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Conservativity of embeddings in the lambda-Pi

calculus modulo rewriting

Ali Assaf

June 5, 2014

Abstract

The lambda-Pi calculus can be extended with rewrite rules to embed

any other functional pure type system. The normalization and conserva-

tivity properties of the embedding is an open problem. In this paper, we

show that the embedding is conservative. We define an inverse translation

into a pure type system completion and show that the completion is con-

servative using the reducibility method. This result further justifies the

use of the lambda-Pi calculus modulo rewriting as a logical framework.

1 Introduction

The λΠ-calculus modulo rewriting is an extension of the λΠ-calculus with rewrite
rules. Through the Curry-de Bruijn-Howard correspondence, it can express the
proofs of various logics. Cousineau and Dowek [5] introduced a general embed-
ding of functional pure type systems (FPTS) in the λΠ-calculus modulo rewrit-
ing: for any FPTS λS, they contructed the system λΠ/S using appropriate
rewrite rules, and defined two translation functions |M | and ‖A‖ that translate
the terms and types of λS to λΠ/S. This embedding is complete1, in the sense
that it preserves typing: if Γ ⊢λS M : A then ‖Γ‖ ⊢λΠ/S |M | : ‖A‖. The con-
verse property, called conservativity, was shown to hold in some cases: assuming
λΠ/S is strongly normalizing, if there is a term N such that ‖Γ‖ ⊢λΠ/S N : ‖A‖
then there is a term M such that Γ ⊢λS M : A.

Not much is known about normalization in λΠ/S. Cousineau and Dowek
showed that if λΠ/S is strongly normalizing, then so is λS, but this was not
enough to show the conservativity of the embedding, even if λS is itself strongly
normalizing. As a result, the proof of conservativity relied on the assumption
that λΠ/S terminates. This result is insufficient if one wants to consider the
λΠ-calculus modulo rewriting as a general logical framework for defining logics
and expressing proofs in those logics, as proposed in [3, 4].

Consider the PTS λHOL that corresponds to higher order logic:

S = Prop, Type,Kind
A = (Prop : Type), (Type : Kind)
R = (Prop, Type), (Type, Prop),

(Type, Type), (Kind,Kind)

1This property is called soundness instead of completeness in the original paper [5].
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This PTS is strongly normalizing, and therefore consistent. A polymorphic
variant of λHOL is specified by U− = HOL+ (Kind, Type). It turns out that
λU− is inconsistent: there is a term ω such that ⊢λU− ω : Πα : Prop. α and
which is not normalizing [1]. We motivate the need for conservativity with the
following example.

Example 1.1. The polymorphic identity function I = λα :Type. λx :α. x is not
well-typed in λHOL, but it is well-typed in λU−:

⊢λU− I : Πα :Type. α→ α

⊢λU− (Πα :Type. α→ α) : Type

However, the translation |I| = λα :uType. λx :εType α. x is well-typed in λΠ/HOL:

⊢λΠ/HOL |I| : Πα :uType. εType α→ εType α

⊢λΠ/HOL (Πα :uType. εType α→ εType α) : Type

It seems that λΠ/HOL, just like λU−, allows more functions than λHOL, even
though the type of |I| is not the translation of a λHOL type. Is that enough
to make λΠ/HOL inconsistent?

In this paper we show that λΠ/S is conservative in all cases, even when
λS is not normalizing. After identifying the main difficulties, we characterize
a completion [11, 10] S∗ containing S, and define an inverse translation from
λΠ/S to λS∗. We then prove that λS∗ is a conservative extension of λS using
the reducibility method [12, 7].

2 Pure type systems

Pure type systems [1] are a general class of typed λ-calculi parametrized by a
specification.

Definition 2.1. A PTS specification is a triple S = (S,A,R) where

• S is a set of of symbols called sorts

• A ⊆ S × S is a set of axioms of the form (s1 : s2)

• R ⊆ S × S × S is a set of rules of the form (s1, s2, s3)

Definition 2.2. We write (s1, s2) as a short-hand for the rule (s1, s2, s2).
The specification S is functional if the relations A and R are functional, that
is (s1, s2) ∈ A and (s1, s

′
2) ∈ A imply s2 = s′2, and (s1, s2, s3) ∈ R and

(s1, s2, s
′
3) ∈ R imply s3 = s′3.

Definition 2.3. Given a PTS specification S = (S,A,R) and an infinite set of
variables V, the abstract syntax of λS is defined by the following grammar:

(terms) T ::= S | V | T T | λV :T . T | ΠV :T . T
(contexts) C ::= · | C,V : T
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Empty

WFλS(·)

Declaration

Γ ⊢λS A : s x 6∈ Γ

WFλS(Γ, x : A)

Sort

WFλS(Γ) (s1 : s2) ∈ A

Γ ⊢λS s1 : s2

Variable

WFλS(Γ) (x : A) ∈ Γ

Γ ⊢λS x : A

Application

Γ ⊢λS M : Πx :A.B Γ ⊢λS N : A

Γ ⊢λS M N : [N/x]B

Abstraction

Γ, x : A ⊢λS M : B Γ ⊢λS Πx :A.B : s

Γ ⊢λS λx :A.M : Πx :A.B

Product

Γ ⊢λS A : s1 Γ, x : A ⊢λS B : s2 (s1, s2, s3) ∈ R

Γ ⊢λS Πx :A.B : s3

Conversion

Γ ⊢λS M : A Γ ⊢λS B : s A ≡β B

Γ ⊢λS M : B

Figure 1: Typing rules of λS

We use lower case letters x, y, α, β, . . . to denote variables, uppercase letters such
as M,N,A,B, . . . to denote terms, and uppercase letters such as Γ,∆,Σ, . . . to
denote contexts. We write A→ B for Πx :A.B when x 6∈ B.

