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Abstract. The cyclability of a graph is the maximum integer k for
which every k vertices lie on a cycle. The algorithmic version of the
problem, given a graph G and a non-negative integer k, decide whether
the cyclability of G is at least k, is NP-hard. We prove that this problem,
parameterized by k, is co-W[1]-hard. We give an FPT algorithm for planar

graphs that runs in time 22
O(k2 log k)

· n2. Our algorithm is based on a
series of graph theoretical results on cyclic linkages in planar graphs.

1 Introduction

In the opening paragraph of his book Extremal Graph Theory Béla Bollobás
notes: “Perhaps the most basic property a graph may posses is that of being
connected. At a more refined level, there are various functions that may be said
to measure the connectedness of a connected graph.” Indeed, connectivity is one
of the fundamental properties considered in graph theory and studying different
variants of connectivity gives a better understanding of this property. Many such
alternative connectivity measures have been studied in graph theory but very
little is known about their algorithmic properties. The main goal of this paper is
to focus on one of such parameters – cyclability – from an algorithmic point of
view. Cyclability can be thought of as a quantitative measure of Hamiltonicity,
or as a natural “tuning” parameter between connectivity and Hamiltonicity.

Cyclability. For a positive integer k, a graph is k-cyclable if every k vertices lie
on a common cycle; we assume that any graph is 1-cyclable. Respectively, the
cyclability of a graph G is the maximum integer k for which G is k-cyclable.
Cyclability is well studied in the graph theory literature. Dirac proved that
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cyclability of a k-connected graph is at least k, for k ≥ 2 [8]. Watkins and
Mesner [32] characterized the extremal graphs for the theorem of Dirac. There is
a variant of cyclability restricted only to a set of vertices of a graph. Generalizing
the theorem of Dirac, Flandrin et al. [18] proved that if a set of vertices S in
a graph G is k-connected, then there is a cycle in G through any k vertices of
S. (A set of vertices S is k-connected in G if a pair of vertices in S cannot be
separated by removing at most k− 1 vertices of G.) Another avenue of research
is lower-bounds on cyclability of graphs in restricted families. For example, every
3-connected claw-free graph has cyclability at least 6 [26] and every 3-connected
cubic planar graph has cyclability at least 23 [3].

Clearly, a graph G is Hamiltonian if and only if its cyclability equals |V (G)|.
Therefore, we can think of cyclability as a quantitive measure of Hamiltonicity.
A graph G is hypohamiltonian if it is not Hamiltonian but all graphs obtained
from G by deleting one vertex are. Clearly, a graph G is hypohamiltonian if
and only if its cyclability equals |V (G)| − 1. Hypohamiltonian graphs appear in
combinatorial optimization and are used to define facets of the traveling salesman
polytope [22]. Curiously, the computational complexity of deciding whether a
graph is hypohamiltonian seems to be open.

To our knowledge no algorithmic study of cyclability has been done so far.
In this paper we initiate this study. For this, we consider the following problem.

Cyclability

Input: A graph G and a non-negative integer k.
Question: Is every k-vertex set S in G cyclable, i.e., is there a
cycle C in G such that S ⊆ V (C)?

Cyclability with k = |V (G)| is Hamiltonicity and Hamiltonicity is
NP-complete for planar cubic graphs [21]. Hence, we have the following.

Proposition 1. Cyclability is NP-hard for cubic planar graphs.

Parameterized complexity. A parameterized problem has as instances pairs (I, k)
where I is the main part and k is the parameterized part. Parameterized Com-
plexity settles the question of whether a parameterized problem is solvable by an
algorithm (we call it FPT-algorithm) of time complexity f(k) · |I|O(1) where f(k)
is a function that does not depend on n. If such an algorithm exists, we say that
the parameterized problem belongs in the class FPT. In a series of fundamental
papers (see [14,15,12,13]), Downey and Fellows invented a series of complexity
classes, namely the classes such as W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT ] ⊆ W[P ] ⊆ XP
and proposed special types of reductions such that hardness for some of the
above classes makes it rather impossible that a problem belongs in FPT (we
stress that FPT ⊆ W[1]). We mention that XP is the class of parameterized
problems such that for every k there is an algorithm that solves that problem in
time O(|I|f(k)), for some function f (that does not depend on |I|). For more on
parameterized complexity, we refer the reader to [11], [19], or [24].

Our results. In this paper we deal with the parameterized complexity of Cycla-

bility parameterized by k. It is easy to see that Cyclability is in XP. For a
graph G, we can check all possible subsets X of V (G) of size k. For each subset



X, we consider k! orderings of its vertices, and for each sequence of k vertices
x1, . . . , xk of X, we use the celebrated result of Robertson and Seymour [29], to
check whether there are k disjoint paths that join xi−1 and xi for i ∈ {1, . . . , k}
assuming that x0 = xk. We return a yes if and only if there is an ordering that
has the required disjoint paths for each set X.

Is it possible thatCyclability is FPT when parameterized by k? By showing
that Cyclability is co-W[1]-hard (even for split graphs5), we show that this is
rather unlikely. However, we prove that the problem is FPT on planar graphs:

Theorem 1. It is W[1]-hard to decide for a split graph G and a positive integer
k, whether G has k vertices such that there is no cycle in G that contains these
k vertices, when the problem is parameterized by k.

