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Structure of W4-immersion free graphs∗

Rémy Belmonte† Archontia C. Giannopoulou‡ Daniel Lokshtanov§

Dimitrios M. Thilikos¶‖

Abstract

We study the structure of graphs that do not contain the wheel on 5 vertices W4

as an immersion, and show that these graphs can be constructed via 1, 2, and
3-edge-sums from subcubic graphs and graphs of bounded treewidth.

1 Introduction

All grahs in this paper are undirected may have multiple edges. See the monograph
by Diestel [4] for undefined notation and terminology. A recurrent theme in structural
graph theory is the study of graphs which exclude a fixed pattern. The notion of
appearing as a pattern gives rise to various graph containment relations. Maybe the
most famous example is the minor relation that has been widely studied, in particular
with the fundamental results of Kuratowski and Wagner who proved that planar graphs
are exactly those graphs that contain neither K5 nor K3,3 as a (topological) minor.
Another famous such example is Wagner’s theorem, which describes the structure of
K5-minor free graphs.

The structure of graphs that exclude a fixed graph as a minor was studied in the
seminal Graph Minor series of papers by Robertson and Seymour [11]. However, while
the structure of graphs that exclude a fixed graph H as a minor has been extensively
studied, the structure of graphs excluding a fixed graph H as a topological minor or as
an immersion has not received as much attention. While a general structure theorem
for topological minor free graphs was very recently provided by Grohe and Marx [9],
finding an exact characterization of the graphs that exclude K5 as a topological minor
remains a notorious open problem. Similarly, Wollan gave a structure theorem for
graphs excluding complete graphs as immersions [16]. A graph G contains a graph H
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as a immersion if H can be obtained from G by a sequence of vertex deletions, edge
deletions and replacing edge-disjoint paths with single edges. Observe that if a graph G

contains a graph H as a topological minor, then G also contains H as an immersion, as
vertex-disjoint paths are also edge-disjoint. In 2011, DeVos et al. [3] proved that if the
minimum degree of a graph G is at least 200t then G contains the complete graph on t

vertices as an immersion. In [6] Ferrara et al. provided a lower bound on the minimum
degree of any graph G in order to ensure that a given graph H is contained in G as an
immersion.

In this paper, we prove a structural characterization of the graphs that exclude W4

as an immersion and show that they can be constructed from graphs that are either
subcubic or have treewidth bounded by a constant. We denote by W4 the wheel with 4
spokes, i.e., the graph obtained from a cycle on 4 vertices by adding a universal vertex.
The structure of graphs that exclude W4 and W5 as a topological minor has been studied
by Farr [5]. For the case of W4, he proved that these graphs can be constructed via
clique-sums of order at most 3 from subcubic graphs. However, this characterization
only applies to simple graphs. More recently, Robinson and Farr studied the structure
of graphs that do not contain W5 [14] and W6 [15] as a topological minor.

We conclude this section with some elementary definitions that will be required later.

Definition 1 An immersion of H in G is a function α with domain V (H) ∪ E(H),
such that:

• α(v) ∈ V (G) for all v ∈ V (H), and α(u) 6= α(v) for all distinct u, v ∈ V (H);

• for each edge e of H, α(e) is a path of G with ends α(u), α(v);

• for all distinct e, f ∈ E(H), E(α(e) ∩ α(f)) = ∅.

Definition 2 Let G,G1, and G2 be graphs. Let t ≥ 1 be a positive integer. The graph
G is a t-edge-sum of G1 and G2 if the following holds. There exist vertices vi ∈ V (Gi)
such that |EGi

(vi)| = t for i ∈ [2] and a bijection π : EG1
(v1) → EG2

(v2) such that G is
obtained from (G1 − v1)∪ (G2 − v2) by adding an edge xy for every pair of edges e1 and
e2 such that e1 = xv1, e2 = yv2, and v2 = π(v1). We say that the edge-sum is internal
if both G1 and G2 contain at least 2 vertices and denote the internal t-edge-sum of G1

and G2 by G1⊕̂tG2.