The typing rules of λS are presented in Figure 1. We write Γ ⊢ M : A
instead of Γ ⊢λS M : A when the context is unambiguous. We say that M
is a Γ-term when WF(Γ) and Γ ⊢ M : A for some A. We say that A is a
Γ-type when WF(Γ) and either Γ ⊢ A : s or A = s for some s ∈ S. We write
Γ ⊢ M : A : s as a shorthand for Γ ⊢M : A and Γ ⊢ A : s.

Example 2.4. The following well-known systems can be described as functional
pure type systems using the same set of sorts S = Type,Kind and the same set
of axioms A = (Type : Kind).

• Simply-typed λ-calculus (λ→):
R = (Type, Type)

• System F (λ2):
R = (Type, Type), (Kind, Type)

• λΠ-calculus (λP ):
R = (Type, Type), (Type,Kind)

• Calculus of constructions (λC):
R = (Type, Type), (Kind, Type),

(Type,Kind), (Kind,Kind)

Example 2.5. Let I = λα :Type. λx :α. x be the polymorphic identity function.
The term I is not well-typed in the simply typed λ-calculus but it is well-typed
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in the Calculus of constructions λC:

⊢λC I : Πα :Type. α→ α

The following properties hold for all pure type systems. The proofs can be
found in [1].

Proposition 2.6 (Confluence). If M1 −→∗
β M2 and M1 −→∗

β M3 then there is

a term M4 such that M2 −→∗
β M4 and M3 −→∗

β M4.

Proposition 2.7 (Subject reduction). If Γ ⊢λS M : A and M −→∗
β M

′ then

Γ ⊢λS M
′ : A.

Proposition 2.8 (Correctness of types). If Γ ⊢λS M : A then either Γ ⊢λS A : s
or A = s for some s ∈ S.

The reason why we don’t always have Γ ⊢λS A : s is because some sorts do
not have an associated axiom, such as Kind in Example 2.4.

Definition 2.9. A sort s ∈ S is called a top-sort when there is no sort s′ ∈ S
such that (s : s′) ∈ A.

The following proposition is very useful when proving properties about pure
type systems with top-sorts.

Proposition 2.10. If Γ ⊢λS A : s and s is a top-sort then either A = s′ for

some sort s′ ∈ S or A = Πx :B.C for some terms B,C.

Finally, we state the following property for functional pure type systems.

Proposition 2.11 (Uniqueness of types). Let S be a functional specification.

If Γ ⊢λS M : A and Γ ⊢λS M : B then A ≡β B.

3 The λΠ-calculus modulo rewriting

The λΠ-calculus, also known as LF and as λP , is one of the simplest forms of
λ-calculus with dependent types, and corresponds to first-order logic through
the Curry-de Bruijn-Howard correspondence. As mentioned in Example 2.4,
it can be defined as the functional pure type system λP with the following
specification:

S = Type,Kind
A = Type : Kind
R = (Type, Type), (Type,Kind)

The λΠ-calculus modulo rewriting extends the λΠ-calculus with rewrite
rules. We recall that a rewrite rule is a triple [∆] M  N where ∆ is a
context and M,N are terms. A set of rewrite rules R induces a reduction re-
lation on terms, written −→R, defined as the smallest contextual closure such
that if [∆] M  N ∈ R then σ(M) −→R σ(N) for any substitution σ of the
variables in ∆. The relation ≡R is the smallest congruence containing −→R,
and ≡βR is the smallest congruence containing both −→β and −→R.

Definition 3.1. A rewrite rule [∆] M  N is well-typed in a context Σ when
there is a term A such that Σ,∆ ⊢λΠ M : A and Σ,∆ ⊢λΠ N : A.
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Empty

WFλΠ/(·)

Declaration

WFλΠ/(Γ) Γ ⊢λΠ/ A : s x 6∈ Σ,Γ

WFλΠ/(Γ, x : A)

