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In this paper a speech denoising strategy based on time adaptive thresholding of intrinsic modes

functions (IMFs) of the signal, extracted by empirical mode decomposition (EMD), is introduced.

The denoised signal is reconstructed by the superposition of its adaptive thresholded IMFs.

Adaptive thresholds are estimated using the Teager–Kaiser energy operator (TKEO) of signal

IMFs. More precisely, TKEO identifies the type of frame by expanding differences between speech

and non-speech frames in each IMF. Based on the EMD, the proposed speech denoising scheme is

a fully data-driven approach. The method is tested on speech signals with different noise levels and

the results are compared to EMD-shrinkage and wavelet transform (WT) coupled with TKEO.

Speech enhancement performance is evaluated using output signal to noise ratio (SNR) and

perceptual evaluation of speech quality (PESQ) measure. Based on the analyzed speech signals, the

proposed enhancement scheme performs better than WT-TKEO and EMD-shrinkage approaches in

terms of output SNR and PESQ. The noise is greatly reduced using time-adaptive thresholding than

universal thresholding. The study is limited to signals corrupted by additive white Gaussian noise.

[ http://dx.doi.org/10.1121/1.4837835]

I. INTRODUCTION

Degradation of signals by noise is an omnipresent prob-

lem. Thus, removal of noise is a key problem in almost all

fields of signal processing. In speech, the presence of back-

ground noise reduces its quality and intelligibility. Speech

enhancement techniques are used to cancel background

noises in order to improve the perceptual quality and intelli-

gibility of speech. Many applications such as hearing aids,

automatic speech recognition, and voice communication

drive the effort to develop more effective noise reduction

algorithms for better performance.1–6 Speech enhancement

can be viewed as an estimation problem, where an unknown

clean speech signal is to be estimated from its noisy version.

This challenging problem is difficult due to the random na-

ture of the background noise and the inherent complexity of

the speech. A variety of noise reduction techniques with

varying complexity have been developed mostly based on

model-based methods, transform domain approaches, and

adaptive filtering.2 Linear methods such as Wiener filtering

are largely used because they are easy to implement and to

design.7 However, these methods are not effective when the

noise level is unknown or difficult to estimate. To overcome

these difficulties, nonlinear methods have been proposed,

and especially those based on wavelet thresholding.8,9 The

idea of wavelet thresholding relies on the assumption that

signal magnitudes dominate those of the noise in a wavelet

representation, so that wavelet coefficients can be set to zero

if their magnitudes are less than a pre-determined threshold.9

However, applying thresholding uniformly to all wavelet

coefficients not only cancel the noise, but also some speech

components. To solve this problem, a method based on

adaptive thresholding has been proposed10 but a limitation

of the wavelet approach is that the basic functions are fixed,

and thus do not necessarily match all real signals. Utilizing

inappropriate wavelet decomposition will limit the perform-

ance of the wavelet-based speech enhancement scheme.

Recently, a new temporal signal decomposition method,

called empirical mode decomposition (EMD), has been

introduced by Huang et al.11 for analyzing non-stationary

and nonlinear time series. This new adaptive expansion

decomposes a signal into oscillatory components called

intrinsic mode functions (IMFs). These modes are zero-

mean with symmetric envelopes AM-FM components. The

major advantage of the EMD is that the basic functions are

derived from the signal itself. Hence, the analysis is adaptive

in contrast to the traditional methods where the basis func-

tions are fixed. We have recently shown that uniform or

time-constant thresholding of IMFs followed by their super-

position improve the speech denoising results compared to

those of the wavelet approach.12,13 In the present work we

improve the performances of this strategy12 by combining

EMD with time adaptive thresholding of the modes.

Interesting results are obtained using this approach,12 in

some cases, such as in slight noises contamination, this

method suffers from the time-constant thresholding problem.

