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Multi-sensors people detection system for heavy machines

M. Bui1, V. Frémont1, D. Boukerroui1, P. Letort2

Abstract—In this paper, we propose a multi-sensors system to
detect people in the context of construction sites using heavy
machines. The system includes a LIght Detection And Ranging
(Lidar) sensor and a fisheye camera. We present an effective method
to determine regions of interest (ROI) on fisheye images using Lidar
data, which can be used with different sensors configurations. A
Deformable Part Model (DPM) approach is adapted and used as the
main people detector on image. We also present a specific dataset
built using the multi-sensor system mounted on a heavy machine
for evaluation.

Index Terms—Heavy machines, sensor fusion, pedestrian
detection, deformable part model, fisheye, histogram of oriented
gradients.

I. INTRODUCTION

Heavy machines in construction sites constitute a high

risk of serious injuries for people working in their sur-

roundings. Due to their large different functionalities and

shapes, accidents caused by heavy machines are various. An

investigations of accidents in the period starting from 1997 to

2008 for France was conducted and published in the EPICEA

database1 [18]. From 2157 accident cases of all kinds, there

are about 15% caused by collisions between machines and

people. In view of these worrying statistics, efforts have been

made to improve the safety for people working around heavy

machines. To better prevent than cure, research has moved

toward active safety intelligent systems which are able to pre-

dict dangerous situations and anticipate the accidents. They

are referred as advanced driver assistance systems (ADAS),

in the sense that they help the driver by providing warnings,

assistance to take decisions and even taking automatic evasive

actions in extreme cases. Notwithstanding many years of

progress the problem of detecting obstacles and recognizing

people from other ordinary objects is still a tough issue.

A. Related works

To solve the problem of people detection, different sensors

have been used and combined. The most popular type of

sensor for people detection is the camera. It offers the

best trade-off as a low-cost and polyvalent sensor. Recently,

following the Euro New Car Assessment Program (NCAP)

recommendations, people detection systems in automobile
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using cameras known important progresses [8], [10], [12].

Although the objective is similar in both automobiles and

heavy machines fields, we can clearly distinguish between

the two. Indeed, in the automobile context, cars need to stop

if there is an obstacle, no matter if it is a pedestrian or not.

The task of recognizing people is more important for heavy

machines where the main requirement is human’s safety and

since heavy machine can pass through specific obstacles

(rocks, holes, woods, etc.). Besides, cars often operate at a

higher speed and on straight ways. While it is important for

the system on automobile to be able to detect people at far

distances, heavy machines need preferably a larger field of

view (FOV) to cover the nearby area that constitutes the main

dangerous zone. Moreover, construction machines often have

a complicated shape and a larger size, which can also benefit

from the large FOV. These features reveal the necessity to

use wide angle sensors such as fisheye cameras as the main

sensor for people detection and recognition [4].

However, objects detection in fisheye images is a challeng-

ing task. Indeed, unlike in perspective images, the objects

appearances are strongly distorted. Wrapping the image into

a local perspective image is the direct way to avoid non-

perspective deformations but, besides adding computational

load, this approach also creates undesirable effects [5], [7].

Recently, the Deformable Parts Model (DPM) [12] and its

variants have gained a lot of attentions in object detection

and recognition. The DPM represents an object model as

different parts floating around their reference locations and

finds the associated optimal part-configuration at every root

position. This elegant way of representing complex shapes of

objects, brings a lot of benefit in detecting people in distorted

appearances. Still, the DPM approach has few drawbacks that

can be stated here:

• The high performance of the DPM approach comes with

a high computation cost and complexity.

• The DPM approach using the sliding windows detection

method needs to scan all over the image to detect the

person. Moreover, it is not invariant to the rotation of the

person’s appearance on image. This drawback is critical

in fisheye images. For example, it might not be suitable

to detect people in images from a camera that looks

down from high positions (see Fig.6).

Since cameras are low-cost sensors and since they exhibit

high computation load, they can be combined with other sen-

sors. For example, range sensors, like radar, Light Detection

And Ranging (Lidar) and ultrasonic [1], which have good

performance in detecting obstacles. Heavy machines often

work in complicated terrains with a lot of nearby objects.