The (elementary) wall of height r is the graph Wr with vertex set V (Wr) = {(i, j) |
i ∈ [r + 1], j ∈ [2r + 2]} in which we make two vertices (i, j) and (i′, j′) are adjacent if
and only if either i = i′ and j′ ∈ {j − 1, j + 1} or j′ = j and i′ = i+ (−1)i+j , and then
remove all vertices of degree 1. The vertices of this vertex set are called original vertices
of the wall. A subdivided wall of height r is the graph obtained from Wr after replacing
some of its vertices by internally vertex-disjoint paths.

It is well known that large treewidth ensures the existence of a large wall as a
topological minor. Recently, Chekuri and Chuzhoy proved that polynomial treewidth
suffices to ensure the existence of a wall as a topological minor, solving a long standing
open problem.

Theorem 1 [1] Let G be a graph and r a positive integer. If G does not contain Wr

as a topological minor, then G has treewidth O(r98).
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2 Structure of graphs excluding W4 as an immersion

In this section, we prove the main result of our paper, namely we provide a structure
theorem for graphs that exclude W4 as an immersion. We first show that the property
of containing W4 as an immersion is closed under 3-edge sums.

Theorem 2 Let G, G1, and G2 be graphs such that G = G1⊕̂tG2, with t ∈ [3]. Then,
G contains W4 as an immersion if and only if G1 or G2 does as well.

We now provide a technical lemma that will be crucial for the proof of Theorem 4.

Lemma 1 There exists a function f such that for every integer r ≥ 60000 and every
graph G that does not contain W4 as an immersion, has no internal 3 edge-cut, and
has a vertex u with d(u) ≥ 4, if tw(G) ≥ f(r), then there exist sets Z = {z1, . . . , zr},
S1, . . . , Sr, and X, that satisfy the following properties:

(i) zi ∈ Si, ∀i ∈ {1, . . . , r};

(ii) zi ∈ Sj , ∀i 6= j ∈ {1, . . . , r};

(iii) u ∈
⋂

i∈{1,...,r} Si;

(iv) ∂(Si) ≤ 6;

(v) G[Si] is connected, ∀i ∈ {1, . . . , r};

(vi) X ∩ Si = ∅, ∀i ∈ {1, . . . , r};

(vii) For every Z ′ ⊆ Z such that |Z ′| ≥ 7, there is a 7-flow from Z ′ to X;

Lemma 1 essentially states that large treewidth yields a large number of vertex
disjoint cycles that are highly connected to each other, and an additional disjoint set
that is highly connected to these cycles. However, this, together with the assumption
that W4 does not immerse in G, implies that there cannot be a large flow between a
vertex of degree at least 4 and one of the cycles. We will combine this fact with the
notion of important separators to obtain Lemma 2. Please refer to e.g., [2, 10] for a
definition of (X,Y )-important separator.

Theorem 3 [2, 10] Let X,Y ⊆ V (G) be two sets of vertices in graph G, let k ≥ 0 be
an integer, and let Sk be the set of all (X,Y )-important separators of size at most k.
Then |Sk| ≤ 4k and Sk can be constructed in time |Sk| · n

O(1).

Theorem 3 states that the number of important separators of a certain size is
bounded. The next lemma uses this fact together with Lemma 1.

Lemma 2 Let G be a graph such that G does not contain W4 as an immersion, has no
internal 3 edge-cut and has a vertex u with d(u) ≥ 4. Then the treewidth of G is upper
bounded by a constant.

We are now ready to prove the main theorem of our paper.
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Theorem 4 Let G be a graph that does not contain W4 as an immersion. Then the
prime graphs of a decomposition of G via i-edge-sums, i ∈ [3], are either subcubic graphs,
or have treewidth bounded from above by a constant.

We conclude this section by noting that Theorem 4 is that it is in a sense tight:
indeed, both the fact that we decompose along edge-sums of order at most 3 and the re-
quirement that a unique vertex of degree at least 4 is sufficient to enforce small treewidth
are necessary. The fact that decomposing along internal 3 edge sums is necessary can
be seen from the fact that there are internally 3 connected graphs that have vertices of
degree at least 4 and yet do not contain W4 as an immersion, e.g. a cycle where every
edge is doubled.
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