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Weak-Strong uniqueness for compressible Navier-Stokes

system with degenerate viscosity coefficient and vacuum in

one dimension

Boris Haspot ∗

Abstract

We prove weak-strong uniqueness results for the compressible Navier-Stokes sys-
tem with degenerate viscosity coefficient and with vacuum in one dimension. In other
words, we give conditions on the weak solution constructed in [20] so that it is unique.
The main novelty consists in dealing with initial density ρ0 which contains vacuum,
indeed the most of the results exclude this situation in order to use the parabolic-
ity of the momentum equation (see [25]). To do this we use the notion of relative
entropy developed recently by Germain and Feireisl et al (see [9, 8]) combined with
a new formulation of the compressible system ([10, 12, 11, 13]), more precisely we
introduce a new effective velocity which makes the system parabolic on the density
and hyperbolic on this velocity.

1 Introduction

1.1 Presentation of the equation

We are interested in this paper by the Cauchy problem for the compressible Navier-Stokes
equation with degenerate viscosity in the euclidian space R. The system reads:

{

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2)− ∂x(µ(ρ)∂xu) + ∂xP (ρ) = 0.

(1.1)

with possibly degenerate viscosity coefficient. The unknowns ρ and u stand for the
density and the velocity of the fluid, they are respectively R

+ and R valued and they are
functions of the space variable x and of the time variable t.
Throughout the paper, we will assume that the pressure P (ρ) obeys a γ type law:

P (ρ) = ργ , γ > 1. (1.2)

Following the idea of [10, 13, 12, 11], setting v = u + ∂xϕ(ρ) with ϕ′(ρ) = µ(ρ)
ρ2

we have

(we refer to the appendix of [14] for more details on the computations):






∂tρ− ∂x(
µ(ρ)

ρ
∂xρ) + ∂x(ρv) = 0,

ρ∂tv + ρu∂xv + ∂xP (ρ) = 0.

(1.3)
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Let us mention that this change of unknown transform the system (1.1) as a parabolic
equation on the density and a transport equation for the velocity (we will see in the se-
quel that v is not so far to verify a damped transport equation).It seems very surprising
to observe that at the inverse of u which has a parabolic behavior, v has a hyperbolic
behavior. In some sense in 1D the compressible Navier Stokes equations are a compress-
ible Euler system with a viscous regularization on the density of the type −∂x(

µ(ρ)
ρ

∂xρ)
In the literature the authors are often interested in the constant viscosity case, however
physically the viscosity of a gas depends on the temperature and on the density (in the
isentropic case). Let us mention the case of the Chapman-Enskog viscosity law (see [4])

or the case of monoatomic gas (γ = 5
3) where µ(ρ) = ρ

1

3 . More generally, µ(ρ) is expected
to vanish as a power of the ρ on the vacuum. In this paper we are going to deal with
degenerate viscosity coefficients which can be written under the form µ(ρ) = µρα for
some α > 0. In particular the case µ(ρ) = µ and µ(ρ) = µρ are included in our result
(with µ positive constant).

1.2 Weak and strong solutions in one dimension

Let us start by recalling some results on the existence of solutions for the one dimen-
sion case when the viscosity is constant positive. The existence of global weak solutions
was first obtained by Kazhikhov and Shelukin [21] for smooth enough data close to the
equilibrium (bounded away from zero). The case of discontinuous data (still bounded
way from zero) was studied by Shelukin [32, 33, 34] and then by Serre [29, 30] and Hoff
[15]. First results dealing with vacuum were also obtained by Shelukin [35]. In [17], Hoff
extends the previous results by proving the existence of global weak solution with large
discontinuous initial data having different limits at x = ±∞. In passing let us mention
that the existence of global weak solution has been proved for the first time by P-L Lions
in any dimension in [23] and the result has been later refined by Feireisl et al [7].
Concerning the existence of global weak solution with degenerate viscosity, the first re-
sults are due to Bresch and Desjardins in the multi d case where they introduce a new
entropy modulo a algebraic relation between the viscosity coefficients (see [2]). It allows
us to prove the stability of the global weak solution when we assume that the pressure
is a cold pressure. This result has been extend in the framework of a γ law by Mellet
and Vasseur in [26]. To do this the authors use an additional entropy giving a gain of
integrability on the velocity which is sufficient in terms of compactness to deal with the
terms ρu⊗ u. Let us mention that all these results concern the multi d case N ≥ 2 and
that the problem of existence of global weak solution remains open. Indeed in [26] the
stability of the global weak solution is proved, however it seems difficult to construct
global approximate solutions which verify uniformly all the different entropies. The exis-
tence of global strong solution for degenerate viscosity coefficient µ(ρ) = ρα with α > 1