Sort

WFλΠ/(Γ) (s1 : s2) ∈ A

Γ ⊢λΠ/ s1 : s2

Variable

WFλΠ/(Γ) (x : A) ∈ Σ,Γ

Γ ⊢λΠ/ x : A

Abstraction

Γ, x : A ⊢λΠ/ M : B Γ ⊢λΠ/ Πx :A.B : s

Γ ⊢λΠ/ λx :A.M : Πx :A.B

Application

Γ ⊢λΠ/ M : Πx :A.B Γ ⊢λΠ/ N : A

Γ ⊢λΠ/ M N : [N/x]B

Product

Γ ⊢λΠ/ A : s1 Γ, x : A ⊢λΠ/ B : s2 (s1, s2, s3) ∈ R

Γ ⊢λΠ/ Πx :A.B : s3

Conversion

Γ ⊢λΠ/ M : A Γ ⊢λΠ/ B : s A ≡βR B

Γ ⊢λΠ/ M : B

Figure 2: Typing rules of λΠ/(Σ, R)

Definition 3.2. Let Σ be a well-formed λΠ context and R a set of rewrite rules
that are well-typed in Σ. The λΠ-calculus modulo (Σ, R), written λΠ/(Σ, R),
is defined with the same syntax as the λΠ-calculus, but with the typing rules of
Figure 2. We write λΠ/ instead of λΠ/(Σ, R) when the context is unambiguous.

Example 3.3. Let Σ be the context

(α : Type, c : α, f : α→ Type)

and R be the following rewrite rule

[·] f c (Πy :α. f y → f y)

Then the term
δ = λx :f c. x c x

is well-typed in λΠ/(Σ, R):

⊢λΠ/(Σ,R) δ : f c→ f c

Note that the term δ would not be well-typed without the rewrite rule, even if
we replace f c by (Πy :α. f y → f y).
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4 Embedding FPTS’s in the λΠ-calculus modulo

In this section, we present the embedding of functional pure type systems in
the λΠ-calculus modulo rewriting as introduced by Cousineau and Dowek [5].
This is done in two steps. First, given a pure type system λS, we construct
λΠ/S by giving an appropriate signature and rewrite system. Second, we define
a translation from the terms and types of λS to the terms and types of λΠ/S.

Definition 4.1 (The system λΠ/S). Consider a functional pure type system
specified by S = (S,A,R). Define ΣS to be the context containing the declara-
tions:

us : Type ∀s ∈ S
εs : us → Type ∀s ∈ S
ṡ1 : us2 ∀s1 : s2 ∈ A
π̇s1s1s3 : Πα :us1 . (εs1 α→ us2) → us3 ∀(s1, s2, s3) ∈ R

Let RS be the rewrite system containing the rules

[·] εs2 ṡ1  us1

for all s1 : s2 ∈ A, and

[∆s1s2s3 ] εs3 (π̇s1s2s3 AB) Πx : (εs1 A). εs2 (B x)

for all (s1, s2, s3) ∈ R, where ∆s1s2s3 = (A : us1 , B : (εs1 α→ us2)). The system
λΠ/S is defined as the λΠ-calculus modulo (ΣS , RS), that is, λΠ/(ΣS , RS).

There are two translations, one from the terms of λS to the terms of λΠ/S,
the other from the types of λS to the types of λΠ/S.

Definition 4.2. The translation |M |Γ of Γ-terms and the translation ‖A‖Γ of
Γ-types are mutually defined as follows.

|s|Γ = ṡ
|x|Γ = x

|M N |Γ = |M |Γ |N |Γ
|λx :A.M |Γ = λx :‖A‖Γ . |M |Γ,x:A
|Πx :A.B|Γ = π̇s1s2s3 |A|Γ (λx :‖A‖Γ . |B|Γ,x:A)

where Γ ⊢ A : s1
and Γ, x : A ⊢ B : s2
and (s1, s2, s3) ∈ R

‖s‖Γ = us
‖Πx :A.B‖Γ = Πx :‖A‖Γ . ‖B‖Γ,x:A

‖A‖Γ = εs |A|Γ where Γ ⊢ A : s

Note that this definition is redundant but it is well-defined up to ≡βR. In par-
ticular, because some Γ-types are also Γ-terms, there are two ways to translate
them, but they are equivalent:

εs2 ṡ1 ≡βR us1
εs3 |Πx :A.B|Γ ≡βR Πx :‖A‖Γ . ‖B‖Γ,x:A

This definition is naturally extended to well-formed contexts as follows.

‖·‖ = ·
‖Γ, x : A‖ = ‖Γ‖ , x : ‖A‖Γ
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Example 4.3. The polymorphic identity function of the Calculus of construc-
tions λC is translated as

|I| = λα :uType. λx :εType α. x

and its type A = Πα :Type. α→ α is translated as:

|A| = π̇Kind,Type,Type ˙Type (λα :uType. |Aα|)

where Aα = α→ α and

|Aα| = π̇Type,Type,Type α (λx :εType α. εType α)

The identity function applied to itself is translated as:

|I A I| = |I| |A| |I|

The embedding is complete, in the sense that all the typing relations of λS
are preserved by the translation [5].

Theorem 4.4 (Completeness). For any context Γ and terms M and A, if

Γ ⊢λS M : A then ‖Γ‖ ⊢λΠ/S |M |Γ : ‖A‖Γ.