Due to the time variability and non-stationarity of speech

signal, a constant threshold can induce an over thresholding

of some segments of its extracted modes. In other words an

identical threshold will not only suppress unwanted noise

but also segments liked unvoiced ones.10 In addition, this
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thresholding does not take into account the waveform of the

speech. In this paper, unlike the time-constant threshold

based-method, the threshold value is adapted to the wave-

form of each mode in order to achieve better speech

enhancement. More particularly, a frame based approach is

used where the calculated threshold values are adapted for

speech segments and kept unchanged for non-speech ones.

To identify the type of frame we use the Teager–Kaiser

energy operator (TKEO) to expand differences between

speech and non-speech frames. More precisely, the TKEO

provides an estimate of the signal energy over the time, and

thus can be used to obtain an estimate of the speech/non-

speech activity and then decide an appropriate time adaptive

threshold in the speech/non-speech frame. It has been shown

that the combination of TKEO with wavelet transform,10

conventional wavelet packet transform,14 or perceptual

wavelet packet transform15 is useful for speech enhance-

ment. Unlike the approaches developed in Refs. 10, 14, and

15, in this paper TKEO is combined with the EMD which is

a type of adaptive wavelet decomposition well suited for

large classes of signals. The basic idea of the new scheme is

to pre-process the IMFs using time adaptive thresholding fol-

lowed by the superposition of their thresholded versions.

The proposed method is applied to speech signals corrupted

with different noise levels, and the results are compared to

the EMD-shrinkage13 and wavelet transform (WT) using

TKEO.10

The paper is organized as follows. Section II explains

the basics of the EMD and the TKEO. The principle of the

denoising is detailed in Sec. III. Results are presented in Sec.

IV and conclusions are drawn in Sec. V.

II. EMD-TKEOAPPROACH

It is well known that behavior of the cochlea operates as

a bank of non-linear dynamic filters. Thus, most speech

enhancement approaches use filter banks. In this work we

exploit the filter bank aspect of the EMD which deals with

nonlinearity and nonstationarity of the speech signal. We

have recently shown the interest of the combination of EMD

and TKEO for time-frequency analysis and particularly for

AM-FM signal demodulation,16–18 and for linear FM signal

detection.19 We show in this work how this combination can

be exploited, in the time domain, for speech enhancement

purposes. The TKEO and the EMD are applied to develop a

time-adaptive thresholding and an adaptive decomposition

for speech enhancement, respectively.

A. EMD basics

The EMD expands any signal xðtÞ into a finite number

of IMFs through an iterative process called sifting; each one

with a distinct time scale.11 The decomposition is based on

the local time scale of xðtÞ, and yields adaptive basis func-

tions. The EMD can be seen as a type of wavelet decomposi-

tion whose subbands are built up progressively to separate

the different components of xðtÞ. Each IMF replaces the sig-

nal details, at a certain scale or frequency band. The EMD

picks out the highest frequency oscillation that remains in

xðtÞ and thus, locally each mode contains lower frequency

oscillations than the one extracted just before. By definition,

an IMF satisfies two conditions.

(1) The number of extrema and the number of zero crossings

may differ by no more than 1.

(2) The average value of the envelope defined by the local

maxima, and the envelope defined by the local minima,

is zero.

Thus, locally each IMF contains lower frequency oscil-

lations than the just extracted one. The EMD does not use a

pre-determined filter or a wavelet function, and it is a fully

data-driven method.11 To be successfully decomposed into

IMFs, the signal xðtÞ must have at least two extrema, one

minimum and one maximum. An IMF is extracted using an

iterative process (sifting) described as follows.11

Step 1: Fix the threshold � and set j 1 (jth IMF).

Step 2: rj�1ðtÞ  x tð Þ (residual), i 1 (i number of

sifts).

