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Report on GRASTA 2014∗
6th Workshop on GRAph Searching, Theory and Applications,

Cargèse, France, Corsica, March 31 – April 04, 2014

Fedor Fomin† Pierre Fraignaud‡ Nicolas Nisse§ Dimitrios M. Thilikos¶‖

1 Introduction
Graph searching involves a team of mobile agents (called searchers or pursuers or cops) that aims at cap-
turing a set of escaping agents (called evaders or fugitives or robbers) that hide in a network modeled by a
graph. There are many variants of graph searching studied in the literature, often referred to as a pursuit-
evasion game or cops and robbers game. These variants are either application driven, i.e. motivated by
problems in practice, or are inspired by foundational issues in Computer Science, Discrete Mathematics,
and Artificial Inteligence. Thus many researchers from different areas of Mathematics, Computer Science
and Operations Research are interested in quite similar problems around graph searching.

GRASTA 2014 is the main forum on graph searching and was held in the Institut d’Etudes Scien-
tifiques of Cargèse, Corsica, France. It gathered 43 researchers from diverse areas of Theoretical Com-
puter Science and Discrete Mathematics related to Graph Searching Games and their Applications both
from the applied and the theoretical point of view. The program included 2 keynote talks, 18 regular talks,
and 2 open problem sessions.

1.1 Objectives
Graph searching was introduced by Breisch (Southwestern Cavers Journal 1967) proposing a “speleotopo-
logical” approach for the problem of finding an explorer who is lost in a complicated system of dark caves
(see the recent book [Breisch11]). The first mathematical models on Graph Searching were then intro-
duced by Torrence Parsons and Nikolai Petrov in the 70’s (e.g., [Parsons78]) while the first variants, along
with the corresponding algorithmic and complexity results, appeared during the 80’s [MGH+88].

Graph searching revealed the need to express in a formal mathematical way intuitive concepts such as
avoidance, surrounding, sense of direction, hiding, persecution, and threatening. Clearly, such a project
led to the study and introduction of various complicated combinatorial structures. One of the most power-
ful combinatorial tools used in the study of such structures emerged from the Graph Minors theory, devel-
oped by Robertson and Seymour towards proving the long-standing Wagner’s Conjecture [RobertsonS85].
The collection of results and methodologies derived from the Graph Minors Theorem are acknowledged
as among the most influential results in modern combinatorics. They include deep graph-theoretic results
and techniques with direct consequences to problems at the kernel of Graph Searching problems (e.g.,
[SeymourT93]).

The graph searching games may vary significantly according to the capabilities of the evaders and the
pursuers in terms of relative speed, sensor capabilities, visibility, etc. Also, the notion of capture itself
admits several interpretations. Therefore, many variants have been studied in the literature [FominT08]. A
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different, and somehow independent, branch of research on graph searching is the Cops and Robber games
defined by Winkler and Nowakowski, and independently by Quilliot, in 1983. In this variant, Meyniel
conjectured in 1985 that the number of cops needed to capture a robber is O(

√
n) in any connected n-

node graph. During the last few years, a huge effort of research has been devoted to prove this conjecture
which is still open (e.g., see [BKL,BonatoN11,ScottS11]). We do hope that the Workshop will bring us a
bit closest to the solution.

Several variants are motivated by problems in practice. For instance, in the seminal variant of Parsons,
the problem can be also formulated as the problem of clearing a contaminated network (e.g., by some poi-
sonous gas). The Cleaning with Brushes variant arises from the need to have robots clean networks with
conditions that do not allow access to humans (e.g. cleaning the cooling pipes in a nuclear power plant,
or cleaning biofilm from small pipes). In what follows, we mention some of the existing applications
(practical and fundamental) of Graph Searching.

• Information Seeking: Here the searchers represent information sharing models or mobile software
agents that are looking for information. Information can be hidden, migrating, moving, and evolv-
ing and therefore can be viewed as one or more potential evaders from the searchers.

• Robot motion planning: Motion planning is one of the central problem in the development of
autonomous robots. Can a robot plan its root to achieve a certain goal and to avoid colliding with
other robots? Can a team of robots detect a mobile intruder or guard some area from intrusion? To
address these type of questions, pursuit-evasion games are the natural setting.

• Graph Theory. One of the most powerful combinatorial tools for analyzing cops-and-robbers
games emerged from the Graph Minors theory, developed by Robertson and Seymour towards prov-
ing the long-standing Wagner’s Conjecture. The collection of results and methodologies derived
by this project are acknowledged as among of the most influential results in modern combinatorics.
They include deep graph-theoretic results and techniques with direct consequences to problems at
the kernel of the cops-and-robbers games.

• Database Theory and Cops and Marshals Games: Among the (practically) most important database
query mechanisms are conjunctive queries. While general conjunctive query evaluation is NP-
complete, Yannakakis proved that it can be done in polynomial time if the queries are acyclic. One
of the most convincing concepts for generalising the notion of acyclicity for conjunctive queries
has been introduced by Gottlob et al. with the concept of hypergraph decompositions, in partic-
ular hypertree-width. Hypertree-width is an adaptation of tree-width to hypergraphs and it has
been shown that conjunctive queries of bounded hypertree-width can be evaluated in polynomial
time. An elegant and intuitive way to understand hypertree-width is based on Robber and Mar-
shal games, an adaptation of graph searching to hypergraphs. Robber and Marshal games provide
valuable insight into hypertree-decompositions and naturally yield a notion of obstructions to small
hypertree-width in forms of hyperbrambles.