5 Conservativity

In this section, we prove the converse of the completeness property. One could
attempt to prove that if ‖Γ‖ ⊢λΠ/S |M |Γ : ‖A‖Γ then Γ ⊢λS M : A. However,
that would be meaningless because the translation |M |Γ is only defined for well-
typed terms. A second attempt would be to define inverse translations ϕ(M)
and ψ(A) and prove that if Γ ⊢λΠ/S M : A then ψ(Γ) ⊢λS ϕ(M) : ψ(A), but
that would not work either because not all terms and types of λΠ/S correspond
to valid terms and types of λS, as was shown in Example 1.1. Therefore the
property that we want to prove is: if there is a term N such that ‖Γ‖ ⊢λΠ/S
N : ‖A‖Γ then there is a term M such that Γ ⊢λS M : A.

The main difficulty is that some of these external terms can be involved in
witnessing valid λS types, as illustrated by the following example.

Example 5.1. Consider the context nat : Type. Even though the polymorphic
identity function I and its type are not well-typed in λHOL, they can be used
in λΠ/HOL to construct a witness for nat→ nat.

nat : uType ⊢λΠ/HOL (|I| nat) : (εType nat→ εType nat)

We can normalize the term |I| nat to λx : εType nat. x which is a term that
corresponds to a valid λHOL term: it is the translation of the term λx :nat. x.
However, as discussed previously, we cannot restrict ourselves to normal terms
because we do not know if λΠ/S is normalizing.

To prove conservativity, we will therefore need to address the following issues:

1. The system λΠ/S can type more terms than λS.

2. The λΠ/S terms that inhabit the translation of λS types can be reduced
to the translation of λS terms.
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First, we will eliminate β-redexes at the level of Kind by reducing λΠ/S to
a subset λΠ−/S. Then, we will extend λS to a minimal completion λS∗ that
can type more terms than λS, and show that λΠ−/S corresponds to λS∗ using
inverse translations ϕ(M) and ψ(A). Finally, we will show that λS∗ terms
inhabiting λS types can be reduced to λS terms. The procedure is summarized
in the following diagram.

λΠ/S
β∗

// λΠ−/S

ϕ(M) ψ(A)

��
λS

‖A‖|M |

OO

λS∗

β∗

oo

5.1 Eliminating β-redexes at the level of Kind

In λΠ/S, we can have β-redexes at the level of Kind such as (λx : A. us)M .
These redexes are artificial and are never generated by the forward translation
of any PTS. We show here that they can always safely be eliminated.

Definition 5.2. A Γ-term M of type C is at the level of Kind if Γ ⊢ C : Kind.
We define λΠ−/S terms as the subset of well-typed λΠ/S terms that do not
contain any Kind-level β-redexes.

Lemma 5.3. For any λΠ/S context Γ and Γ-term M , there is a λΠ−/S term

M− such that M −→∗
β M

−.

Proof. Reducing a Kind-level β-redex (λx :A.B)N does not create other Kind-
level β-redexes because N is at the level of Type. Therefore, the number of
Kind-level β-redexes strictly decreases, so any Kind-level β-reduction strategy
will terminate.

Example 5.4. The term

I1 = λα :uType. λx :εType ((λβ :uType. β)α). x

is in λΠ−/HOL. The term

I2 = λα :uType. λx : ((λβ :uType. εType β)α). x

is not in λΠ−/HOL but

I2 −→β λα :uType. λx :εTypeα. x

which is in λΠ−/HOL.

5.2 Minimal completion

In pure type systems, we can sometimes have types that do not have a type,
such as top-sorts because there is no associated axiom. Similarly, we can some-
times prove Γ, x : A ⊢λS M : B but cannot abstract over x because there is
no associated product rule. Completions of pure type systems were originally
introduced by Severi [11, 10] to address these issues by injecting λS into a larger
pure type system.
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Definition 5.5 (Completion). A specification S′ = (S ′,A′,R′) is a completion

of S if

1. S ⊆ S ′,A ⊆ A′, R ⊆ R′, and

2. for all sorts s1 ∈ S, there is a sort s2 ∈ S ′ such that (s1 : s2) ∈ A′, and

3. for all sorts s1, s2 ∈ S ′, there is a sort s3 ∈ S ′ such that (s1, s2, s3) ∈ R′.

Notice that all the top-sorts of λS are typable in λS′ and that λS′ is full,
meaning that all products are typable. Not all completions are conservative
though, so we define the following completion.

Definition 5.6 (Minimal completion). We define the minimal completion of

S, written S∗, to be the following specification:

S∗ = S ∪ {τ}

A∗ = A ∪ {(s1 : τ) | s1 ∈ S, (s1 : s2) 6∈ A}

R∗ = R∪ {(s1, s2, τ) | s1, s2 ∈ S∗, (s1, s2, s3) 6∈ R}

where τ 6∈ S.

Any well-typed term of λS is also well-typed in λS∗, but just like λΠ−/S,
this system allows more functions than λS.

Example 5.7. The polymorphic identity function is well-typed in λHOL∗.

⊢λHOL∗ I : Πα :Type. α→ α

⊢λHOL∗ Πα :Type. α→ α : τ

Next, we define inverse translations that translate the terms and types of
λΠ−/S to the terms and types of λS∗.

