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Introduction

All grahs in this paper are undirected may have multiple edges. See the monograph by Diestel [START_REF] Diestel | Graph theory[END_REF] for undefined notation and terminology. A recurrent theme in structural graph theory is the study of graphs which exclude a fixed pattern. The notion of appearing as a pattern gives rise to various graph containment relations. Maybe the most famous example is the minor relation that has been widely studied, in particular with the fundamental results of Kuratowski and Wagner who proved that planar graphs are exactly those graphs that contain neither K 5 nor K 3,3 as a (topological) minor. Another famous such example is Wagner's theorem, which describes the structure of K 5 -minor free graphs.

The structure of graphs that exclude a fixed graph as a minor was studied in the seminal Graph Minor series of papers by Robertson and Seymour [START_REF] Robertson | Graph Minors. XXI. Excluding a non-planar graph[END_REF]. However, while the structure of graphs that exclude a fixed graph H as a minor has been extensively studied, the structure of graphs excluding a fixed graph H as a topological minor or as an immersion has not received as much attention. While a general structure theorem for topological minor free graphs was very recently provided by Grohe and Marx [START_REF] Grohe | Structure theorem and isomorphism test for graphs with excluded topological subgraphs[END_REF], finding an exact characterization of the graphs that exclude K 5 as a topological minor remains a notorious open problem. Similarly, Wollan gave a structure theorem for graphs excluding complete graphs as immersions [START_REF] Wollan | The structure of graphs not admitting a fixed immersion[END_REF]. A graph G contains a graph H as a immersion if H can be obtained from G by a sequence of vertex deletions, edge deletions and replacing edge-disjoint paths with single edges. Observe that if a graph G contains a graph H as a topological minor, then G also contains H as an immersion, as vertex-disjoint paths are also edge-disjoint. In 2011, DeVos et al. [START_REF] Devos | Minimum degree condition forcing complete graph immersion[END_REF] proved that if the minimum degree of a graph G is at least 200t then G contains the complete graph on t vertices as an immersion. In [START_REF] Ferrara | On H-immersions[END_REF] Ferrara et al. provided a lower bound on the minimum degree of any graph G in order to ensure that a given graph H is contained in G as an immersion.

In this paper, we prove a structural characterization of the graphs that exclude W 4 as an immersion and show that they can be constructed from graphs that are either subcubic or have treewidth bounded by a constant. We denote by W 4 the wheel with 4 spokes, i.e., the graph obtained from a cycle on 4 vertices by adding a universal vertex. The structure of graphs that exclude W 4 and W 5 as a topological minor has been studied by Farr [START_REF] Farr | The subgraph homeomorphism problem for small wheels[END_REF]. For the case of W 4 , he proved that these graphs can be constructed via clique-sums of order at most 3 from subcubic graphs. However, this characterization only applies to simple graphs. More recently, Robinson and Farr studied the structure of graphs that do not contain W 5 [START_REF] Robinson | Structure and recognition of graphs with no 6-wheel subdivision[END_REF] and W 6 [START_REF] Robinson | Graphs with no 7-wheel subdivision[END_REF] as a topological minor.

We conclude this section with some elementary definitions that will be required later.

Definition 1 An immersion of H in G is a function α with domain V (H) ∪ E(H), such that: • α(v) ∈ V (G) for all v ∈ V (H), and α(u) = α(v) for all distinct u, v ∈ V (H);
• for each edge e of H, α(e) is a path of G with ends α(u), α(v);

• for all distinct e, f ∈ E(H), E(α(e) ∩ α(f )) = ∅.
Definition 2 Let G, G 1 , and G 2 be graphs. Let t ≥ 1 be a positive integer. The graph G is a t-edge-sum of G 1 and G 2 if the following holds. There exist vertices

v i ∈ V (G i ) such that |E G i (v i )| = t for i ∈ [2]
and a bijection π :

E G 1 (v 1 ) → E G 2 (v 2 ) such that G is obtained from (G 1 -v 1 ) ∪ (G 2 -v 2 )
by adding an edge xy for every pair of edges e 1 and e 2 such that e 1 = xv 1 , e 2 = yv 2 , and v 2 = π(v 1 ). We say that the edge-sum is internal if both G 1 and G 2 contain at least 2 vertices and denote the internal t-edge-sum of G 1 and G 2 by G 1 ⊕t G 2 .