Following Feder and Vardi’s observation, that conjunctive query evaluation, the graph homomor-
phism problem and constraint satisfaction problems are essentially the same problem, hypergraph
decompositions and hence Robber and Marshal games have found applications in constraint satis-
faction also.

• Logic: Computational aspects of logical systems are intensively studied in areas such as databases,
artificial intelligence and verification. For instance, current approaches to hard- and software veri-
fication rely on efficient methods for evaluating logical formulas in process models, i.e. in graphs.
Games have always played an important role in logic, for instance in the use of Ehrenfeucht-Fraı̈ssé
or pebble games for comparing models of logical formulas, or, more recently, the use of model-
checking games as a game based approach to the evaluation problem of logical systems. Among
evaluation games, parity games modeling the evaluation problem of the modal µ-calculus are per-
haps the most prominent and the precise complexity of deciding the winner of a parity game is the
most important problem in this area, with significant applications to the theory of verification.

While model-checking games differ in some aspects from graph searching games, they share a core
of common methods and problems and it seems likely that there are fruitful connections between
the two areas. For instance, Berwanger and Grädel use a graph searching game, called Robber and
Detective game, as a tool to analyse the model µ-calculus variable hierarchy.
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• Distributed Computing: currently, Graph Searching is mostly tackled using centralized methods.
Nevertheless, recent advances in Mobile Computing enable to envisage tackling graph searching
problems in a distributed framework. This framework is in fact the natural one for many applica-
tions of graph searching, including network security and decentralized network control.

• VLSI design: Circuit design is directly connected to different variants of graph searching. In each
such variant, the target is to improve the way a graph (representing a circuit) can be embedded in a
specific pattern taking into account different optimization criteria.

• Models of computation: The graph represents a computation circuit, and searching the graph is as-
sociated with pebble games on the graph that capture various computational complexity measures.

• Routing in telecommunication networks: To optimize the usage of resources with the evolution of
the traffic in telecommunication networks, it may be necessary to change the configuration (set of
routes of the connections) of the network. It is then required to first determine the new configuration
and then to schedule necessary changes to switch from the current configuration to the new one,
while limiting possible traffic perturbations to customers (traffic disruption). Coudert et al. pro-
posed a modelization of this problem in terms of a graph searching problem in directed graphs. This
formulation allowed to provide solutions and tradeoffs for the routing reconfiguration problem.

• Network security: Applications of this type concern clearing a network of pipes contaminated by
some poisonous gas, capturing intruders resorting in a building or in a road network, disease control,
robot motion co-ordination, and virus elimination problems. Franklin, Galil, and Yung used graph
searching to model the problem where a set of eavesdroppers is trying to collect information hidden
in nodes of a network.

References.
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1.2 Previous editions
This workshop would be the 6th edition of a fruitful stream of meetings in Anogia (Oct. 2006), Redonda
(Feb. 2008), Valtice (Oct. 2009), Dagstuhl (Feb. 2011) and Banff (Oct. 2012).

1.3 Organizing and Scientific Comittee
Fedor V. Fomin, University of Bergen, Norway
Pierre Fraigniaud, CNRS and University Paris Diderot, France
Nicolas Nisse, Inria et Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France
Dimitrios M. Thilikos, AlGCo project-team, CNRS, LIRMM, France and Department of Mathematics,
University of Athens, Greece
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2 Program

Monday, March 31th
09 : 30
10 : 30

Registration, Welcome

10 : 30 Keynote 1

11 : 30

The computational complexity of Cops and Robbers
Bill Kinnersley

(Ryerson University, Toronto, Canada)

11 : 30 Cops and Robber (1/2)

12 : 00

• Cops and Robber in geometric intersection graphs
Tomas Gavenciak, Charles University, Prague, Czech Republic

12 : 15
14 : 15

Lunch

14 : 15 Cops and Robber (2/2)

15 : 45

• Cop and robber game and hyperbolicity
Jérémie Chalopin, CNRS, LIF, Univ. Aix-Marseille, France

• The cost of drunkenness for visible and invisible robbers
Athanasios Kehagias, Aristotle Univ. of Thessaloniki, Greece

• Fractional Combinatorial Two-Player Games
Nicolas Nisse, Inria, Univ. Nice Sophia Antipolis, CNRS, I3S, France

15 : 45
16 : 15

Coffee Break

16 : 15
18 : 00

Open Problems session

Tuesday, April 1st
09 : 30 Pursuit-evasion games and width parameters (1/2)

10 : 30

• Similarity of treewidth and MM-width by a cops and robber game
Jan Arne Telle, Univ. of Bergen, Norway

•Monotonicity in directed cops and robber games
Roman Rabinovich, Technische Universität Berlin, Germany

10 : 30
11 : 00

Coffee Break

11 : 00 Pursuit-evasion games and width parameters (2/2)

12 : 00

• Contraction obstructions for connected graph searching
Dimitrios Thilikos, AlGCo project-team, CNRS, LIRMM, France and Department of

Mathematics, University of Athens, Greece
•Minor closedness property for variants of treewidth

O-joung Kwon, Dept of Math. Sciences, KAIST, South Korea

12 : 15
14 : 15

Lunch

14 : 15
16 : 00

Working session

16 : 00
16 : 30

Coffee Break

16 : 30
18 : 00

Working session
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Wednesday, April 2nd
9 : 30 Keynote 2

10 : 30

Searching hidden Structures and Activities in Large Networks
David Peleg

(Weizmann Institute of Science, Israel)

10 : 30
11 : 00

Coffee Break

11 : 00 Search in graphs

12 : 00

• Star search and related problems: recent techniques, measures and results
Spyros Angelopoulos, LIP6, CNRS, Univ. Paris 6, France

• Expanding search on a network
Thomas Lidbetter, London School of Economics, UK

12 : 15
14 : 00

Lunch

14 : 00
19 : 00

Excursion

20 : 00
...

