, using OpenMP4.0

11

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000 20000 25000 30000

G
fo

p
s

matrix dimension

pfgemm on 32 cores Xeon E4620 2.2Ghz with libkomp

2D iterative
2D recursive

2D recursive adaptive
3D in-place recursive

3D recursive
3D recursive adaptive

Figure 5: Speed of different matrix multiplication routines using libkomp

tasking model, linked with the two runtimes libgomp and libkomp respectively.
With libgomp, the 2D iterative variant is much faster, as recursive tasks seem
to be poorly handled. Thanks to its efficient management of recursive tasks,
the libkomp runtime behaves better for the recursive variants, except the 3D
in-place recursive one, for a reason that we could not explain. The speed is now
at least as good as that with libkomp.

In the next experiments we will therefore only show executions of implemen-
tations linked against libkomp library.

If the 3D recursive adaptive variant performs best on large matrices, the
2D recursive adaptive algorithm is close to it on large instances (550 Gflops for
n = 32000), but maintains a better efficiency with smaller matrices.

3.2.2. Comparison with the state of the art in numerical computation

Figure 6 shows the computation time of various matrix multiplications: the
numerical dgemm implementation of Plasma-Quark, and Intel-MKL the imple-
mentation of pfgemm of fflas-ffpack using OpenMP-4.0 dataflow model. This
implementation is run over the finite field Z/131071Z or over field of real dou-
ble floating point numbers, with or without fast Strassen-Winograd’s matrix
product. One first notices that most routines perform very similarly. More pre-
cisely, Intel-MKL dgemm is faster on small matrices but the effect of Strassen-
Winograd’s algorithm makes pfgemm faster on larger matrices, even on the finite
field where additional modular reductions occur.

3.3. Experiments on rectangular matrices

As shown in the previsou section, the 3D splitting variants perform similarly
to the 2D variants for large matrices (with a slight improvement), but are less
efficient on smaller matrices, due to more synchronizations and data copies.

12

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000 20000 25000 30000

2
n
3
/t

im
e
/1

0
9

matrix dimension

parallel dgemm vs parallel fgemm

Winograd 2D-adapt p-fgemm<double>
MKL dgemm

PLASMA-QUARK dgemm
Classic 2Dadapt p-fgemm<double>

Figure 6: Speed of exact and numerical matrix multiplication routines

We now compare these variants in a situation supposed to be favorable for
the 3D splitting: when the dimension k is large compared to m and n. Figure 7
reveals that indeed, the 3D recursive adaptive variant (with best penalty factor,
found to be 12) outperforms the best 2D variants for very unbalanced cases:
m,n ≤ 1000 and k = 20000. However, the computation speeds gets quickly
similar in all three variants.

This fact, combined with the results of figures 5 lead us to only consider
the 2D splitting variants when calling pfgemm from other other routines. This
has been confirmed by experiments on e.g. the PLUQ decomposition where 3D
splitting of pfgemm always led to slower computations.

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000 6000

G
fo

p
s

matrix dimension

pfgemm on 32 cores Xeon E4620 2.2Ghz with libkomp: n x 20000 x n

2D iterative
2D recursive adaptive

3D recursive adaptive penalty factor 12

Figure 7: Comparing computation speed on rectangular matrices with large inner dimension
k.

13

4. Parallel triangular solving matrix

In this section we study different cutting strategies for the computation the
of parallel pftrsm routine. We identify three different types of parallelizations.
The block iterative variant, block recursive variant and an hybrid variant that
combines the iterative and the recursive variants. The latter proves to be de-
liver the best efficiency in practice, in particular when the hand-side is highly
rectangular. In this subsection, we will consider, without loss of generality, the
lower left case of the FTRSM operation: computing X ← L−1B.

Iterative variant. In the iterative variant (Algorithm 1), the parallization is
obtained by splitting the outer dimension of the right hand side matrices B
and X: [

X1 . . . Xk

]
← L−1

[
B1 . . . Bk

]
.

The computation of eachXi ← L−1Bi is independent from the others. Hence
the algorithm consists in a length k parallel iteration creating k sequential ftrsm
tasks. The cost of these sequential ftrsm is not associative, and one need to
maximize the computational size of each of these tasks. Hence the number of
blocks k is set as the number of available threads.

Recursive variant. This variant is simply based on the block recursive algorithm
(Algorithm 2) where each matrix multiplication is performed by the parallel
matrix multiplication pfgemm of section 3. The three tasks in Algorithm 2 can
not be executed concurrently.