Step 3: Extract the jth IMF,

(a) (a) hj; i�1ðtÞ  rj�1ðtÞ,
(b) extract local maxima/minima of hj; i�1ðtÞ,
(c) compute upper and lower envelopes Uj; i�1ðtÞ and

Lj; i�1ðtÞ by interpolating, using cubic spline, respec-

tively, local maxima and minima of hj; i�1ðtÞ,
(d) compute the mean of the envelopes

lj; i�1ðtÞ¼ (Uj; i�1ðtÞþLj; i�1ðtÞ)/2,
(e) update hj; iðtÞ  hj; i�1ðtÞ � lj; i�1ðtÞ, i iþ 1,

(f) calculate the stopping criterion

rðiÞ¼PT
t¼1 jhj; i�1ðtÞ � hj; iðtÞj2=ðhj; i�1ðtÞÞ2,

(g) repeat steps (b)–(f) until rðiÞ < � and then put IMFjðtÞ
hj; iðtÞ (jth IMF).

Step 4: Update residual rjðtÞ  rj�1ðtÞ � IMFjðtÞ.
Step 5: Repeat step 3 with j jþ 1 until the number of

extrema in rjðtÞ is � 2.

T is xðtÞ time duration and  is the assignment opera-

tor. The sifting is repeated several times (i) in order to get h
true IMF that fulfills the conditions (1) and (2). At the end of

the sifting process the signal xðtÞ can be expressed as

follows:

xðtÞ ¼
XC
j¼1

IMFjðtÞ þ rCðtÞ; (1)

where C, determined automatically using r [step 3(f)], is the

total number of sifted IMFs and rCðtÞ is the final residue. To
guarantee that IMF components retain enough physical sense

of both amplitude and frequency modulation, we have to

determine the value r for the sifting. This is accomplished

by limiting the size of the standard deviation r computed

from the two consecutive sifting results. Usually, r (or �) is
set between 0:2 to 0:3.11

B. Teager–Kaiser energy operator

TKEO is a nonlinear energy tracking operator and its

output to a given signal, xðtÞ, is the actual physical energy

required to produce xðtÞ.20 An important aspect of this quad-

ratic operator is that it is nearly instantaneous given that, in

its discrete version, only three samples are required in the



energy computation at each time instant. This operator

amplifies the discontinuities and sudden amplitude changes

in xðtÞ while the soft transitions between samples are

reduced. TKEO has many applications particularly in speech

processing.21,22 Significant research on the theory and appli-

cations of the TKEO has been conducted. The majority of

the analysis in signal and image processing has mainly dealt

with the properties of TKEO-based demodulation algorithms

and not with the operator itself.23,24 In the present work we

exploit the output of the TKEO. In continuous time, the

TKEO is defined as

W½xðtÞ� ¼ dxðtÞ
dt

� �2

� xðtÞ d
2xðtÞ
dt2

: (2)

For discrete time signal xðnÞ, TKEO can be approximated as

follows:21,24

W½xðnÞ� ¼ x2ðnÞ � xðnþ 1Þxðn� 1Þ: (3)

Equation (3) shows that TKEO computes a running estimate

of the signal energy at each instant that takes into account

the signal strengths at is immediate neighbors. Thus, it is jus-

tified that TKEO can be applied to problem of detection as it

computes instantaneous energy relative to its immediate

neighbors. Also, it is evident from Eq. (3) that TKEO is

expected to suppress slowly varying parts of a signal and

highlight abruptly changing parts (sudden bursts) of this

signal.

III. DENOISING PRINCIPLE

Assuming additive noise, any observed speech signal,

yðtÞ, can be represented as the sum of the clean speech sig-

nal xðtÞ and the noise bðtÞ,
yðtÞ ¼ xðtÞ þ bðtÞ: (4)

The noisy signal is first decomposed into IMFs and a resid-

ual followed by the application of the TKEO to each mode

as follows:

EkðtÞ ¼ W½IMFkðtÞ�: (5)