Gala Dinner

Thursday, April 3rd
10 : 00
10 : 30

Coffee Break

10 : 30 Pursuit-evasion games in graphs (1/2)

12 : 00

• Patrolling Games
Katerina Papadaki, London School of Economics, UK

• Connected graph searching: a distributed algorithm
Dariusz Dereniowski, Gdansk University of Technology, Poland

• A note on the acquaintance time of random graphs
Dieter Mitsche, Lab. J.A.Dieudonné, Univ. Nice-Sophia Antipolis, France

12 : 15
14 : 15

Lunch

11 : 00 Pursuit-evasion games in graphs (2/2)

12 : 00

• Bounds on the Cover Time of Parallel Rotor Walks
Dominik Pajak, LaBRI, Inria, Univ. Bordeaux, France

• The (all guards move) Eternal Domination number for 3 x n grids
Margaret-Ellen Messinger, Mount Allison University, Canada

15 : 00
16 : 00

Open Problems session

16 : 00
16 : 30

Coffee Break

16 : 30
18 : 00

Working session

Friday, April 4th
09 : 30 Complexity of graph searching games (1/2)
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10 : 30

• On the Minimum Node and Edge Searching Spanning Tree Problems
Sheng-Lung Peng, National Dong Hwa University, Taiwan

• Practical computation of pathwidth
David Coudert, Inria, Univ. Nice Sophia Antipolis, CNRS, I3S, France

10 : 30
11 : 00

Coffee Break

11 : 00 Complexity of graph searching games (2/2)

11 : 30

• Exclusive Graph Searching in Various Graph Classes
Euripides Markou, University of Thessaly, Lamia, Greece

11 : 30
13 : 00

Lunch

13 : 00 End of the conference, departure of the shuttle for Ajaccio after lunch

3 Abstracts
Keynote talks:

Bill Kinnersley, Ryerson University, Toronto, Canada

In this talk, we discuss the computational complexity of deciding whether k cops can capture a robber
on a graph G. How fast (or how slow) are the best possible computer algorithms for determining who
wins? In 1995, Goldstein and Reingold conjectured that the problem is EXPTIME-complete – in other
words, that Cops and Robbers is among the “hardest” problems that can be solved in time exponential
in the size of the input. Goldstein and Reingold themselves proved EXPTIME-completeness of two
specialized variants of Cops and Robbers, but were unable to say anything about the original game. In
fact, it was not until recently that partial results began to emerge: in 2010, Fomin et al. showed the game
to be NP-hard, and in 2013, Mamino showed it to be PSPACE-hard. By combining Mamino’s ideas with
our own insights, we prove that Cops and Robbers is, in fact, EXPTIME-complete.

Searching hidden Structures and Activities in Large Networks
David Peleg, Weizmann Institute of Science, Israel

The talk will discuss various contexts in which it is required to identify some structural pattern or
activity pattern in a large network. Examples to be discussed include identifying nodes suspected as
involved in money laundering in a network of transactions, and identifying the elite in a social network.

Regular Talks:

Star search and related problems: recent techniques, measures and results
Spyros Angelopoulos, LIP6, CNRS, Univ. Paris 6, France

We study two optimization problems in the presence of set-up costs. The first problem involves a
searcher (e.g., robot) that must locate a target which lies in one of many concurrent rays, and at an
unknown position from their common origin. Every time the searcher turns direction, it incurs a turn
cost. The objective is to derive a search strategy for locating the target as quickly as possible. The second
problem involves contract algorithms, namely algorithms in which the available computation time is
specified prior to their execution. More precisely, we seek a schedule of executions of contact algorithms
for several different problems in a single processor so as to simulate an interruptible algorithm, assuming
that each execution incurs a given set-up cost. Upon interruption, any one of the problems can be queried
for its current solution. The performance of the search and scheduling strategies are evaluated by means
of well-established measures, namely the competitive ratio and the acceleration ratio, respectively.

In this presentation we provide optimal strategies for the above problems. We demonstrate that a
previous approach based on infinite LP formulations due to Demaine et al. [TCS 2006] can lead to
erroneous results. We provide a nontrivial correction to their result, and we prove that infinite LPs can be
used so as to derive optimal schedules of contract algorithms as well.

Cop and robber game and hyperbolicity
Jérémie Chalopin, CNRS, LIF, Univ. Aix-Marseille, France
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In this talk, we consider a variant of the cop and robber game where the cop and the robber move at
different speed. The difference with the classical cop and robber game is that at each step, the cop can
move along a path of lenght at most s’, and the robber can move along a path of length at most s without
going through the position of the cop. A graph is (s, s′)-copwin if the cop with speed s’ has a strategy to
capture any robber moving at speed s. Delta-hyperbolic graphs are graphs that are close to trees from a
metric point of view; we will present a few (of the many) definitions of hyperbolicity.