Definition 5.8 (Inverse translations). The inverse translation of terms ϕ(M)
and the inverse translation of types ψ(A) are mutually defined as follows.

ϕ(ṡ) = s
ϕ(π̇s1s2s3) = λα :s1. λβ : (α→ s2).Πx :α. β x

ϕ(x) = x
ϕ(M N) = ϕ(M)ϕ(N)

ϕ(λx :A.M) = λx :ψ(A). ϕ(M)

ψ(us) = s
ψ(εsM) = ϕ(M)

ψ(Πx :A.B) = Πx :ψ(A). ψ(B)

Note that this is only a partial definition, but it is total for λΠ−/S terms.
In particular, it is an inverse of the forward translation in the following sense.

Lemma 5.9.

1. ϕ(|M |Γ) ≡β M .

2. ψ(‖A‖Γ) ≡β A.

9



Proof. By induction on M or A. We show the product case M = Πx : A.B.
Then

ϕ(|M |) = ϕ(π̇s1s2s3)ϕ(|A|) (λx :ψ(‖A‖). ϕ(|B|))

By induction hypothesis, ϕ(|A|) ≡β A and ϕ(|B|) ≡β B. Since ϕ(π̇s1s2s3) =
λα :s1. λβ : (α→ s2).Πx :α. β x, we get

ϕ(|M |) ≡β Πx :A. (λx :ψ(‖A‖). B)x
≡β Πx :A.B

Next we show that the inverse translations preserve typing.

Lemma 5.10.

1. ϕ([N/x]M) = [ϕ(N)/x]ϕ(M)

2. ψ([N/x]A) = [ϕ(N)/x]ψ(A)

Proof. By induction onM or A. We show the product case A = Πy :B.C. With-
out loss of generality, y 6= x and y 6∈ N and y 6∈ ϕ(N). Then [N/x]Πy :B.C =
Πy : [N/x]B. [N/x]C. By induction hypothesis, ψ([N/x]B) = [ϕ(N)/x]ψ(B)
and ψ([N/x]C) = [ϕ(N)/x]ψ(C). Therefore

ψ([N/x]A) = ψ(Πy : [N/x]B. [N/x]C)
= Πy :ψ([N/x]B). ψ([N/x]C)
= Πy : [ϕ(N)/x]ψ(B). [ϕ(N)/x]ψ(C)
= [ϕ(N)/x]Πx :ψ(B). ψ(C)
= [ϕ(N)/x]ψ(Πx :B.C)

Lemma 5.11.

1. If M −→βR N then ϕ(M) −→∗
β ϕ(N)

2. If A −→βR B then ψ(A) −→∗
β ψ(B)

Proof. By induction on M or A. We show the case for β-redexes with M =
(λx :A1.M1)N1 and N = [N1/x]M1. Then

ϕ(M) = (λx :ψ(A1). ϕ(M1))ϕ(N1)

Therefore ϕ(M) −→β [ϕ(N1)/x]ϕ(M1) which is equal to ϕ([N1/x]M1) by Lemma
5.10.

Lemma 5.12.

1. If M ≡βR N then ϕ(M) ≡β ϕ(N)

2. If A ≡βR B then ψ(A) ≡β ψ(B)

Proof. Follows from Lemma 5.11.
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Definition 5.13 (Abstraction context). We say that Γ is an abstraction context

if Γ ⊢λΠ/S A : Type for all x : A ∈ Γ. If Γ = (x1 : A1, . . . , xn : An) is an
abstraction context, we define ψ(Γ) as (x1 : ψ(A1), . . . , xn : ψ(An)).

Lemma 5.14. For any λΠ−/S abstraction context Γ and terms M,A:

1. If WFλΠ/S(Γ) then WFλS∗(ψ(Γ)).

2. If Γ ⊢λΠ/S M : A : Type then ψ(Γ) ⊢λS∗ ϕ(M) : ψ(A).

3. If Γ ⊢λΠ/S A : Type then ψ(Γ) ⊢λS∗ ψ(A) : s for some sort s ∈ S∗.

Proof. By induction on the derivation. The details of the proof can be found in
the Appendix.

5.3 Reduction to λS

In order to show that λS∗ is a conservative extension of λS, we need to prove that
β-reduction at the level of τ terminates. A straightforward proof by induction
would fail because contracting a τ -level β-redex can create other such redexes.
To solve this, we use Girard and Tait’s reducibility method [7, 12]. The idea is
to strengthen the induction hypothesis of the proof by defining a predicate by
induction on the type of the term.

Definition 5.15. If WFλS(Γ) and Γ ⊢λS∗ A : s then the predicate Γ |=S M : A
is defined as:

• if s 6= τ or A = s′ for some s′ ∈ S then Γ |=S M : A iff M −→∗
β M

′, and
A −→∗

β A
′ for some M ′, A′ such that Γ ⊢λS M

′ : A′,

• if s = τ and A = Πx :B.C for some B,C then Γ |=S M : A iff for all N
such that Γ |=S N : B, Γ |=S M N : [N/x]C.