Algorithm 1 Iterative TRSM

Split
[
X1 . . . Xk

]
=

L−1
[
B1 . . . Bk

]
for i = 1 . . . k do

Xi ← L−1Bi

Algorithm 2 Recursive TRSM

Split

[
X1

X2

]
=

[
L1

L2 L3

]−1 [
B1

B2

]
X1 ← L−1

1 B1

X2 ← B2 − L2X1

X2 ← L−1
3 BX2

Hybrid variant. Lastly, we propose to combine the two above variants into a
hybrid algorithm. The motivation is to handle the case when the column di-
mension of B is rather small: the cutting of Algorithm 1 produces slices that my
become very thin, and reduce the efficiency of each of the sequential TRSM. In-
stead, the hybrid variant applies the iterative algorithm with the restriction that
the column dimension of the slices Xi and Bi remains above a given threshold.
Consequently, this splitting may create fewer tasks than the number of available
threads. Each of them then runs the parallel recursive variant using an equal
part of the unused remaining threads. More precisely, the parameters are set so
that the number of threads given to the recursive variant, and henceforth to the
matrix multiplications, is always a power of 2, in order to better benefit from
the adaptive recursive splitting.

14

Let T be the threshold, p the number of threads provided and n, the column
dimension of B. Let ` = min{` ∈ Z≥0 : p

2`T < n}. Then each recursive TRSM

task is allocated 2` threads and the iterative TRSM splits X and B in k = p/2`

slices.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1000 2000 3000 4000 5000 6000 7000

G
fo

p
s

n: column dimension of B

pftrsm on 32 cores Xeon E4620 2.2Ghz: solving LX=B where B is 10000 x n

Hybrid threshold = 256 using libkomp
Hybrid threshold = 256 using libgomp

Iterative using libkomp
Iterative using libgomp

Figure 8: Comparing the Iterative and the Hybrid variants for parallel FTRSM using libkomp

and libgomp. Only the outer dimension varies: B and X are 10000 × n.

Experiments on parallel FTRSM. Figure 8 compares the computation speed of
the iterative and the hybrid version of the parallel ftrsm, on triangular sys-
tems of dimension 10000 but with right hand side of varying column dimension.
The hybrid variant clearly improves over the iterative variant up to n = 3000.
Moreover, the libkomp and libgomp runtimes perform similarly on the iterative
algorithm (which is essentially a parallel for loop), but for the hybrid variant,
libkomp reaches a higher efficiency for it handles more efficiently recursive tasks.

5. Parallel Gaussian elimination

In this section, we present the parallelization of two different algorithms for
the computation of PLUQ decomposition: A tile iterative and a tile recursive
algorithm. This computation is widely studied and has attained great ripeness
in numerical computation. Over finite fields, strategies and interests differs
from numerical computation in the case of Gaussian elimination. Moreover, the
knowledge of the position of all pivots or equivalenty, the rank profile of the
matrix[13, 7] that is revealed by performing a PLUQ decomposition is valuable
and used in many applications. However, over finite field, only certain pivoting
strategies can give this information on the input matrix.

15

In [5], parallel iterative and recursive implementations of exact PLUQ de-
compositions revealing the echelon form of the matrix are presented. It is there
shown that the parallel recursive implementation behaves the best in terms of
performance. We thus focus mainly on the optimization of this state of the art
parallel recursive implementation in order to benefit from the optimized build-
ing kernels presented in the previous sections and some new tasking strategies
using data dependencies. We then present parallel experiments in the case of
full rank and rank deficient matrices.

5.1. Algorithmic variants for PLUQ factorization

We consider the general case of matrices with arbitrary rank profile, that
can lead to rank deficiencies in the panel eliminations. Algorithms computing
the row rank profile (or equivalently the column echelon form) used to share a
common pivoting strategy: to search for pivots in a row-major fashion and con-
sider the next row only if no non-zero pivot was found (see [13] and references
therein). Such an iterative algorithm can be translated into a slab recursive
algorithm splitting the row dimension in halves (as implemented in sequential
in [6]) or into a slab iterative algorithm. More recently, a more flexible pivoting
strategy that results in a tile recursive algorithm, cutting both dimensions si-
multaneously was presented in [7]. As a by product, both row and column rank
profiles are also computed simultaneously.