We then will present some results relating the cop and robber game and the hyperbolicity of a graph.
We show that if a graph is delta-hyperbolic, then it is (2r, r + 2δ)-copwin for any r. Conversely, we
show that a (s, s′)-copwin graph is δ-hyperbolic with δ = O(s2). From our approach, we deduce an
O(n2 log n) algorithm to approximate the hyperbolicity of a graph when we are given its distance matrix

This talk is based on joint works with V. Chepoi, N. Nisse and Y. Vaxès, and with V. Chepoi, P.
Papasoglu and T. Pecatte.

Practical computation of pathwidth
David Coudert, Inria, Univ. Nice Sophia Antipolis, CNRS, I3S, France

Path-decompositions of graphs are an important ingredient of dynamic programming algorithms for
solving efficiently many NP-hard problems. Therefore, computing the pathwidth and associated path-
decomposition of graphs has both a theoretical and practical interest. In this presentation, we will present
a Branch and Bound algorithm that computes the exact pathwidth of graphs and a corresponding path-
decomposition. Our main contribution consists of several non-trivial techniques to reduce the size of the
input graph (pre-processing) and to cut the exploration space during the search phase of the algorithm.
We have evaluated experimentally our algorithm by comparing it to existing algorithms of the literature.
It appears from the simulations that our algorithm offers a significant gain with respect to previous work.
In particular, it is able to compute the exact pathwidth of any graph with less than 60 nodes in a reasonable
running-time (less than 10 min.). Moreover, our algorithm also achieves good performance when used as a
heuristic (i.e., when returning best result found within bounded time-limit). Our algorithm is not restricted
to undirected graphs since it actually computes the vertex-separation of digraphs (which coincides with
the pathwidth in case of undirected graphs).

This is joint work with D. Mazauric and N. Nisse.

Connected graph searching: a distributed algorithm
Dariusz Dereniowski, Gdansk University of Technology, Poland

We revisit a problem of converting a path decomposition into a connected one. This problem is re-
formulated as searching a certain graph in which searchers can distinguish directions. In this talk we
discuss a distributed/online approximation algorithm for searching such graphs, i.e., algorithm in which
the searchers learn the structure of an underlying graph as they reach new nodes.

Cops and Robber in geometric intersection graphs
Tomáš Gavenčiak, Charles University, Prague, Czech Republic

The game of cops and robber, introduced by Nowakowski and Winkler in 1983, is played by two
players on a graph G, one controlling k cops and the other one robber, all positioned on VG. The players
alternate in moving their pieces to distance at most 1 each. The cops win if they capture the robber, the
robber wins by escaping indefinitely. The cop-number of G, that is the smallest k such that k cops win
the game, has recently been a widely studied parameter.

Intersection graph classes are defined by their geometric representations: the vertices are represented
by certain geometrical shapes and two vertices are adjacent if and only if their representations intersect.
Some well-known intersection classes include interval and string graphs. Various properties of many of
these classes have been studied recently, including an interest in their game-theoretic properties.

In this paper we show an upper bound on the cop-number of string graphs and sharp bounds on the
cop-number of interval filament graphs, circular graphs, circular arc graphs and function graphs. These
results also imply polynomial algorithms determining cop-number for all these classes and their sub-
classes.

The cost of drunkenness for visible and invisible robbers
Athanasios Kehagias, Aristotle University of Thessaloniki, Greece

The cops and robbers game has been studied under the assumption of optimal play by both the cops
and the robbers. In this talk I will present results (by P. Pralat, D. Mitsche and A. Kehagias) regarding
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the CR game played by optimal cops and a DRUNK robber (that is, a robber who performs a random
walk on a graph). Our main goal is to characterize the “cost of drunkenness”, i.e., the ratio of expected
capture times for the optimal and the drunk robber versions of the game. Clearly this ratio will never
be less than one; we prove that actually it can asymptotically reach any value in [1,∞). Furthermore,
we examine an additional variant of the CR game, in which the robber is “invisible”, i.e., the cops only
learn his position on capture. This variant can also be played with either an optimal or a drunk robber
and the capture time is well defined in both cases (to show this we use game theoretic concepts). Hence
the cost of drunkenness can also be computed in this case. We show that in fact the “invisible cost of
drunkenness” can asymptotically reach any value in [2,∞) but there is a gap for values in (1, 2). We
also present algorithms to compute capture times and cost of drunkenness for all the variants mentioned.
Finally, we obtain estimates of the (visible and invisible) cost of drunkenness for special graph familes
such as trees and grids.

The computational complexity of Cops and Robbers
Minor closedness property for variants of tree-width
O-joung Kwon, Department of Mathematical Sciences, KAIST, South Korea

Classical cop and robber game is related to the well-known parameter of a graph, called tree-width.
Tree-width can be defined as the minimum integer k such that the given graph has an embedding on
chordal graphs with maximum clique size k + 1. Recently, people suggested some variants of tree-width
using embedding on other intersection models instead of chordal graphs. We prove that for parameters,
spaghetti tree-width, directed path tree-width and strongly chordal tree-width, the graphs having the pa-
rameter at most k are closed under taking minors if and only if k is at most two. We also discuss some
relations between these parameters and variants of search games.

This is joint work with Seongmin Ok

Expanding search on a network
Thomas Lidbetter, London School of Economics, UK

An immobile Hider is located on a rooted network according to some probability distribution. A
Searcher tries to find the Hider in minimal expected time, using an expanding search: this is a nested
family of connected subsets of the network, starting at the root and increasing at unit speed. Assuming
the Hider’s distribution is known to the Searcher, we solve the problem for tree networks. We then suppose
the Searcher does not know the Hider’s distribution, and model the problem as a zero-sum game in which
the Hider tries to maximize the expected time to be found. We give a solution of the game for trees and
2-arc connected networks, and a lower bound on the value for general networks.