Sometimes they even need to crush these obstacles. In these

situations, range sensors will trigger a permanent alarm,

which is useless and annoying for the drivers. Range sensors

are still very valuable in our context as they provide very

precise and robust measurements. Therefore, such sensors

are very good options in combination with cameras [2], [14],

[20], [22].

B. Article’s contributions and structure

The contributions of this paper are two folds. The first

one lies in the combination of Lidar data to bypass the

drawbacks of the DPM approach in people detection. The

specific difficulties to process fisheye images in the context

of heavy machines are taken into consideration. The proposed

fusion system has various advantages:

• It helps to reduce the detection area on images resulting

in a faster detection.

• It helps to give a lower false detection rate without

sacrificing the detection performance.

• It helps to adjust the rotation of objects’ appearances

caused by image distortions in different camera view

angles.

The second contribution concerns the evaluation of our ap-

proach on real data acquired in the context of heavy machine.

The paper is organized as follows. First, two adaptive

sensors configurations on heavy machines and details about

our dataset are given in section II. Then, details on the data

fusion algorithm and the projection process of the regions of

interest (ROIs) on fisheye images are explained in section

III. The evaluation protocol and the experimental results

are discussed in section IV. Finally, section V presents the

conclusions and the perspectives of our work.

II. ACQUISITION SYSTEM AND DATASET

Datasets take a very important role in the process of the

development of an obstacle detection algorithm. Indeed, a

well-defined dataset is not only useful for evaluating the

approach but it also takes part in the training process to

improve the performance of the detector. To the best of

our knowledge, there are no others available datasets which

provides at the same time synchronized fisheye images and

Lidar data in the context of heavy machines environments.

Moreover, this context has some special features, such as

the outdoor changing light conditions, the strong vibrations

coming from the engine, and the brutal shocks that might

make the detection process much harder. There are essential

needs for a new dataset in order to identify conditions under

which current detectors fail. We will focus our attention on

these difficult cases.

A. System Configuration

The danger is highly dependent on the action taken by the

machine and its direction. Based on the survey of accidents

caused by heavy machines (Tab. I), we can conclude that

accidents rarely happen on the sides of the machines, except

Operation Repartition of accidents (%)

Static 20

Move backward 42

Move forward 27

Not specified 11

Table I: Repartition of accidents cause by different heavy

machine operations.

for “rotating-base machines”, such as excavators. The back

and the front of a machine in motion are the most dangerous

parts. Fisheye cameras mounted at the back and in front of

the machine seem to be a good option in these cases.

We defined two positions for the fisheye camera denoted

by index 1 and 2 in Fig.1 which led to two different sensors

configurations of the system:

• Configuration 1: The two sensors are at position 1. In

this configuration, the sensors are kept at low position

(height h = 110cm) and are parallel to the ground

plane. This is the commonly used configuration of many

people detection systems because the appearance of the

person on the image is relatively the same at any relative

position in the FOV of the camera. This advantage is not

conserved in fisheye image since the object appearance

distortions depends on its distance and its angle to

the camera. A quantitative analysis of this distortion

phenomenon is presented in [4].

• Configuration 2: The fisheye camera is mounted at

position 2 (height h = 210cm, at the forks level),

looking down with an angle of 30°. The Lidar is

at the same position as in configuration 1. The high

position of the camera is commonly used in the context

of heavy machines. The reasons are to get a better

coverage of blind angles around the machine and to

avoid collisions that can damage the sensors. In our case,

it gives an additional advantage in observing the whole

people appearance at a very close range, even when the

person touches the machine. The main drawback is the

complicated transformation of the person’s appearance

obtained on fisheye images.

Let assume that the Lidar is always parallel to the ground.

In the targeted application, this constraint will be broken

whenever the heavy machine is moving on a non-flat ground,

or simply due to large vehicle vibrations with respect to the

ground. In practice, these artifacts are minor when we use

fisheye camera. A way to avoid this constraint is to use a

multi-layers Lidar, along with a method to track the vehicle

pitch.

B. The Acquisition System

The proposed dataset consists of images captured from

one fisheye camera (Point Grey Firefly MV USB2.0), one

conventional camera (Sony PlayStation Eye for PS3) and one

range-sensor (LIDAR Hokuyo UTM-30LX-EW). The sampling

frequency is 10Hz for both cameras and 40Hz for the



Figure 1: Sensor configurations map. Sensor heights are h =
110cm and H = 210cm.