2)
has been proved in one dimension by Jiu and Xin in [20]. They use the stability results
proved in [26] and they are able in the 1d case to construct global approximate solution
of the system verifying uniformly all the entropies of [26]. To do this they regularize the
system by introducing a viscosity of the form µδ(ρ) = µ(ρ) + δρθ with θ < 1

2 (with such
viscosity Mellet and Vasseur have proved the existence of global strong solution in [25]).
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Concerning the uniqueness of the solution, Solonnikov in [37] obtained the existence
of strong solution for smooth initial data in finite time. However, the regularity may
blow up when the solution approach from the vacuum. A natural question is to under-
stand if the vacuum may arise in finite time. Hoff and Smoller ([18]) show that any weak
solution of the Navier-Stokes equation in one space dimension do not exhibit vacuum
states, provided that no vacuum states are present initially.
Let us mention now some results on the 1D compressible Navier-Stokes equations when
the viscosity coefficient depends on the density. This case has been studied in [24], [27],
[40], [41], [19] and [22] in the framework of initial density admitting vacuum, more pre-
cisely the initial density is compactly supported and the authors are concerned by the
evolution of the free boundary delimiting the vacuum. This is exactly the case that we
are going to study in the sequel.
Let us mention the opposite case when the initial density is far away from the vacuum,
Mellet and Vasseur have proved in [25] the existence of global strong solution with large
initial data when µ(ρ) = ρα with 0 ≤ α < 1

2 . This result has been extended in [14] to
the case of the shallow water equation (µ(ρ) = µρ).

1.3 Weak-Strong uniqueness

The idea of weak strong uniqueness is the following: assume that a weak solution has
regular initial data such that it exists a strong solution in finite time associated to these
initial data, then we can prove its uniqueness in the class of finite energy solutions.
Weak strong uniqueness gives in particular conditions under which the equations is well
behaved, and weak solutions are unique.
The first weak-strong uniqueness results were obtained by Prodi [28] and Serrin [31] for
the incompressible Navier-Stokes equation. Many results of weak strong solution have
been developed these last years in different topic fluid mechanics, kinetic equation and
a natural tool to deal with this type of problem is the so called relative entropy (see
section 3 for a definition) . It seems that this notion has been first used to prove weak
strong uniqueness results by Dafermos in [5] who was considering conservation laws.
Mellet and Vasseur in [25] have proved using relative entropy weak strong uniqueness
when the viscosity is non degenerate, it means µ(ρ) ≥ µ > 0. This relative entropy has
also been used in the framework of kinetic equation, Berthelin and Vasseur in [1] proved
convergence of kinetic models to the isentropic compressible model.
The existence of weak-strong solution in the class of the weak solution has been proved
for the first time by Germain in [9] using relative entropy in the multi d case. This result
has been extended by Feireisl et al in [8] by constructing suitable weak solution verifying
the relative entropy inequality proposed in [9].
In this paper we are interested in extending the result of [25] to the case of degenerate
viscosity coefficient with initial data admitting vacuum. To do this we are going to
combined the notion of relative entropy and the new formulation of the compressible
Navier-Stokes equation, see the system (1.3). Up our knowledge it is the first result
of weak strong uniqueness with degenerate viscosity coefficient and with vacuum for
compressible Navier-Stokes equation, this is due to the fact that in one dimension the
system (1.3) is hyperbolic for the new unknown v. v verifies a Euler equation.
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2 Main result

We present below our main theorem of weak strong uniqueness for (1.3). It will be a
convenient short-hand to denote:

L
p
TL

q = Lp([0, T ], Lq(R)).