This is joint work with Steve Alpern.

Exclusive Graph Searching in Various Graph Classes
Euripides Markou, University of Thessaly, Lamia, Greece

In Graph Searching, a team of searchers tries to capture an invisible fugitive who is moving arbitrary
fast in a graph. Many variants of this problem have been studied with respect to the constraints that the
searchers strategy must satisfy. We study here the Exclusive Graph Searching problem in which two
searchers can not occupy simultaneously a node. We will discuss the complexity of finding the minimum
number of searchers capable of solving the problem in various classes of graphs. We show that the
problem is NP-hard in planar graphs with maximum degree 3. We will also present a graph family in
which the problem of finding a monotone strategy of a minimum number of searchers remains NP-hard
and some other graph families in which the problem can be solved in polynomial time.

Joint work with Nicolas Nisse and Stéphane Pérennes.

The (all guards move) Eternal Domination number for 3× n grids:
Margaret-Ellen Messinger, Mount Allison University, Canada

In the eternal dominating set problem, guards form a dominating set on a graph and at each step,
a vertex is attacked. After each attack, if the guards can ‘move’ so that they form a dominating set
containing the attacked vertex, then the guards have ‘defended against the attack’. We wish to determine
the minimum number of guards required to defend against any sequence of attacks, the eternal domination
number. As the domination number for grid graphs was recently determined (2011), grid graphs are a
natural class of graphs to consider for the eternal dominating set problem. Though the eternal domination
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number has been determined for 2 × n-grids and 4 × n grids, it has remained only loosely bounded for
the 3× n-grid. We determine the eternal domination number for 3× n grids.

Joint work with S. Finbow, M. van Bommel, A.Z. Delaney

A note on the acquaintance time of random graphs
Dieter Mitsche, Lab. J.A.Dieudonné, Univ. Nice-Sophia Antipolis, France

We prove a conjecture of Benjamini, Shinkar and Tsur on the acquaintance time AC(G) of a random
graphG inG(n, p). It is shown that asymptotically almost surelyAC(G) = O(log n/p) forG inG(n, p),
provided that pn-log n-log log n → ∞ (that is, above the threshold for Hamiltonicity). Moreover, we
show a matching lower bound for dense random graphs, which also implies that asymptotically almost
surely Kn cannot be covered with o(log n/p) copies of a random graph G ∈ G(n, p), provided that
np > n1/2+ε and p < 1 − ε for some ε > 0. We conclude the paper with a small improvement on the
general upper bound showing that for any n-vertex graph G, we have AC(G) = O(n2/ log n).

Joint work with William B. Kinnersley and P. Pralat

Fractional Combinatorial Two-Player Games
Nicolas Nisse, Inria, Univ. Nice Sophia Antipolis, CNRS, I3S, France

We propose a fractional relaxation of two-player combinatorial games. Two players can move or/and
add fractions of tokens on the nodes of a graph and a player wins if he is the first one to reach a con-
figuration in some specified set. Both allowed moves and winning configurations are defined thanks to
convex sets. Our framework applies to many two-players games including the fractional variant of cops
and robber games. We give some results and promising perspectives of this new framework.

Joint work with F. Giroire, S. Pérennes and R.P. Soares.

Bounds on the Cover Time of Parallel Rotor Walks
Dominik Pajak, LaBRI, Inria, Univ. Bordeaux, France

The most natural deterministic analogue of the random walk in a graph is a process when walkers are
propagated by each node to its neighbors in round-robin fashion. Such process, called the rotor-router has
applications for example in load balancing and rumor spreading. We will study the speedup of k-agent
rotor-router system with respect to the cover time of a single walk. In this talk we will completely resolve
the question of the possible range of speedups, showing that its value is between Θ(log k) and Θ(k),
for any graph. Both of these bounds are tight. Thus, the proven range of speedup for the rotor-router
corresponds precisely to the conjectured range of speedup for the random walk.

Patrolling Games
Katerina Papadaki, London School of Economics, UK

This paper describes a class of patrolling games on graphs, motivated by the problem of patrolling a
facility (for example in order to defend an art gallery against theft of a painting, or an airport against ter-
rorist attack). The facility can be thought of as a graph Q of interconnected nodes (e.g. rooms, terminals)
and the Attacker can choose to attack any node i of Q within a given time T : He requires m consecutive
periods there, uninterrupted by the Patroller, to commit his nefarious act (and win). The Patroller can
follow any path on the graph. Thus the patrolling game is a win-lose game, where the Value is the prob-
ability that the Patroller successfully intercepts an attack, given best play on both sides. We determine
analytically optimal (minimax) patrolling strategies for various classes of graphs.

On the Minimum Node and Edge Searching Spanning Tree Problems
Sheng-Lung Peng, National Dong Hwa University, Taiwan

For a graph G = (V,E), the graph searching problem on G is to determine the minimum number of
searchers to clean G via the searching rules. It is studied for a long time and in particular, two variants,
namely, node searching and edge searching, are well studied. In this talk, we propose the minimum node
(edge) searching spanning tree problem onG. The objective is to find a spanning tree T ofG such that the
node-search (edge-search) number of T is the minimum among all possible spanning trees of G. We show
that both the 4-searchable node and edge searching spanning tree problems are NP-hard and propose
approximation algorithms for these two problems.