The idea of the TKEO is to enhance the ability to discrimi-

nate speech samples from those of noise. This operator has

interesting noise reduction capability.25 More particularly,

the TKEO is expected to expand the difference between the

approximation and detail parts of the signal. Detail parts can

be attributed to noise. The output of TKEO, EkðtÞ, of

IMFkðtÞ is smoothed, using a filter, in order to create a mask,

MkðtÞ, where it is easy to distinguish between speech like-

regions and noise-like ones. The normalized version of the

TKEO output is given by

MkðtÞ ¼ jhðtÞ � EkðtÞj
maxðjhðtÞ � EkðtÞjÞ ; (6)

where � is convolution operation, hðtÞ is the impulse

response of the filter, and “max” is the maximum of the

smoothed samples of the TKEO output signal in the consid-

ered mode. We use here a second order IIR low-pass filter.10

In general the obtained mask MkðtÞ presents peaks and val-

leys where speech dominance is characterized by significant

contrast between peaks and valleys, while its absence is

characterized by a weaker contrast. To distinguish between

these regions (frames) an offset parameter, Sk, that estimates

the valley’s level is defined.14 This offset is estimated over

the analyzed frame as the abscissa of the maximum of the

amplitude distribution, A, of the corresponding mask MkðtÞ:
Sk ¼ abscissa½maxðAðMkðtÞÞÞ�: (7)

Noise dominance is observed with a mask, MkðtÞ, of high

mean value and with a weaker contrast between peaks and

valleys. Thus, the variance of MkðtÞ is close to zero and the

corresponding distribution AðMkðtÞÞ gives rise to a relevant

mode that approaches 1. Consequently, Sk is close to 1. On

the contrary, speech dominance is interpreted as a mask,

MkðtÞ, of low mean value and with a significant contrast

between peaks and valleys of MkðtÞ due essentially to the

time-variability of the signal envelope. Accordingly, the var-

iance of the mask is more important and the Sk is close to

zero.

A. Time invariant threshold

It has been shown that for removing additive white

Gaussian noise of an IMF a time-constant threshold can be

used.12,13 This fixed mode-dependent threshold is expressed

as follows:8,12,13

kk ¼ ~rk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðTÞ

p
; (8)

where T is the signal length and the noise level ~rk of the kth
mode is calculated as the median of the absolute value of the

samples of this mode,12,13

~rk ¼ 1:4826�median jIMFkðtÞ �median IMFkðtÞ
� �j� �

:

(9)

The constant factor ~rk ¼ 1:4826 is the 75th percentile of the

normal distribution with unit variance. This fixed mode

threshold strategy is extremely simple since it does not

depend on the extracted mode, but on the noise variance ~rk
2,

and works well when noise dominates the observed data.12,13

However, this thresholding does not perform well when the

underlying signal dominates the observed data. To overcome

this problem, a time-adapting threshold is necessary.

B. Time-adapting threshold

Due to the time variability and non-stationarity of the

speech signal, the time invariant threshold, kk, can induce an

over-thresholding and thus the perceptual quality of the

enhanced signal is degraded.12 This drawback will be serious

when the speech signal is contaminated by slight noises. To

overcome this problem, the thresholding is adapted to the

speech signal waveform but regardless of its time energy

evolution. More precisely, the mask MkðtÞ is pre-processed



so that the calculated thresholds will be well adapted and

less dependent on energy variation of speech waveform.14

The processed mask, noted M
0
kðtÞ, is obtained by suppressing

the calculated offset Sk followed by a normalization of the

obtained mask, before applying a root power function of

1=ck,

M
0
kðtÞ ¼

MkðtÞ � Sk

maxðjMkðtÞ � Sk jÞ
� �1=ck

: (10)

The parameter ck is used in order to implement a compro-

mise between noise removal and speech distortion.10,14 The

value of this parameter depends upon the noise level of the

input signal and is determined experimentally (set to 8 in

Refs. 10 and 14). Using the modulated mask M
0
kðtÞ the time

adapted threshold, lkðtÞ, is calculated by updating the corre-

sponding kk value as follows:
10

lkðtÞ ¼ kkð1� M
0
kðtÞÞ: (11)