To show that this inductive definition is well-founded, we define the following
measure of the height of A.

Definition 5.16. If WFλS(Γ) and Γ ⊢λS∗ A : s then the height of A at the
level of τ is defined as:

Hτ (A) = 0 if s 6= τ
Hτ (s

′) = 0 if s = τ
Hτ (Πx :B.C) = 1 +max(Hτ (B) +Hτ (C)) if s = τ

Proposition 5.17. If Γ, x : B ⊢λS∗ C : τ then Hτ ([N/x]C) = Hτ (C).

Proof. By induction on C.

Corollary 5.18. Definition 5.15 is well-founded.

Proof. The measure Hτ (A) strictly decreases in the definition.

Lemma 5.19. If Γ |=S M : A and M ≡β M
′ then Γ |=S M

′ : A.

Proof. By induction on the height of A.
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• If s 6= τ or A = s′ for some s′ ∈ S then M −→∗
β M ′′ and A −→∗

β A′

for some M ′′, A′ such that Γ ⊢λS M ′′ : A′. By confluence and subject
reduction, M ′ −→∗

β M
′′′ such that Γ ⊢λS M

′′′ : A′.

• If s = τ and A = Πx :B.C for some B,C then for allN such that Γ |=S N :
B, Γ |=S M N : [N/x]C. By induction hypothesis, Γ |=S M

′N : [N/x]C.
Therefore Γ |=S M

′ : Πx :B.C.

Lemma 5.20. If Γ |=S M : A and A ≡β A
′ then Γ |=S M : A′.

Proof. By induction on the height of A.

• If s 6= τ or A = s′ for some s′ ∈ S then M −→∗
β M

′ and A −→∗
β A

′′ for
some M ′, A′′ such that Γ ⊢λS M ′ : A′′. By confluence and conversion,
A′ −→∗

β A
′′′ such that Γ ⊢λS M

′ : A′′′.

• If s = τ and A = Πx : B.C for some B,C then for all N such that
Γ |=S N : B, Γ |=S M N : [N/x]C. By induction hypothesis, Γ |=S M N :
[N/x]C ′. Therefore Γ |=S M : Πx :B.C ′.

Definition 5.21. If WFλS(Γ
′) and σ is a substitution, then Γ′ |=S σ : Γ if

Γ′ |=S σ(x) : σ(A) for all (x : A) ∈ Γ.

Lemma 5.22. If Γ ⊢λS∗ M : A : s then for any context Γ′ and substitution σ
such that WFλS(Γ

′) and Γ′ |=S σ : Γ, Γ′ |=S σ(M) : σ(A).

Proof. By induction on the derivation of Γ ⊢λS∗ M : A. The details of the proof
can be found in the Appendix.

Corollary 5.23. Suppose WFλS(Γ) and either Γ ⊢λS A : s or A = s for some

s ∈ S. If Γ ⊢λS∗ M : A then M −→∗
β M

′ such that Γ ⊢λS M
′ : A.

Proof. Taking σ as the identity substitution, there are terms M ′ and A′ such
that M −→∗

β M
′ and A −→∗

β A
′ and Γ ⊢λS M

′ : A′. If A = s ∈ S then A′ = s
and we are done. Otherwise by conversion we get Γ ⊢λS M

′ : A.

We now have all the tools to prove the main theorem.

Theorem 5.24 (Conservativity). For any λS Γ-type A, if there is a term N
such that ‖Γ‖ ⊢λΠ/S N : ‖A‖Γ then there is a term M such that Γ ⊢λS M : A.

Proof. By Lemma 5.3, there is a λΠ−/S term N− such that N −→∗
β N

−. By

subject reduction, ‖Γ‖ ⊢λΠ/S N− : ‖A‖Γ. By Lemmas 5.14 and 5.9, Γ ⊢λS∗

ϕ(N−) : A. By Corollary 5.23, there is a term M such that ϕ(N−) −→∗
β M

and Γ ⊢λS M : A.

6 Conclusion

We have shown that λΠ/S is conservative even when λS is not normalizing.
Even though λΠ/S can construct more functions than λS, it preserves provabil-
ity. This effect is similar to various conservative extensions of pure type systems
such as pure type systems with definitions [11], pure type systems without the
Π-condition [10], or predicative polymorphism [9]. Inconsistency in pure type
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systems usually does not come from the ability to type more functions, but from
the impredicativity caused by assigning a sort to the type of these functions. It
is clear that no such impredicativity arises in λΠ/S because there is no constant
π̇s1s2s3 associated to the type of illegal abstractions.

The results of this paper also indirectly imply that λΠ/S is weakly nor-
malizing when λS is weakly normalizing. The strong normalization of λΠ/S is
still an open problem. The Barendregt-Geuvers-Klop conjecture states that any
weakly normalizing PTS is also strongly normalizing [6]. There is evidence that
this conjecture is true [2], in which case its proof could be adapted to prove the
strong normalization of λΠ/S. Weak normalisation could also be used as an
intermediary quasi-normalisation result to construct a proof of strong normali-
sation, as done by Luo [8] for the extended calculus of constructions (ECC).