Figure 2: Architecture of the acquisition system.

Lidar. The middleware Pacpus2 is used to manage the data

acquisition process. Pacpus can handle data coming from

different sensors in real time and save them to the hard disk

driver (HDD) for replay and post-processing. These data are

timestamped and synchronized so they can be used later to

simulate real-time processing (Fig.2).

These data are taken on board of a telescopic-forklift,

namely a Bobcat-TL470, as shown in Fig.3 (a professional

driver has been recruited to operate the machine during the

experiments). The experiments are divided into 4 scenar-

ios for each configuration. All of the scenarios are pre-

defined and took place under security control. In most of

the data sequences, the machine moves on a clear terrain.

The scenarios defined within the experiments aim to simulate

frequently meet situations on a construction site. People wore

2Pacpus is the experimental platform on Intelligent Vehicles (IV) owned
by Laboratory Heudiasyc. See http://www.hds.utc.fr/pacpus

Figure 3: Real image of the acquisition system setup in the

configuration 1.

Testing dataset Number of sequences Positive images Positive samples

Configuration 1 7 5747 13045

Configuration 2 4 3570 9148

Table II: The testing dataset statistics.

different kind of clothes, including helmet, reflective vests

and civil clothes. Different situations of occlusions were also

simulated.

The fisheye images are partially annotated and used for

testing purpose. The annotations for the ground truth of

these image sequences are done using the labeling tool of

Dollár et al [9]. This tool requires drawing the bounding

box around objects in some key-frames and provides linear

interpolation to infer the bounding boxes of the same object

in intermediate frames. The objects can be labeled, in our

case as: “person”, “person_sitting” and “occluded”. In the

evaluation, only “person” label are considered for instance.

Tab.II summarizes mains characteristic of image sequences

used in our tests.

III. FROM LIDAR POINTS TO IMAGES REGION OF

INTEREST

The sliding-window is the simplest candidate generation

method [6] which makes the bridge between feature ex-

traction and classification modules by scanning the entire

spatial support of the image at different scales. One of the

key problems of this popular method is the huge amount

of negative candidates which are potentially false alarms.

Rather than applying sliding windows detection techniques

over the whole image, we propose to use a range sensor

(here a Lidar) to roughly localize all potential obstacles

inside the field-of-view (FOV) of the camera. The amount of

negative candidates are significantly reduced without missing

the positive candidate. Fig.4 shows the Lidar-based sensor

fusion architecture used within our system. In this section, we

present the whole process starting from the Lidar segmenta-

tion, through obstacles definition, coordinate transformation

and ROIs localization. Preprocessing is the decisive phase

since failures during this stage will strongly affect all the

subsequent modules.

A. Lidar Data Segmentation

The Lidar data segmentation process is the primary stage

for obstacle detection. An entity of interest that we call here



Figure 4: The Lidar-based sensor data fusion architecture.

an obstacle, can be anything: buildings, vehicles, people, etc.

The goal of our system is to localize an obstacle and to

classify it as a “person” or a “non-person”. The localization

is done by performing a segmentation on the Lidar data.

The raw Lidar data is a 3D cloud of points. A single

2D scan is a sequence of NS laser measurements S =
{(θl, dl)|l = 1, . . . , NS} where (θl, dl) denotes the polar co-

ordinates of the lth scan point. Each obstacle is characterized

by a cluster of Lidar points. The cluster Sk is obtained by a

convolution operation of the points in S with a kernel mask

[−1, 1] as proposed in [21]. Those points whose distances

to neighbor points are smaller than a given threshold Θ,

belong to the same cluster. A cluster Sk can be expressed

as Sk = {(θm, dm) | m = bk, ..., bk + nk} where nk and

bk are respectively the number of points and the initial scan

point of the cluster Sk.

Now, an obstacle is represented as a cluster Sk in the Lidar

frame. In practice, we are interested only in the centroid point
LCk = (θCk

, dCk
) and the size Dk of the cluster k. In the

rest of the paper, we assume that the size of a cluster is

represented as the Euclidean distance between its endpoints.

B. Lidar Points Projection In the Camera Frame

The rigid body transformation between the Lidar L and

the camera C frames is denoted as C [R, t]L where CRL is

the rotation matrix and CtL is the translation vector. A point
Lp in the Lidar frame is projected into the camera frame as:

Cp =C RL ·
L p+C tL (1)

The extrinsic parameter C [R, t]
L

can be obtained through

the calibration process presented in [13] or deduced from

direct measurements.