We denote in the sequel the energy E(ρ, u) and E(ρ, v) which is used in [20]:

E(ρ, u)(t) =
∫

R

[
1

2
ρ(t, x)|u(t, x)|2 + 1

γ − 1
ργ(t, x)]dx+

∫ t

0

∫

R

µ(ρ)|∂xu|2(s, x)dsdx,

E(ρ, v)(t) =
∫

R

[
1

2
ρ(t, x)|v(t, x)|2 + 1

γ − 1
ργ(t, x)]dx+

∫ t

0

∫

R

∂xP (ρ)∂x(
µ(ρ)

ρ2
)dsdx.

Theorem 2.1 Let P (ρ) = aργ with γ > 1 and µ(ρ) = µργ. Assume that the initial data
(ρ0, u0) verify:

ρ0 ∈ L1 ∩ Lγ ,
√
ρ0u0 ∈ L2,

√
ρ0v0 ∈ L2 and ρ

1

2+δ

0 u0 ∈ L2+δ,

with δ > 0 arbitrarily small. A solution (ρ̄, v̄) of system (1.3) is unique on [0, T ] in the
set of solutions (ρ, v) such that:

sup
t∈(0,T )

‖ρ(t, ·)‖L1 < +∞, sup
t∈(0,T )

E(ρ, u)(t) < +∞ and sup
t∈(0,T )

E(ρ, v)(t) < +∞, (2.4)

provided it satisfies ū, ∂xū, ∂xv̄ ∈ L1
T (L

∞) and ū ∈ L∞((0, T )× R).

Remark 1 Let us mention that the assumption on ρ̄ and ū are verified in [22, 41, 39]
in finite time in the case of a free boundary problem.

Our main result theorem 2.1 is proved in section 3 where we recall the notion of relative
entropy applied to the system (1.3). It allows us to deal with the vacuum since the
momentum equation in (1.3) is only a Euler equation in one dimension. It allows us
to avoid all the difficulty related to the vacuum when we have a degenerate viscosity
coefficient.

3 Proof of theorem 2.1

3.1 Relative entropy, Weak strong uniqueness

Let us study the compressible Navier-Stokes system (1.3) with v = u + ∂xϕ(ρ) where

ϕ′(ρ) = µ(ρ)
ρ2

:






∂tρ− px(
µ(ρ)

ρ
∂xρ) + ∂x(ρv) = 0,

ρ∂tv + ρu∂xv + ∂xP (ρ) = 0.

(3.5)

Let us consider two solution (ρ, v) and (ρ̄, v̄), we set:

U = v − v̄, R = ρ− ρ̄ and U1 = u− ū,

F (ρ̄, R) =
1

γ
(R+ ρ̄)γ − ρ̄γ−1R− 1

γ
ρ̄γ .
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First subtracting the mass conservation of (1.1) for (ρ, u) and (ρ̄, ū) gives:

∂tR+ ∂x(ρU1) + ∂x(Rū) = 0. (3.6)

In a similar way, we can deal with the momentum equation and it yields:

(ρ∂t + ρu∂x)U + ∂xaρ
γ − ∂xaρ̄

γ = −R(∂tv̄ + ū∂xv̄)− ρU1∂xv̄.

Next using the fact that:

∂tv̄ + ū∂xv̄ = −a
∂xρ̄

γ

ρ̄
.

we have:
(ρ∂t + ρu∂x)U + ∂xaρ

γ − a
ρ

ρ̄
∂xρ̄

γ = −ρU1∂xv̄. (3.7)

Next we have by multiplying the equation (3.7) by U = U1 +
µ

γ−1∂x(ρ
γ−1 − ρ̄γ−1). Fol-

lowing [9] we have:

∫ t

0

∫

R

(∂xaρ
γ − a

ρ

ρ̄
∂xρ̄

γ).U1dxds =
γ

γ − 1

∫

R

ρU · ∂x(ργ−1 − ρ̄γ−1)dxds

= − γ

γ − 1

∫ t

0

∫

R

∂x(ρU)(ργ−1 − ρ̄γ−1)dxds by integrations by parts

=
γ

γ − 1

∫ t

0

∫

R

(∂tR+ ∂x(Rū))(ργ−1 − ρ̄γ−1)dxds by using (3.6)