Our proof can be simplified in some cases. A PTS is complete when it is a
completion of itself. In that case, the construction of S∗ is unnecessary. The
translations ϕ(M) and ψ(A) translate directly into λS, and Section 5.3 can be
omitted. This is the case for example for the calculus of constructions with
infinite type hierarchy (λC∞) [11], which is the basis for proof assistants such
as Coq and Matita.
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A Proof details

Lemma 5.14

Proof. By induction on the derivation.

1. There are 2 cases.

•
Empty

WF(·)
Then WF(·) trivially.

•

Declaration

WF(Γ) Γ ⊢ A : Type x 6∈ Σ,Γ

WF(Γ, x : A)
Then x 6∈ ψ(Γ). By induction hypothesis, WF(ψ(Γ)) and ψ(Γ) ⊢
ψ(A) : s for some sort s ∈ S∗. Therefore WF(ψ(Γ), x : ψ(A)).

2. There are 4 cases.

•

Variable

WF(Γ) (x : A) ∈ Σ,Γ

Γ ⊢ x : A
By induction hypothesis, WF(ψ(Γ)).

(a) If x = ṡ1 then A = us2 and (s1 : s2) ∈ A. Therefore ψ(Γ) ⊢ s1 :
s2.

(b) If x = π̇s1s2s3 then A = Πα : us1 . (εs1 α → us2) → us3 and
(s1, s2, s3) ∈ R. Therefore ψ(Γ), α : s1, β : α → s2 ⊢ Πx :α. β x :
s3, which implies ψ(Γ) ⊢ (λα :s1. λβ : (α→ s2).Πx :α. β x) : Πα :
s1. (α→ s2) → s3.

(c) Otherwise (x : A) ∈ Γ, so (x : ψ(A)) ∈ ψ(Γ). By induction
hypothesis, WF(ψ(Γ)). Therefore ψ(Γ) ⊢ x : ψ(A).

•

Application

Γ ⊢ M : Πx :A.B Γ ⊢ N : A

Γ ⊢ M N : [N/x]B
By induction hypothesis, ψ(Γ) ⊢ ϕ(M) : Πx :ψ(A). ψ(B) and ψ(Γ) ⊢
ϕ(N) : ψ(A). Therefore ψ(Γ) ⊢ ϕ(M)ϕ(N) : [ϕ(N)/x]ψ(B). By
Lemma 5.10, ψ(Γ) ⊢ ϕ(M)ϕ(N) : ψ([N/x]B)

•

Abstraction

Γ ⊢ Πx :A.B : Type Γ, x : A ⊢ M : B

Γ ⊢ λx :A.M : Πx :A.B
By induction hypothesis, ψ(Γ) ⊢ Πx : ψ(A). ψ(B) : s and ψ(Γ), x :
ψ(A) ⊢ ϕ(M) : ψ(B) for some sort s ∈ S∗. Therefore ψ(Γ) ⊢ (λx :
ψ(A). ϕ(M)) : Πx :ψ(A). ψ(B).
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•

Conversion

Γ ⊢ M : A Γ ⊢ B : Type A ≡βR B

Γ ⊢ M : B
By induction hypothesis, ψ(Γ) ⊢ ϕ(M) : ψ(A) and ψ(Γ) ⊢ ψ(B) : s
for some sort s ∈ S∗. By Lemma 5.10, ψ(A) ≡β ψ(B). Therefore
ψ(Γ) ⊢ ϕ(M) : ψ(B).

3. There are 4 cases.

•

Variable

WF(Γ) (x : Type) ∈ Σ,Γ

Γ ⊢ x : Type
Since Γ is an abstraction context we must have x ∈ Σ, so x = us1
for some s1 ∈ S. By induction hypothesis, WF(ψ(Γ)). By definition,
there is a sort s2 ∈ S∗ such that (s1 : s2) ∈ A∗. Therefore ψ(Γ) ⊢
s1 : s2.

•

Application

Γ ⊢ M : Πx :A.B Γ ⊢ N : A

Γ ⊢ M N : [N/x]B
Since Γ is an abstraction context and M N is not a β-redex, we must
have M = εs1 and Πx : A.B = us1 → Type and N : us1 for some
s1 ∈ S. By induction hypothesis, ψ(Γ) ⊢ ϕ(N) : s1.

•

Product

Γ ⊢ A : Type Γ, x : A ⊢ B : Type

Γ ⊢ Πx :A.B : Type
By induction hypothesis, ψ(Γ) ⊢ ψ(A) : s1 and ψ(Γ), x : ψ(A) ⊢
ψ(B) : s2 for some sorts s1, s2 ∈ S∗. By definition, there is a sort s3 ∈
S∗ such that (s1, s2, s3) ∈ R∗. Therefore ψ(Γ) ⊢ (Πx :ψ(A). ψ(B)) :
s3.

•

Conversion

Γ ⊢ A : B Γ ⊢ B : Kind B ≡βR Type

Γ ⊢ A : Type
We must have B = Type. By induction hypothesis, ψ(Γ) ⊢ ψ(A) : s
for some sort s ∈ S∗.