Monotonicity in directed cops and robber games
Roman Rabinovich, Technische Universität Berlin, Germany
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We consider the cops and robber games characterizing DAG-width and directed tree-width (up to a
constant factor). In the former the cops win only if they never allow the robber to visit vertices that have
already been occupied by cops. This robber-monotonicity is rather fragile. Many graph transformations
preserve the number of cops needed to capture the robber, but not the robber-monotonicity. It is an open
question whether the robber-monotonicity cost (the difference between the minimal numbers of cops
capturing the robber in the general and in the robber-monotone case) can bounded by some function.
Examples show that this function (if it exists) is at least f(k) > 4k/3 [Kreutzer, Ordyniak 2008]. We
approach a solution by defining weak monotonicity and showing that if k cops win weakly monotonically,
then O(k2) cops win monotonically. It follows that DAG-width is bounded in Kelly-width, which has
been open since the definition of Kelly-width [Hunter, Kreutzer 2008]. For the game that corresponds to
directed tree-width we show that, unexpectedly, the cop-monotonicity cost (no cop revisits any vertex) is
not bounded by any function. This separates directed tree-width from D-width defined by Safari in 2005.

Similarity of treewidth and MM-width by a cops and robber game
Jan Arne Telle, Univ. of Bergen, Norway

Using a branch decomposition that partitions the vertex set of a graph, with the cut function being the
size of a maximum matching, M.Vatshelle (PhD Thesis 2012) defined the MM-width of a graph. By a
non-monotone strategy for a cops and robber game he showed that MM-width and treewidth are bounded
on the same classes of graphs. It was recently shown by S.H. Saether that a monotone strategy can be
found efficiently, and that the cut function used to define MM-width is submodular. In this talk we present
these results.

Contraction obstructions for connected graph searching
Dimitrios Thilikos, AlGCo project-team, CNRS, LIRMM, France and Department of Mathematics, Uni-
versity of Athens, Greece

Many applications of graph searching demand that there always exist a safe path between the searchers
so to maintain their safe communication. This variant is known as connected graph searching and was
introduced by Lali Barrière et al. In this talk we consider the graph classes with bounded connected
mixed-search number and we deal with the the question weather the obstruction set, with respect of the
contraction partial ordering, for those classes is finite. In general, there is no guarantee that those sets are
finite, as the contraction ordering is not a W.Q.O. of the class containing all graphs. Our main result is
that for k = 2 the obstruction set contains exactly 174 graphs that completely characterize the graphs with
connected mixed search number at most 2. Our proof reveals that the ”sense of direction” of an optimal
search searching is impotent for connected search which is in contrast to the unconnected origin al case.
We also give a double exponential lower bound at the size of the obstruction set for the classes where it is
finite.

This is join work with Micah J. Best, Arvind Gupta, and Dimitris Zoros.

4 Open problems
Nicolas Nisse Price of the connectivity for surveillance. The surveillance problem deals with the fol-
lowing two players game in an n-node (di)graph G = (V,E) with a given starting vertex v0 ∈ V . There
are two players, fugitive and observer. The fugitive wants to escape the control of an observer whose
purpose is to keep the fugitive under constant surveillance. Let k ≥ 1 be a fixed integer. The game
starts when the fugitive stands at v which is initially marked. Then, turn by turn, the observer controls,
or marks, at most k vertices and then the fugitive either moves along an edge to a (out-)neighbor of her
current position, or skip her move. In other words, at every step of the game the observer enlarges ob-
servable part of the graph by adding to it k, not necessarily adjacent, vertices. And his task is to ensure
that the fugitive is always in the observable area. Note that, once a vertex has been marked, it remains
marked until the end of the game. The fugitive wins if, at some step, she reaches an unmarked vertex and
the observer wins otherwise. That is, the game ends when either the fugitive enters an unmarked vertex
(and then she wins) or all vertices have been marked (and then observer wins). The surveillance number
of G, denoted by sn(G, v), is the least k such that there is a winning k-strategy of observer in G of the
fugitive starting from v.

Consider the variant of the game where at every step of the game the set of vertices marked by the
observer is connected (that is, the set of already marked nodes union the new marked nodes must be
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connected). Let csn(G, v0) be the connected surveillance number. What is the relation between two
surveillance numbers? Is there a constant c such that for any graph G and vertex v ∈ V (G),

csn(G, v)

sn(G, v)
≤ c?

What is known, there exist graphG and v ∈ V (G) such that csn(G, v) = sn(G, v)+2. Also it is possible
to show that for any graph G and vertex v ∈ V (G), csn(G, v) ≤

√
|V (G)| · sn(G, v).

References
[1] Fedor V. Fomin, Frédéric Giroire, Alain Jean-Marie, Dorian Mazauric, Nicolas Nisse: To satisfy

impatient Web surfers is hard. Theor. Comput. Sci. 526: 1-17 (2014)

[2] Frédéric Giroire, Dorian Mazauric, Nicolas Nisse, Stéphane Pérennes, Ronan Pardo Soares: Con-
nected Surveillance Game. SIROCCO 2013: 68-79

David Ilcinkas Dynamic Graph Exploration. In the graph exploration problem, an explorer is willing
to visit every vertex of a given graph G within a minimum number of steps. Each step consists of moving
from a vertex to an adjacent vertex. For an n-vertex graph one needs at least n − 1 steps to explore the
graph. The upper bound of 2n − 3 follows from the strategy of walking along the edges of a spanning
tree.