C. Fisheye Camera Model

Wide-angle cameras show noticeable geometric distor-

tions. In order to follow the pinhole projection model, it

is generally desirable to remove them in many applications

in computer vision. The geometric distortions include two

major components: radial and tangential components. Radial

distortions cause image points to be translated by a propor-

tional amount to their radial distance from the optical center.

Tangential distortions (or decentering distortions) are gener-

ally less significant than radial distortions and are mainly

originated from the misalignment of the lens elements.

Figure 5: Computation of the ROI’s angle on image

Given a 3D point CP = (X,Y, Z)T in the camera frame,

the projected undistorted point on the image sensor will be

represented as p = (u, v)T =
(

X fx
Z
, Y

fy
Z

)T

with fx and fy

the focal lengths of the camera optic. In the case of a fisheye

camera, the position of the distorted point on the image is

given by [15]:

p̃ =

(

ũ
ṽ

)

= p+ δp+ p0 (2)

where δp =

(

δu
δv

)

=

(

δu(r) + δu(t)

δv(r) + δv(t)

)

is the approximated

distortions and p0 = (u0, v0) is the principal point of

the camera. The variables δu(r), δv(r) represent the radial

distortions and δu(t), δv(t) are the tangential distortions along

the two image axes.

Among different distortion models, the standard polyno-

mial model [16] is commonly used. In this paper, we use a

third degree polynomial model:
(

δu(r)

δv(r)

)

=

(

ũ(k1r2d + k2r
4
d
+ k3r

6
d
)

ṽ(k1r2d + k2r
4
d
+ k3r

6
d
)

)

(3)

(

δu(t)

δv(t)

)

=

(

2p1ũṽ + p2(r2d + 2ũ2)
p1(r2d + 2ṽ2) + 2p2ũṽ

)

(4)

The optimal values of (fx, fy, u0, v0) and

(k1, k2, k3, p1, p2) are estimated through a calibration

process [3], [19].

D. Adaptive ROI Projection

For each detected obstacle from the Lidar data segmenta-

tion, we project three characteristic points (LCk,
L A,L A′)

as (ICk,
I Ã,I Ã′) on the fisheye image. The entities LA

and LA′ are two 3D real points that create a horizontal

line through the obstacle following the projection process

described in sections III-B and III-C. We denote (∆x,∆y) =
IÃ −I Ã′. As depicted in fig.5, the angle between the

obstacle appearance and the horizontal line in the fisheye

image is therefore given by µ = arctan ∆y
∆x

.

In the proposed approach, we do not use the geometric

characteristic of the cluster as a cue to recognize the obstacle.

Only the cluster size helps to determine the size of the ROI

in the fisheye image:

ROI width =
Dk × Framewidth× fy

dCk
× Sensor width

(5)



(a) (b)

(c) (d)

Figure 6: An example of the Lidar-camera people detection.

(a) The Lidar data presented in Top-view angle. (b) Result of

the Lidar segmentation. (c) Lidar points projected on image.

The maximum range is limited to 10 m. (d) Obstacles’ ROI

are represented by a blue box on image. The result of the

person recognition algorithm are represented with a red box

inside the ROIs.

For any configuration of the Lidar/Camera

sensors, one Lidar cluster defines one ROI =
(centroid point,ROI width, µ). This is very convenient

for an image-based people detection algorithm and the

requirement of a rotation invariant method is not necessary

anymore.

IV. EXPERIMENTAL RESULTS

The dataset and the evaluation protocol have been pre-

sented in section II and IV-A. Our evaluation focus on the

role of the Lidar in the fusion system with two different

sensors configurations as stated in section II-A.

A. Evaluation protocol

The detection system takes an image and returns bounding

boxes with corresponding scores or confidence indicators. A

detected bounding box A and a ground truth bounding box

B form a match if they have a sufficient overlap area. In the

PASCAL challenge [11], the overlap criterion between the

two bounding box A and B is defined as t = A∩B
A∪B

> t0
where t0 is a given threshold. A value of t0 = 0.5 is

considered as reasonable and is commonly used. The protocol

of evaluation is adapted from the tool used in [9]. As

the context of heavy machines requires reducing the false

detection rate, the results are presented in miss-rate against

false positive per image (FPPI). Only bounding boxes with a

height more than 50 pixels are considered in the evaluation.