Lemma 5.22

Proof. By induction on the derivation of Γ ⊢λS∗ M : A.

•

Sort

WF(Γ) (s1 : s2) ∈ A∗

Γ ⊢ s1 : s2
Since s2 : s, we must have s2 6= τ , so (s1 : s2) ∈ A. Therefore Γ′ ⊢λS s1 :
s2, which implies Γ′ |=S s1 : s2.
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•

Variable

WF(Γ) (x : A) ∈ Σ,Γ

Γ ⊢ x : A
Then Γ′ |=S σ(M) : σ(A) by definition of Γ′ |=S σ : Γ.

•

Application

Γ ⊢ M : Πx :A.B Γ ⊢ N : A

Γ ⊢ M N : [N/x]B
Without loss of generality, x 6∈ Γ′, so σ([N/x]B) = [σ(N)/x]σ(B). By
induction hypothesis, Γ′ |=S σ(M) : Πx : σ(A). σ(B) and Γ′ |=S σ(N) :
σ(A).

1. If Γ ⊢λS∗ Πx :A.B : s3 6= τ then Γ ⊢λS∗ A : s1 and Γ, x : A ⊢λS∗ B :
s2 for some s1, s2 such that (s1, s2, s3) ∈ S, which also means that
Γ ⊢λS∗ [N/x]B : s2 6= τ . By induction hypothesis, σ(M) −→∗

β M
′,

σ(A) −→ A′ and σ(B) −→ B′ such thatΓ′ ⊢λS∗ M ′ : Πx : A′. B′

and σ(N) −→∗
β N

′, σ(A) −→∗
β A

′′ such that Γ′ ⊢λS∗ N ′ : A′′. By
confluence and subject reduction, we can assume A′ = A′′. Therefore
Γ′ ⊢λS∗ M ′N ′ : [N ′/x]B′. Since [N/x]B −→∗

β [N ′/x]B′, this implies
Γ′ |=S M N : [N/x]B.

2. Otherwise Γ ⊢ Πx : A.B : τ . By definition, Γ′ |=S σ(M)σ(N) :
[σ(N)/x]σ(B).

•

Abstraction

Γ, x : A ⊢ M : B Γ ⊢ Πx :A.B : s

Γ ⊢ λx :A.M : Πx :A.B
Without loss of generality, x 6∈ Γ′.

1. If s 6= τ then by induction hypothesis, σ(A) −→∗
β A

′ and σ(B) −→∗
β

B′ such that Γ′ ⊢λS Πx :A′. B′ : s. By inversion, Γ′ ⊢λS A
′ : s1 for

some s1 6= τ , so Γ |=S A : s1, which implies Γ′, x : A′ |=S σ : (Γ, x :
A). By induction hypothesis, σ(M) −→∗

β M
′ and σ(B) −→∗

β B
′′ such

that Γ′, x : A′ ⊢λS M ′ : B′′. By confluence and subject reduction,
we can assume B′ = B′′. Therefore Γ′ ⊢λS (λx :A′.M ′) : Πx :A′. B′,
which implies Γ′ |=S (λx :A.M) : Πx :A.B.

2. If s = τ then for all N such that Γ′ |=S N : σ(A), we have Γ′ |=S
(σ,N/x) : (Γ, x : A). By induction hypothesis, Γ′ |=S (σ,N/x)(M) :
(σ,N/x)(B). Since x 6∈ Γ′, we have (σ,N/x)(M) = [N/x]σ(M) and
(σ,N/x)(B) = [N/x]σ(B). Therefore Γ′ |=S [N/x]σ(M) : [N/x]σ(B).
By Lemma 5.19, Γ′ |=S ((λx : σ(B). σ(M))N) : [N/x]σ(B). There-
fore Γ′ |=S (λx :σ(B). σ(M)) : Πx :A.B.

•

Product

Γ ⊢λS A : s1 Γ, x : A ⊢λS B : s2 (s1, s2, s3) ∈ R∗

Γ ⊢λS Πx :A.B : s3
Without loss of generality, x 6∈ Γ′. Since s3 : s, we must have s3 6= τ ,
so (s1, s2, s3) ∈ R, which also means s1 6= τ and s2 6= τ . By induction
hypothesis, σ(A) −→∗

β A′ such that Γ′ ⊢λS A′ : s1. This means that
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WFλS(Γ
′, x : A′) and Γ′, x : A′ |=S (σ, x/x) : (Γ, x : A). By induction

hypothesis, σ(B) −→∗
β B′ such that Γ′ ⊢λS B′ : s2. Therefore Γ′ ⊢λS

(Πx :A′. B′) : s3, which implies Γ′ |=S (Πx :A′. B′) : s3.

•

Conversion

Γ ⊢ M : A Γ ⊢ B : s A ≡β B

Γ ⊢ M : B
By induction hypothesis, Γ′ |=S σ(M) : σ(A). Since A ≡β B, we have
σ(A) ≡β σ(B). By Lemma 5.20, Γ′ |=S σ(M) : σ(A).
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