What happens in the following dynamic setting, when instead of a graph, we are given an evolving
graph, that is a sequence of static graphs,

G = (G1, G2, . . . )

such that all graphs are on the same vertex set, and each of the graphs is connected? What is the bound on
the number of steps for the dynamic graph exploration (traversing an edge takes one unit of time)? The
worst-case exploration time of such a dynamic graph based on the ring is exactly 2n − 3 (see reference
below). On the other hand, a trivial upper bound is (n − 1)2 (the temporal diameter of any constantly
connected evolving graph is at most n− 1).

Update. Jan Kratochvil proposes the following dynamic graph based on the vertex set V = {v0, v1, . . . , vn−1}:
the static graph at time t is the star centered at node vt mod n/2. Between two visits of a node in the set
{vn/2, . . . , vn−1}, the agent must wait at least n/2 time units, yielding to an overall exploration time of
roughly (n/2)2.

The open problem can now be reformulated as follows: what is the worst-case exploration time of a
dynamic graph whose underlying graph has m edges? (The underlying graph has edge {u, v} iff the edge
{u, v} is present at least once in the evolving graph.) Note that, from Jan’s construction, we know that
this worst-case exploration time is in Ω(m).

Besides, what is the worst-case exploration time of a dynamic graph based on a cactus (roughly a tree
of rings)?

References
[1] D. Ilcinkas and A. Wade. Exploration of the T -Interval-Connected Dynamic Graphs: the Case of the

Ring. In 20th International Colloquium on Structural Information and Communication Complexity
(SIROCCO’13), LNCS 8179, pages 13-23, 2013.

Dietmar Berwanger A Cop and Robber game in Zd. Two players, Cop and Robber, play in Zd. At the
beginning, Cop is located at c0 = 0 and Robber at a point r0 ∈ Zd that is given. Each player has a set of
vectors C,R ( Zd according to which he can move; the play proceeds in rounds. In round i, starting with
the players located at (ri, ci), Robber first picks a vector x ∈ R and moves to ri+1 := ri + x, then Cop
picks a vector y ∈ C and moves to ci+1 := ci + y. When Cop captures Robber, that is, when rn = cn,
the game ends and Cop wins.

The question is whether Cop has a winning strategy. For d = 1, the problem is EXPTIME com-
plete [1]. For d ≥ 3, the problem becomes undecidable (recent results of Julien Reichert and Yaron
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Velner, yet unpublished). What happens for d = 2? An answer would be interesting already for the case
when all moves are along the axes.

References
[1] A. Arul and J. Reichert. The Complexity of Robot Games on the Integer Line. Pro.c. of QAPL 2013,

EPTCS 117: 132–148, 2013.

Spyros Angelopoulos Searching the infinite line with delay. Consider the following search game. There
are two players, Searcher and Hider, playing on an infinite line. Both players use pure strategies. The
hider (invisible and immovable) selects a point T on the line, whereas the Searcher is seeking a strategy
S optimizing the so-called competitive ratio, defined as

inf
S

sup
T

cost(S, T )

|T |
,

where cost(S, T ) is the time required to reach T by making use of strategy S, and |T | is the distance of
the target from the origin. This problem is well-understood, see e.g. the textbook by Alpern and Gal [1].
The optimal strategy is based on doubling, and incurs a competitive ratio equal to 9.

Alpern and Gal introduced the variant of the problem in which the Searcher is required to pass over
the target at least r times so as to locate it. We do not know the optimal strategies for this problem. It
is known that the best strategies based on “doubling” achieve a competitive ratio of 20, whereas better
non-monotone straregies achieve competitive ratios at least 17.2. For instance, one can define a strategy in
which the searcher “hovers” around the turn points before returning to the origin. To my knowledge, this is
the simplest example of a search problem for which the “back-and-forth” strategies based on doubling are
not efficient. We currently do not have the appropriate tools for analyzing such non-monotone strategies.

References
[1] S. Alpern and S. Gal. The theory of search games and rendezvous. Kluwer Academic Publishers,

2003

Roman Rabinovich The price of monotonicity in directed search. The question was asked in [1]. The
two players are a team of two cops who can fly by helicopters and a infinitely fast visible robber. The
robber is captured if he has no legal move (in particular, he cannot stay on his vertex). Formally, let G be
a directed graph and k ∈ N. Positions of the cops have the form (C,R) with C,R ⊆ V (G) and |C| ≤ k,
and R is a strongly connected component of G − C. The cops can move to a robber position (C,C ′, R)
with |C ′| ≤ k. From (C,C ′, R) the robber can move to any (C ′, R′) such that R′ is a strongly connected
component of G−C ′ reachable from some vertex in R in the graph G− (C ∩C ′). The initial position of
the game (∅, ∅, ∅) belongs to the robber and there are moves from (∅, ∅, ∅) to any position (∅, R), where
R is strongly connected. The cops win if the robber cannot make any move, the robber wins if the game
goes on forever.

In the robber-monotone variant, the cops win only those plays in which the robber can never visit a
vertex that has already been occupied by a cop, i.e. the cops lose in positions (C,C ′, R) if there is a
vertex v ∈ C ′ \ C that is reachable from R in G − (C ∩ C ′). This variant of the game corresponds to
DAG-width [1] (the DAG-width of the graph is the least number of cops needed to capture the robber in
a robber-monotone way).

The problem is whether there is a function f : N → N such that if k cops capture the robber, then
f(k) cops capture the robber robber-monotonically.