The (elementary) wall of height r is the graph W r with vertex set

V (W r ) = {(i, j) | i ∈ [r + 1], j ∈ [2r + 2]
} in which we make two vertices (i, j) and (i ′ , j ′ ) are adjacent if and only if either i = i ′ and j ′ ∈ {j -1, j + 1} or j ′ = j and i ′ = i + (-1) i+j , and then remove all vertices of degree 1. The vertices of this vertex set are called original vertices of the wall. A subdivided wall of height r is the graph obtained from W r after replacing some of its vertices by internally vertex-disjoint paths.

It is well known that large treewidth ensures the existence of a large wall as a topological minor. Recently, Chekuri and Chuzhoy proved that polynomial treewidth suffices to ensure the existence of a wall as a topological minor, solving a long standing open problem.

Theorem 1 [START_REF] Chekuri | Polynomial Bounds for the Grid-Minor Theorem[END_REF] Let G be a graph and r a positive integer. If G does not contain W r as a topological minor, then G has treewidth O(r 98 ).

Structure of graphs excluding W 4 as an immersion

In this section, we prove the main result of our paper, namely we provide a structure theorem for graphs that exclude W 4 as an immersion. We first show that the property of containing W 4 as an immersion is closed under 3-edge sums.

Theorem 2 Let G, G 1 , and G 2 be graphs such that G = G 1 ⊕t G 2 , with t ∈ [START_REF] Devos | Minimum degree condition forcing complete graph immersion[END_REF]. Then, G contains W 4 as an immersion if and only if G 1 or G 2 does as well.

We now provide a technical lemma that will be crucial for the proof of Theorem 4.

Lemma 1 There exists a function f such that for every integer r ≥ 60000 and every graph G that does not contain W 4 as an immersion, has no internal 3 edge-cut, and has a vertex u with d(u) ≥ 4, if tw(G) ≥ f (r), then there exist sets Z = {z 1 , . . . , z r }, S 1 , . . . , S r , and X, that satisfy the following properties:

(i) z i ∈ S i , ∀i ∈ {1, . . . , r}; (ii) z i ∈ S j , ∀i = j ∈ {1, . . . , r}; (iii) u ∈ i∈{1,...,r} S i ; (iv) ∂(S i ) ≤ 6; (v) G[S i ] is connected, ∀i ∈ {1, . . . , r}; (vi) X ∩ S i = ∅, ∀i ∈ {1, . . . , r}; (vii) For every Z ′ ⊆ Z such that |Z ′ | ≥ 7, there is a 7-flow from Z ′ to X;
Lemma 1 essentially states that large treewidth yields a large number of vertex disjoint cycles that are highly connected to each other, and an additional disjoint set that is highly connected to these cycles. However, this, together with the assumption that W 4 does not immerse in G, implies that there cannot be a large flow between a vertex of degree at least 4 and one of the cycles. We will combine this fact with the notion of important separators to obtain Lemma 2. Please refer to e.g., [START_REF] Chen | An improved parameterized algorithm for the minimum node multiway cut problem[END_REF][START_REF] Marx | Parameterized graph separation problems[END_REF] for a definition of (X, Y )-important separator.

Theorem 3 [START_REF] Chen | An improved parameterized algorithm for the minimum node multiway cut problem[END_REF][START_REF] Marx | Parameterized graph separation problems[END_REF] Let X, Y ⊆ V (G) be two sets of vertices in graph G, let k ≥ 0 be an integer, and let S k be the set of all (X, Y )-important separators of size at most k.

Then |S k | ≤ 4 k and S k can be constructed in time |S k | • n O(1) .
Theorem 3 states that the number of important separators of a certain size is bounded. The next lemma uses this fact together with Lemma 1.

Lemma 2 Let G be a graph such that G does not contain W 4 as an immersion, has no internal 3 edge-cut and has a vertex u with d(u) ≥ 4. Then the treewidth of G is upper bounded by a constant.

We are now ready to prove the main theorem of our paper.

Theorem 4 Let G be a graph that does not contain W 4 as an immersion. Then the prime graphs of a decomposition of G via i-edge-sums, i ∈ [START_REF] Devos | Minimum degree condition forcing complete graph immersion[END_REF], are either subcubic graphs, or have treewidth bounded from above by a constant.

We conclude this section by noting that Theorem 4 is that it is in a sense tight: indeed, both the fact that we decompose along edge-sums of order at most 3 and the requirement that a unique vertex of degree at least 4 is sufficient to enforce small treewidth are necessary. The fact that decomposing along internal 3 edge sums is necessary can be seen from the fact that there are internally 3 connected graphs that have vertices of degree at least 4 and yet do not contain W 4 as an immersion, e.g. a cycle where every edge is doubled.

* The first author was supported by the NFR SCOPE and the MEXT ELC projects. The research of the second author leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 267959. The fourth author of this paper was co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) -Research Funding Program: ARISTEIA II.