As illustrated by Eq. (11), the time adaptive threshold is

made smaller for speech-dominate frame and higher for

noisy-like one. Thus, for speech segments, M
0
kðtÞ is close to 1

and close to 0 for non-speech ones. Note that if MkðtÞ

approaches Sk, M
0
kðtÞ is close to zero and full magnitude of

the threshold (that means equal to kk) is used. Finally, the

threshold is time adapted for only speech-like frames and

kept unchanged for noisy-like ones using the calculated off-

set level Sk as follows:

skðtÞ ¼
lkðtÞ; if Sk � fk;

kk; if Sk > fk;

(
(12)

where fk is a parameter value to discriminate speech from

silence. As for ck parameter, fk is determined experimentally

and set to constant value (fk ¼ 0.35).10,14 Based on simula-

tions, we show that the best parameters ck and fk can be

obtained by maximizing the output SNR (SNRout) of the

denoised signal (see Fig. 6).

C. Threshold modulation

Finally, using the calculated time adaptive threshold

skðtÞ, a mode ~f k can be recovered from its noisy version

IMFk using different thresholding strategies.26 The most

adapted strategy for speech enhancement is soft shrink-

age.12,13 It is the one used in this paper and is given by

~f kðtÞ ¼
sgnðIMFkðtÞÞðjIMFkðtÞj � skðtÞÞ; if jIMFkðtÞj � skðtÞ;
0; ifjIMFkðtÞj < skðtÞ;

(
(13)

where sk is the threshold of the mode IMFk and sgnðzÞ is
the sign function of z. The denoised speech signal is con-

structed with the inverse transformation EMD�1 of the thresh-
olded IMFs as follows:

~xðtÞ ¼
XC
k¼1

~f kðtÞ þ rCðtÞ: (14)

The different steps of the proposed denoising scheme are

shown in Fig. 1.

IV. RESULTS

The proposed denoising method is tested on eight

speech signals sampled at 16 kHz and are shown in Figs. 2

and 3. These figures illustrate the variety of speech contents

met in the different files that we analyzed. The signals are

corrupted by additive white Gaussian noise, ranging from

�10 to 10 dB, whose level is fixed through the input signal

to noise ratio (SNR). Obtained results are compared to those

of EMD-shrinkage13 and WT-TKEO.10 The Daubechies

wavelet Db8 is used as mother wavelet. The corresponding

basis is orthonormal, ensuring that the decomposed signal is

reconstructed without the presence of residues due to asym-

metries of the wavelet mother function. These features make

Db8 wavelet a good candidate as denoising tool. As an

objective criterion to evaluate the performance of the denois-

ing method, we use the perceptual evaluation of speech qual-

ity27 (PESQ) and the output SNR. PESQ values range from

4.5 (the highest quality of speech) down to �0.5 and are

known for their high correlation with subjective quality

scores. The PESQ score is adopted as an objective measure

tool for predicting the overall quality of enhanced speech.

Also, to evaluate the subjective observation of enhanced

speech, spectrograms of the clean speech, the noisy speech

and the enhanced speech signal s obtained using the different

denoising methods are presented. Figure 4(a) shows the first

extracted mode, IMF1ðtÞ, of speech #1 signal. Note that this

high frequency mode is very noisy. Figures 4(b) and 4(c)

illustrate the waveforms of the associated output of TKEO,

E1ðtÞ, and its corresponding mask, M1ðtÞ, respectively.