Tiled iterative algorithm. It has been showned in [5] that the slab iterative
algorithm performing a PLUQ decomposition is slow due to large sequential
tasks (see [5, § 4, Figure 5]). At each iteration a PLUQ decomposition is called
sequentially on big slab blocks of size k × n, where k is the size of iteration
chunks and n is the column dimension of the input matrix. These sequential
tasks are costly and therefore impose a choice of a fine granularity.

Over finite field, the only way to compute in parallel the rank profile of
the input matrix using a PLUQ decomposition was by cutting according to
one dimension. Thanks to the quad recursive algorithm presented in [7] the
computation of rank profiles can be done by cutting according to two dimensions.
By using this experience we managed to update the slab iterative algorithm
into a tiled iterative algorithm for the computation of PLUQ decomposition in
parallel. In order to speed-up the panel computation, we can split it into column
tiles. Then the pivoting strategy of the latter paper makes it still possible to
recover the rank profiles afterwards. Now with this splitting [5, § 4, Figure 6], the
operations remain more local and updates can be parallelized. This approach
shares similarities with the recursive computation of the panel described in [4].

Moreover, the workload of each block operation may strongly vary, depend-
ing on the rank of the corresponding slab. Such heterogeneous tasks lead us to
opt for work-stealing based runtime systems instead of static thread manage-
ment.

This optimization used in the computation of the slab factorization improved
the computation speed by a factor of 2.

16

Tiled recursive algorithm. Recursive algorithms in dense linear algebra is a nat-
ural choice for hierarchical memory systems [18]. For large problems, the geo-
metric nature of the recursion causes that the total area of operands for recursive
algorithms is less than that of iterative algorithms [12]. The parallelization of
the recursive variant of PLUQ decomposition over finite fields is presented in [5]
using OpenMP tasks. The recursive splitting is done in four quadrants. Pivot-
ing is done first recursively inside each quadrant and then between quadrants.
It has the interesting feature that if the top-left tile is rank deficient, then the
elimination of the bottom-left and top-right tiles can be executed in parallel as
shown on Figure 9.

0

0

0

0
0

0
0

0

Figure 9: PLUQ quad-recursive scheme

In this work we modify the implementations by adding dependencies between
consumed and produced data in the tile iterative and tile recursive implemen-
tations. In the PLUQ schemes we have much more dependencies than in the
matrix multiplication schemes. Thus, we have much more dependencies to be
handled by the runtime system. All experiments in this section are done using
the libkomp runtime. The optimization of the kernels, mainly pfgemm, pftrsm
and flaswp, that are called during the computation, improves greatly the over-
all performance of parallel PLUQ decomposition and gives a new state of the
art over finite fields as shown next.

5.2. Parallel experiments on full rank matrices

Figure 10 shows that the tiled recursive parallel PLUQ implementation,
without modular reductions, behaves better than the plasma quark getrf and
matches the performance of the state of the art MKL getrf. This is mainly
due to the bi-dimensional cutting which allows for a faster panel elimination,
parallel hybrid pftrsm kernels, more balanced and adaptive pfgemm kernels and
some use of Strassen-Winograd’s algorithm. The use of the latter speeds up
computation when matrx dimension gets larger.

Figures 10 and 11 show that in the pluq routine, the number of inner threads
(it) used for the execution of kernel routines impacts the overall performance.
In one hand, with larger number of inner threads (it=1024), the recursive paral-
lel pluq routine using dataflow synchronizations has better behavior than with

17

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5000 10000 15000 20000 25000 30000

G
fo

p
s

matrix dimension

parallel dgetrf vs parallel PLUQ on full rank matrices

explicit synch pluq<double> (it=32)
MKL dgetrf

dataflow synch pluq<double> (it=1024)
dataflow synch pluq<double> (it=32)

PLASMA-Quark dgetrf tiled storage (k=212)
PLASMA-Quark dgetrf (k=212)

Figure 10: Effective Gfops of parallel LU factorization on full rank matrices without modular
operations.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5000 10000 15000 20000 25000 30000

G
fo

p
s

matrix dimension

Speed of parallel PLUQ on full rank matrices

explicit sync pluq rec<131071>(it=32)
dataflow sync pluq rec<131071>(it=1024)

dataflow sync pluq rec<131071>(it=32)
dataflow sync pluq iter<131071>

explicit sync pluq iter<131071>

Figure 11: Parallel tiled recursive and iterative PLUQ over Z/131071Z on full rank matrices
on 32 cores

small number of inner threads (it=32). This is mainly due to the libkomp run-
time system that handles more efficiently fine grain parallelization. But on the
other hand, finer grain penalizes implementation with dataflow synchronizations
over finite field because it takes less advantage from the use of fast variants in
the matrix product kernels.