=
γ

γ − 1

∫ t

0

∫

R

∂tR
∂

∂R
Fdxds+

∫ t

0

∫

R

ū∂xR
∂

∂R
Fdxds+

∫ t

0

∫

R

∂xū R
∂

∂R
Fdxds,

=
γ

γ − 1

∫ t

0

∫

R

∂tFdxds−
∫

R

∂tρ̄
∂

∂ρ̄
Fdxds+

∫ t

0

∫

R

ū∂xFdx−
∫ t

0

∫

R

ū∂xρ̄
∂

∂ρ̄
Fdx

+

∫ t

0

∫

R

∂xū R
∂

∂R
Fdxds,

=
γ

γ − 1

∫ t

0

∫

R

∂tFdxds+

∫ t

0

∫

R

∂xū(−F + ρ̄
∂

∂ρ̄
F +R

∂

∂R
F )dxds,

=
γ

γ − 1

∫ t

0

∫

R

∂tFdxds+ γ

∫ t

0

∫

R

∂xū Fdxds.

Remark 2 Let us observe that all the expressions written above converge properly, indeed
let us deal with:

∂xaρ
γU1 = aγργ−

3

2∂xρ
√
ρU1.

But we know that γργ−
3

2∂xρ is in L∞

T (L2) via the energy E(ρ, v). And we have
√
ρu which

belongs to L∞

T (L2). It is enough to conclude. Similarly since
√
ρ is in L∞

T (L2) we show

that γργ−
3

2∂xρ
√
ρū is in L1

T (L
1) since ū is in L1

T (L
∞).

In the same way we have:

ρ

ρ̄
∂xρ̄

γ U1 = γρ̄γ−2∂xρ̄
√
ρ
√
ρU.

Since
√
ρu is in L∞

T (L2), ρ̄γ−2∂xρ̄ in L1
T (L∞) and

√
ρ in L∞

T (L2) we conclude by Hölder’s
inequality. We proceed similarly for the other term assuming that ū belongs to L∞

T (L∞).
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Now we have to deal with the part (∂xaρ
γ−aρ

ρ̄
∂xρ̄

γ) µ
γ−1∂x(ρ

γ−1− ρ̄γ−1) with µ(ρ) = µρm

and m = γ:

a
µ

γ − 1

∫

R

(∂xρ
γ − ρ

ρ̄
∂xρ̄

γ)∂x(ρ
γ−1 − ρ̄γ−1)dx

= a
µ

γ − 1
γ(γ − 1)

∫

R

|ργ− 3

2∂xρ−
√
ρρ̄γ−2∂xρ̄|2dx

Remark 3 Let us observe that in order to define the previous quantity we need to be
sure that ρm−

3

2∂xρ and
√
ρρ̄m−2∂xρ̄ are in L2

T (L
2(R)). Let us mention that this is the

case via the energy inequality (2.4) and the condition on ρ̄.

Finally multiplying the momentum equation of (3.7) by U we obtain:

∂t‖
√
ρU‖2L2 +

γ

γ − 1
∂t‖F (ρ̄, R)‖L1

+ aµγ‖ρm−
3

2∂xρ−
√
ρρ̄m−2∂xρ̄‖2L2

≤ −γ

∫

R

∂xū F (ρ̄, R)dx−
∫

R

ρU1 · ∂xv̄.Udx

We have then:
∫

R

(ρU1∂xv̄).Udx =

∫

R

(ρU∂xv̄).Udx− µ

∫

R

√
ρ
(

(ργ−
3

2∂xρ−
√
ρρ̄γ−2∂xρ̄)∂xv̄

)

.Udx

By a basic Gronwall inequality and a bootstrap argument we conclude that if ∂xū and
∂xv̄ belong to L1

T (L
∞) then we have

√
ρv =

√
ρv̄ and ρ = ρ̄. �
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