Figure 5 shows the standard threshold l1ðtÞ and the time

adaptive threshold k1 of this mode. Unlike the standard

threshold, the adaptive threshold value is changing over time

and it is dependent on the speech-like regions. Parameters ck
and fk [Eqs. (10) and (12)] in general are determined experi-

mentally (fk ¼ 0.35, ck ¼ 8).10,14 To the best of our knowl-

edge, up to now there are no strategies to automatically find

such parameters. Based on simulations, we show in paper

that the couple of these parameters, maximizes SNRout of the

processed signals. SNRout as a function of f1 and c1 of

IMF1ðtÞ at SNRin¼�5 dB is depicted in Fig. 6. This figure



reveals a peak of SNRout of 11 dB at ðf1 ¼ 0:37; c1 ¼ 8Þ and
this result confirms the findings of Bahoura and Rouat.10,14

These two optimal values with l1ðtÞ and k1 [Eq. (12)] are

used for the denoising of IMF1ðtÞ. The thresholded mode,
~f 1ðtÞ, is shown in Fig. 4(d). It is easy to see from this figure

that IMF1ðtÞ is enhanced using time-adapting threshold.

Denoised versions of speech #1 signal obtained by the pro-

posed approach, WT-TKEO (Ref. 10) and EMD-shrinkage,13

are shown in Fig. 7. A careful comparative examination of

signals of Figs. 7(a)–7(d) shows that the proposed method

performs better than the other approaches in terms of noise

reduction. The signal is well reconstructed and its features

FIG. 2. (Color online) Original signals (1,2,3,4).

FIG. 1. Denoising scheme.

FIG. 3. (Color online) Original signals (5,6,7,8).

FIG. 4. (Color online) (a) IMF1ðtÞ of signal #1. (b) E1ðtÞ. (c) M1ðtÞ. (d) ~f 1ðtÞ.

FIG. 5. (Color online) Standard and adapted thresholds of IMF1 of signal #1.



(details) well preserved. The spectrograms of clean, noisy

and processed signals are illustrated in Figs. 7(f)–7(j). It is

clear from these figures that the amount of distortion is

greatly reduced and most parts of the speech are preserved

by the proposed approach [Fig. 7(j)] in comparison with the

other two methods [Figs. 7(h), 7(i)]. Specifically, both WT-

TKEO (Ref. 10) and EMD-shrinkage13 lead to visible resid-

ual noise and noticeable speech distortion. Thus, the spectro-

gram observations with lower distortion validate our claim

of better speech signal reconstruction by our approach in

comparison to the two other methods. This fact is confirmed

by the results reported in Fig. 8 (speech #1, speech #2, and

speech #3) of gain SNRout values achieved by the proposed

method compared to other methods. The results are averaged

over 100 noise realizations. For deeper performance investi-

gation, Fig. 8 reports the variations of the SNRout versus the

SNRin corresponding to the denoising of the three speech

signals. These results demonstrate the effectiveness of the

proposed method across the SNRin values. The achieved

SNRout improvement is much higher than those obtained by

WT-TKEO and EMD-shrinkage. For SNRin � 15 dB, the

proposed method outperforms WT-TKEO and EMD-

shrinkage which highlights the interest to combine EMD and

TKEO as a basis of an adaptive denoising strategy. Under

higher SNR conditions (SNRin > 15 dB) where speech sig-

nal is slightly contaminated, the proposed scheme and WT-

TKEO performs similarly and avoid the over thresholding of

EMD-shrinkage. SNRout gains obtained by the proposed

technique varies from 5.2 to 19 dB and, in particular, even

for very low SNRin values, we can still observe the effective-

ness of the proposed method in removing the noise compo-

nents. Note that, overall, WT-TKEO performs better than

EMD-shrinkage and this is mostly attributed to the time-

adaptive thresholding strategy. But, the superiority of the

FIG. 6. (Color online) SNRout versus f1 and c1 for speech 1 signal at SNRin¼�5 dB.

FIG. 7. (Color online) Speech denoising results: (a) original signal, (b) noisy signal (SNR¼�5 dB), (c) EMD-shrinkage (Ref. 13), (d) WT-TKEO (Ref. 10),

(e) proposed approach, and the associated spectrograms depicted respectively in (f)–(j).



proposed method over WT-TKEO is essentially due to the

adaptive decomposition of the speech signal provided by

EMD. Figure 9 shows the PESQ scores of the enhanced three

speech signals obtained from our proposed method in the

same plot with those of WT-TKEO (Ref. 10) and EMD-

shrinkage.13 It is clear that the proposed method produces

the best PESQ scores in both low and high SNR regions.