It suffices to consider weak monotonicity instead of (strong) robber-monotonicity [2]. A play is
weakly monotone if the robber can never reach a vertex that has been occupied by a chaser (a cop who
was placed into the robber component). The set M(C,R) of such vertices in a position (C,R) is history
dependent and can be formally described inductively: M(∅, R) = ∅ and if the last moves are (C,R) →
(C,C ′, R) → (C,R′), then M(C ′, R′) = M(C,R) ∪ (C ′ ∩ R). We can also assume that the robber
is shy, i.e. he never leaves his component. Formally, the robber moves (C,C ′, R) → C ′, R′ have an
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additional restriction: R′ ⊆ R. Note, however, that the (weak) monotonicity condition is not affected by
that restriction (otherwise we have the game corresponding to directed tree-width [3]).
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[1] Dietmar Berwanger, Anuj Dawar, Paul Hunter, Stephan Kreutzer, and Jan Obdržálek. The DAG-

width of directed graphs. J. Comb. Theory, 102(4):900–923, 2012.

[2] Łukasz Kaiser, Stephan Kreutzer, Roman Rabinovich, and Sebastian Siebertz. Directed Width Mea-
sures and Monotonicity of Directed Graph Searching Submitted for publication.

[3] Thor Johnson, Neil Robertson, Paul Seymour, and Robin Thomas. Directed Tree-Width. J. Comb.
Theory, Ser. B, 82(1), 2001.

Bill Kinnersley Complexity of Eternal Domination
Consider the following process on a graph G. Initially, some number of guards occupy some set S of

vertices of G (no two guards can occupy the same vertex). At each time-step, some vertex v of G gets
“attacked” by a robber. In response, some guard must move to v from an adjacent vertex; if the guards
can do this, we say that they have “defended” the attack. (Note that only one guard may move on each
time-step, and that guard must move to the attacked vertex.) This process continues indefinitely. If the
guards can defend against any infinite sequence of attacks, then we say that S is an eternal dominating
set of G. The minimum size of an eternal dominating set of G is the eternal domination number of G,
denoted γ∞(G). One may also consider the variant in which any subset of guards may move on a single
time-step; the corresponding paramteter is the all-guards move eternal domination number of G, denoted
γ∞all(G).

Given a graph G and a set S of vertices of G, what is the computational complexity of deciding
whether S is an eternal dominating set of G? Similarly, given a graph G and integer k, what is the
computational complexity of deciding whether G has an eternal dominating set of size at most k? Both
of these problems may be considered both in the one-guard move model and the all-guards move model.

All four problems are known to belong to EXPTIME. For the one-guard move model, it was shown
by Klostermeyer [3] that deciding whether S is an eternal dominating set of G is coNPNP-hard. For the
all-guards move model, no hardness results are known (for either problem). However, it is worth noting
that the all-guards move model of eternal domination can be viewed as a special case of the so-called
guarding problem; Fomin, Golovach, and Lokhstanov [2] proved that the guarding problem is PSPACE-
hard in general, and asked whether it is PSPACE-complete. The closely-related eternal vertex cover
problem, in which attacks are made on edges, an attack is defended by moving a cop along the attacked
edge, and all cops may move on every turn, was shown by Fomin et al. to be NP-hard [1].

References
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Theoretical Computer Science 412 (2011), no. 46, pp. 6484–6497.
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Victor Chepoi Hitting and packing induced cycles of length ≥
√
n. For an undirected graph G with n

vertices, let
C := {C : C is an induced cycle of length at least

√
n}.

Question 1: Is the size of a minimum hitting set of C of size O(
√
n)?

Question 2: Is the size of a minimum hitting set of C bounded by a linear function of the maximum
number of disjoint cycles from C?

13



Most likely, both questions in this formulation have a negative answer (the
√
n×
√
n-grid, as suggested

by P. Golovach, or the incidence graph of the projective plane of order
√
n have to be considered in this

respect), but maybe they are still worth to be considered for classes of graphs.
Alternatively, in Question 1 instead of hitting will vertices, one can consider hitting C with shortest

paths of G or/and with distance-preserving subtrees of G (say, induced stars), and, more generally, with
neighborhoods of shortest paths, etc. One can also replace

√
n by another sublinear function, say by n

2
3 .

The “cop-and-robber” motivation for these questions comes from a result of [1] that the cop-number
cn(G) of a graph G without induced cycles of length k is at most k − 1. On the other hand, it is known
that for each shortest path P of G a constant number of cops can prevent the robber R entering the
neighborhood of P (one cop is enough to prevent entering R in a distance-preserving tree of G). Hence,
if C can be hit with O(

√
n) such objects (each of which can be controlled with a constant number of

cops), then by [1], the remaining part of G can be controlled with O(
√
n) cops and this will show that the

cop-number of G is O(
√
n).
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Nicolas Nisse Cops and Robbers in directed graphs
We consider the cops and robber game as defined by Nowakowski and Winkler [1]. Two players play

alternately on a graph G: first the C places its cops on nodes of G then R chooses one vertex to place its
robber. Then, alternately starting with C, the players may move each of their token along an edge of the
graph. C wins if eventually, one of its cops occupies the same node as the robber.

We consider the following variant where the graph is directed. The only constraint is that the robber
must follow the arcs (the cops may move along the arcs or in the reverse direction). Is it possible to
characterization (in terms of dismantling ordering of the vertices) of the Cop-win graphs (where a single
cop has a winning strategy) in this variant?

If we restrict also the cops to follow the arcs, the same question arises. Moreover, what is the cop-
number of tournaments? (question of G. Hahn)
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