Figure 11 shows execution speed using modular reductions. It demonstrates
that, parallel recursive pluq implementation has asymptotically same behavior
with and without modular reductions. This is explained by the fact that the
number of modular reductions is independent of the number of tasks in the case
of tiled recursive pluq as proved in table 1. Whereas, the tiled iterative pluq

18

routine uses smaller granularity and thus is impacted by the number of modular
reduction and takes clearly less advantage from fast variants in the fgemm ker-
nels. Nevertheless, its implementation using dataflow synchronizations benefits
more from small grain size than when using explicit task synchronizations.

5.3. Parallel experiments on rank deficient matrices

We show here performance obtained in the case of rank deficient matrices.
Figure 12 shows execution speed of parallel PLUQ versions on matrices with
rank equal to half their dimensions. Linearly independent rows and columns of
the generated matrix are uniformly distributed on the dimension.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5000 10000 15000 20000

G
fo

p
s

matrix dimension

speed of parallel PLUQ on rank deficient matrices (rank=dim/2)

dataflow synch pluq<131071> (it=1024)
explicit synch pluq<131071> (it=32)

dataflow synch pluq<131071> (it=32)

Figure 12: Perforamnce of tiled recursive PLUQ on 32 cores. Matrices rank is equal to half
their dimensions. The Speed here (2 × n3/3 × time does not correspond to the real number
of operations when rank is less than the dimension)

The implementation with OpenMP of the tiled recursive PLUQ maintained
a high efficiency in the case of rank deficient matrices.

Using recursive variants linked against the libkomp library with dataflow
synchronizations, mapping data on different NUMA nodes that helps reducing
dependency on bus speed and fixing large granularity to benefit from the use
of fast variants and to reduce modular reductions impact, we manage to obtain
high performance for our tiled recursive PLUQ factorization. Comparing to
results in [5] we have 18% gain for matrix multiplication and 23% gain in the
case of PLUQ decomposition. The best performance is obtained with the par-
allel recursive PLUQ variant using the 2D recursive adaptive variant for matrix
multiplication algorithm and the hybrid parallel pftrsm variant.

6. Conclusion

We studied in this work several implementations of the PLUQ sub-kernels
and showed that the best overall performance is obtained with tiled recursive

19

and hybrid kernels. Our results depends on different aspects. First, the choice
of the algorithm that performs the best in parallel depends on the used sub-
kernels. A best behaving parallelized kernel can turn to be less efficient when
called concurrently with other kernels. Second, the cost of modular reductions
has less impact in the recursive PLUQ scheme. These two features combined
with the use of fast variants gave performance nearing state of the art numerical
libraries.

Perspective. Our future work focuses on two main optimizations. First, the
parallelization of fast variants can speed up performance of matrix multiplication
computation. The focus will be on the scheduling heuristics that will reduce as
much as possible task dependencies. Second, the distant data accesses has an
impact on the overall performance. Thus, adapting the communication avoiding
techniques of [11] is highly relevant. Over finite fields, an idea is to precompute
the position of all pivots in parallel, then gather them in one block, before
beginning the elimination. This reduces distant accesses in the pivot research
phase of the Gaussian elimination algorithm.

[1] B. Boyer, J.-G. Dumas, C. Pernet, and W. Zhou. Memory efficient
scheduling of Strassen-Winograd’s matrix multiplication algorithm. In
J. P. May, editor, ISSAC’2009, Proceedings of the 2009 ACM Interna-
tional Symposium on Symbolic and Algebraic Computation, Seoul, Ko-
rea, pages 135–143. ACM Press, New York, July 2009. URL: http:

//hal.archives-ouvertes.fr/hal-00163141.

[2] F. Broquedis, T. Gautier, and V. Danjean. libKOMP, an Efficient OpenMP
Runtime System for Both Fork-Join and Data Flow Paradigms. In
IWOMP, pages 102–115, Rome, Italy, jun 2012.

[3] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A class of parallel tiled
linear algebra algorithms for multicore architectures. Parallel Computing,
35(1):38 – 53, 2009. doi:http://dx.doi.org/10.1016/j.parco.2008.

10.002.

[4] J. J. Dongarra, M. Faverge, H. Ltaief, and P. Luszczek. Achieving numer-
ical accuracy and high performance using recursive tile LU factorization.
Concurrency and Computation: Practice and Experience, 26(7):1408–1431,
2014. URL: http://hal.inria.fr/hal-00809765.