These high scores are indicative of the good speech quality

obtained with the proposed method. The best result is

obtained for speech #3 for SNR � 5 dB. In addition to the

first three signals, the method has also been tested on other

speech signals whose performance is reported in Table I. It

follows from this table that the proposed method performs

better than WT-TKEO (Ref. 10) and EMD-shrinkage13 in

terms of SNRout and PESQ scores.

The analysis of the obtained results emphasizes the use-

fulness of the time-adaptive thresholding combined with

FIG. 8. (Color online) Variations of SNRout versus SNRin for three signals.

The reported results correspond to the EMD-shrinkage (Ref. 13), WT-

TKEO (Ref. 10), and the proposed approach.

FIG. 9. (Color online) Variations of PESQ values versus SNRin for three

signals. The reported results correspond to the EMD-shrinkage (Ref. 13),

WT-TKEO (Ref. 10), and the proposed approach.



adaptive decomposition provided by the EMD as a filter

bank. These results also confirm our findings on the interest

of EMD as filter bank for speech processing.12,13 The noise

is greatly reduced using time-adaptive thresholding com-

pared to universal thresholding. Instead of EMD we have

also tested the ensemble EMD (EEMD) which avoids the

mode mixing of conventional EMD. Based on the signals an-

alyzed and from the obtained results we have noted no

improvement or differences compared to those given by the

conventional EMD. Since EMD is well dedicated to process

both stationary and non-stationary signals, our denoising

scheme can be applied to a large class of signals

(Biomedical, etc.). Further, unlike the approaches developed

in Refs. 10 and 15, where the level of the decomposition is

fixed empirically, in the proposed method this level is a

data-driven parameter. Performance of the denoising

approach depends on the quality of the sifting which in turns

depends on the way interpolation of the envelopes is per-

formed. Thus, utilizing an inappropriate interpolating func-

tion will limit the performance of the EMD-based coding

scheme. Recent study has shown that trigonometric interpo-

lation is useful from an analytic point of view, but computa-

tionally it is much more expensive than splines. The authors

of this study do not recommended it instead of splines inter-

polation.28 Thus, in this paper, B-splines are used for inter-

polation of the modes. Denoising results of the EMD-TKEO

are not prejudiced by a pre-determined basis and/or subband

filtering process. However, this approach requires the opti-

mization of the selection of parameters ðf; cÞ and the fixed

second order IIR filter, hðtÞ, to construct the mask [Eq. (6)].

For further speech enhancement quality improvement, the

impulse response hðtÞ must be adapted to each IMF.

V. CONCLUSION

An improved EMD-based approach to speech enhance-

ment is presented. By combining the adaptive nature of

EMD and TKEO, the proposed scheme avoids the over-

thresholding of segments especially when the speech is just

contaminated by slight noise. The TKEO is applied to each

IMF to enhance the discriminability of speech and non-

speech frames. The discriminatory threshold is time-adapted

to the speech waveform, unlike the time-constant universal

thresholding. Based on EMD and TKEO, the denoising

approach is adaptive and easy to implement. Obtained results

for clean speech signals corrupted with additive Gaussian

noise with different SNR values ranging from �10 to 10 dB

show that the proposed method, associated with the time-

adapting threshold, performs better than EMD-shrinkage and

WT-TKEO in terms of output SNR and PESQ scores. These

results show that the proposed approach is effective for noise

removal. The obtained results also show the efficiency of the

time adapted threshold to the different components (IMFs)

of the signal instead of the standard threshold. To confirm

the obtained results and the effectiveness of the proposed

approach, the scheme must be evaluated with a large class of

speech signals and in different experimental conditions such

as different sampling rates, multiplicative noise, or the type

of noise. Also as future work we plan to find a strategy to

optimize the selection of parameters f and c.
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