Each detected bounding box may be matched once with the

ground truth and redundant detections are considered as false

positives (FP).

(a) (b)

Figure 7: Comparing the detection performance of the vision-

based approach versus the fusion system Lidar-fisheye cam-

era using ROC curve (a) Configuration 1.(b) Configuration

2.

In Sect. IV-B, we plot the miss-rate versus FPPI (lower

curves indicate better performance) by varying the threshold

of the detector. Decreasing the threshold level results in

reducing the miss-rate but will increase false positive per

image. At a given FPPI, it is easy to compare the performance

of different detectors. The log-average miss-rate is used to

summarize detector performance. The log-average miss-rate

is computed by averaging miss-rate at nine FPPI rates evenly

spaced in log-space in the range 10−2 to 100 (for curves that

end before reaching a given FPPI rate, the minimum achieved

miss-rate is used). When curves are somewhat linear in this

range, the log-average miss-rate is similar to the performance

at 10−1 FPPI [9], [17]. The displayed legend entries are

ordered by log-average miss-rate from the worst to the best

case.

B. Results

1) Configuration 1: In terms of computational cost as

expected, the combination of a Lidar with a fisheye camera

improves significantly the speed of the people detection

system. While the complexity of the obstacles detection in

Lidar data and in the ROIs projection states are always the

same, the speed of the people detection by DPM approach

depends on the area of the ROIs. As a result, we noticed a

speed factor of about 20 in detection time, measured using

300 images at VGA resolution on a desktop computer without

any specific hardware acceleration. It is worth noting that

the motions of heavy machines are normally much slower

than automobiles and a detection frequency of 10Hz can be

considered as enough.

The results shown in Fig.7a highlights the performance of

3 detectors: the standard HOG of [6], the DPM approach [12]

and the proposed DPM approach used in combination with

Lidar data segmentation. The DPM approach has a much

better performance in people detection on fisheye images

than the HOG detector, thanks to the flexible model of

the deformable parts. Moreover, introducing a Lidar in a

multi-sensor system apparently get an even better result by



Figure 8: Extreme case where the DPM approach fails.

eliminating false detections in regions where it is impossible

to have an obstacle. The measurements given by the Lidar

are generally precise and robust, so the risk that the Lidar

misses an obstacle is minor.

2) Configuration 2: Fig.7b shows the performance of the

Lidar-Camera system compare to the Camera-only approach

in configuration 2. People staying on the sides of the sensors

are at the same time strongly distorted and rotated. Visual-

based person detection methods which are not designed to

take into account these rotations, have very bad performance.

The system’s miss detection rate reach 95% over the range

of FPPI between 10−2 and 1, which could be considered as

totally failed. With the help of the Lidar, the ROIs corre-

sponding to obstacle are rotated (detailed in section III-D)

before launching the visual recognition. In this favorable

case, the DPM approach performs much better. Most of

the miss detections are due to the low resolution of the

appearance on image when the person is staying at a long

distance (over 5m).

There are also extreme cases where the fisheye camera

gives a close to top-view figure of the person (Fig.8). The

ROIs given by the Lidar is correct but the DPM detector

cannot recognize the person. These specific problems can be

solve by defining a mixture-model system where dedicated

DPM model is trained in function of the position of the

person.

V. CONCLUSIONS

Given that the DPM approach shows very good perfor-

mance in detecting and recognizing objects in perspective

images, we built a fisheye image dataset and evaluated the

DPM approach in the context of people detection using

fisheye images for heavy machines applications. It turned out

that the deformable models can handle very well the strong

fisheye distortions, however requires high computation cost

and is not invariant to rotation of the person’s appearance.

Therefore, we proposed a multi-sensor system that consists

of a fisheye camera and a Lidar in order to bypass these

limitations. The results are promising both in term of speed

and performances. Moreover, the fusion architecture and the

Lidar data segmentation algorithm used in our system are

sequential and very simple. In the near future, we are plan-

ning to integrate an object tracking algorithm to improve the

quality of the Lidar segmentation and to solve the occlusion

problems during the people detection phase.
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