[5] J.-G. Dumas, T. Gautier, C. Pernet, and Z. Sultan. Parallel computation
of echelon forms. In Euro-Par 2014, Proceedings of the 20th international
conference on parallel processing, Porto, Portugal, volume 8632 of Lecture
Notes in Computer Science, pages 499–510, Aug. 2014. URL: http://

arxiv.org/abs/1402.3501.

[6] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over prime
fields. ACM TOMS, 35(3):1–42, Nov. 2008. URL: http://arxiv.org/

abs/cs/0601133.

20

http://hal.archives-ouvertes.fr/hal-00163141
http://hal.archives-ouvertes.fr/hal-00163141
http://dx.doi.org/http://dx.doi.org/10.1016/j.parco.2008.10.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.parco.2008.10.002
http://hal.inria.fr/hal-00809765
http://arxiv.org/abs/1402.3501
http://arxiv.org/abs/1402.3501
http://arxiv.org/abs/cs/0601133
http://arxiv.org/abs/cs/0601133

[7] J.-G. Dumas, C. Pernet, and Z. Sultan. Simultaneous computation of
the row and column rank profiles. In M. Kauers, editor, Proc. ISSAC’13,
Grenoble, France, pages 181–188. ACM Press, New York, June 2013.

[8] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4).
Journal of Pure and Applied Algebra, 139(1–3):61–88, June 1999.

[9] J. v. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Uni-
versity Press, New York, NY, USA, 1999.

[10] T. Gautier, J. V. Ferreira Lima, N. Maillard, and B. Raffin. XKaapi:
A Runtime System for Data-Flow Task Programming on Heterogeneous
Architectures. In In Proc. of the 27-th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Boston, USA, jun 2013.

[11] L. Grigori, J. W. Demmel, and H. Xiang. CALU: a communication op-
timal lu factorization algorithm. SIAM Journal on Matrix Analysis and
Applications, 32(4):1317–1350, 2011.

[12] F. G. Gustavson. Recursion leads to automatic variable blocking for dense
linear-algebra algorithms. IBM Journal of Research and Development,
41(6):737–756, 1997.

[13] C.-P. Jeannerod, C. Pernet, and A. Storjohann. Rank-profile revealing
Gaussian elimination and the CUP matrix decomposition. J.Symb.Comp.,
56:46–68, 2013.

[14] J. Jelinek and et al. The GNU OpenMP implementation, 2014. URL:
https://gcc.gnu.org/onlinedocs/libgomp.pdf.

[15] K. Klimkowski and R. A. van de Geijn. Anatomy of a parallel out-of-core
dense linear solver. In ICPP, volume 3, pages 29–33. CRC Press, aug 1995.

[16] A. Rémy, M. Baboulin, M. Sosonkina, and B. Rozoy. Locality optimization
on a NUMA architecture for hybrid LU factorization. In M. Bader, A. Bode,
H. Bungartz, M. Gerndt, G. R. Joubert, and F. J. Peters, editors, Parallel
Computing: Accelerating Computational Science and Engineering (CSE),
Proceedings of the International Conference on Parallel Computing, ParCo
2013, 10-13 September 2013, Garching (near Munich), Germany, pages
153–162. IOS Press, 2013. URL: https://hal.inria.fr/hal-00957673,
doi:10.3233/978-1-61499-381-0-153.

[17] W. Stein. Modular forms, a computational approach. Graduate studies
in mathematics. AMS, 2007. URL: http://wstein.org/books/modform/
modform.

[18] S. Toledo. Locality of reference in LU decomposition with partial pivoting.
SIAM Journal on Matrix Analysis and Applications, 18(4):1065–1081, 1997.

21

https://gcc.gnu.org/onlinedocs/libgomp.pdf
https://hal.inria.fr/hal-00957673
http://dx.doi.org/10.3233/978-1-61499-381-0-153
http://wstein.org/books/modform/modform
http://wstein.org/books/modform/modform

	Introduction
	Methodology of experiments

	Ingredients for the design of parallel kernels
	Parallel matrix multiplication
	Algorithmic variants
	Experiments on square matrices
	Comparison of all variants
	Comparison with the state of the art in numerical computation

	Experiments on rectangular matrices

	Parallel triangular solving matrix
	Parallel Gaussian elimination
	Algorithmic variants for PLUQ factorization
	Parallel experiments on full rank matrices
	Parallel experiments on rank deficient matrices

	Conclusion