Theorem 2. The Cyclability problem, when parameterized by k, is in FPT
when its input graphs are restricted to be planar graphs. Moreover, the corre-

sponding FPT-algorithm runs in 22
O(k2 log k)

· n2 steps.

Our techniques. Theorem 3 is proved in the appendix and the proof is a reduction
from the Clique problem.

The two key ingredients in the proof of Theorem 2 are a new two-step version
of the irrelevant vertex technique, a new combinatorial concept of cyclic linkages
and a strong notion of vitality on them (vital linkages played an important role
in the Graph Minors series, in [30] and [27]). The proof of Theorem 2 is presented
in Section 3 (with references to the appendix). Below we give a rough sketch of
our method.

We work with a variant of Cyclability in which some vertices (initially all)
are colored. We only require that every k colored vertices lie on a common cycle.
If the treewidth of the input graph G is “small” (bounded by an appropriate
function of k), we employ a dynamic programming routine to solve the problem.
Otherwise, there exists a cycle in a plane embedding of G such that the graph
H in the interior of that cycle is “bidimensional” (contains a large subdivided
wall) but still of bounded treewidth. This structure permits to distinguish in
H a sequence C of, sufficiently many, concentric cycles that are all traversed
by some, sufficiently many, paths of H. Our first aim is to check whether the
distribution of the colored vertices in these cycles yields some “big uncolored
area” of H. In this case we declare some “central” vertex of this area problem-
irrelevant in the sense that its removal creates an equivalent instance of the
problem. If such an area does not exists, then R is “uniformly” distributed
inside the cycle sequence C. Our next step is to set up a sequence of instances
of the problem, each corresponding to the graph “cropped” by the interior of
the cycles of C, where all vertices of a sufficiently big “annulus” in it are now
uncolored. As the graphs of these instances are subgraphs of H and therefore
they have bounded treewidth, we can get an answer for all of them by performing
a sequence of dynamic programming calls (each taking a linear number of steps).
At this point, we prove that if one of these instances is a no-instance then we
just report that the initial instance is a no-instance and we stop. Otherwise, we

5 A graph G is split if V (G) can be partitioned into a clique and an independent set.



pick a colored vertex inside the most “central” cycle of C and we prove that this
vertex is color-irrelevant, i.e., an equivalent instance is created when this vertex
is not any more colored. In any case, the algorithm produces either a solution
or some “simpler” equivalent instance that either contains a vertex less or a
colored vertex less. This permits a linear number of recursive calls of the same
procedure. To prove that these two last critical steps work correctly, we have to
introduce several combinatorial tools. One of them is the notion of strongly vital
linkages, a variant of the notion of vital linkages introduced in [30], which we
apply to terminals traversed by cycles instead of terminals linked by paths, as
it has been done in [30]. This notion of vitality permits a significant restriction
of the expansion of the cycles that certify that sets of k vertices are cyclable
and is able to justify both critical steps of our algorithm. The proofs of the
combinatorial results that support our algorithm are presented in Section 4 and
we believe that they have independent combinatorial importance.

Structure of the paper. The paper is organized as follows. In Section 2 we give a
set of definitions that are necessary for the presentation of our algorithm. The
main steps of the algorithm are presented in Section 3 and the combinatorial
results (along with the necessary definitions) are presented in Section 4. Section
5 is devoted to the co-W[1]-hardness of Cyclability for general graphs. We
conclude with some discussion and open questions in Section 7.

2 Definitions and preliminary results

For any graph G, V (G) (respectively E(G)) denotes the set of vertices (respec-
tively edges) of G. A graph G′ is a subgraph of a graph G if V (G′) ⊆ V (G) and
E(G′) ⊆ E(G), and we denote this by G′ ⊆ G. If S is a set of vertices or a set
of edges of a graph G, the graph G \ S is the graph obtained from G after the
removal of the elements of S. Given two graphs G1 and G2, we define G1∩G2 =
(V (G1)∩V (G2), E(G1)∩E(G2)) and G1∩G2 = (V (G1)∩V (G2), E(G1)∩E(G2)).

For every vertex v ∈ V (G) the neighborhood of v in G, denoted by NG(v),
is the subset of vertices that are adjacent to v, and its size is called the degree
of v in G, denoted by degG(v). The maximum degree ∆(G) of a graph G is the
maximum value taken by degG over V (G). A cycle of G is a subgraph of G that
is connected and all its vertices have degree 2. We call a set of vertices S ⊆ V (G)
cyclable if for some cycle C of G, it holds that S ⊆ V (C).

Treewidth. A tree decomposition of a graph G is a pair D = (X , T ) in which T
is a tree and X = {Xi | i ∈ V (T )} is a family of subsets of V (G) such that:

–
⋃

i∈V (T ) Xi = V (G)

– for each edge e = {u, v} ∈ E(G) there exists an i ∈ V (T ) such that both u
and v belong to Xi

– for all v ∈ V, the set of nodes {i ∈ V (T ) | v ∈ Xi} forms a connected subtree
of T .

The width of a tree decomposition is max{|Xi| | i ∈ V (T )} − 1. The treewidth
of a graph G (denoted by tw(G)) is the minimum width over all possible tree
decompositions of G.



Concentric cycles. Let G be a graph embedded in the sphere S0 and let D =
{D1, . . . , Dr}, be a sequence of closed disks in S0. We call D concentric if D1 ⊆
D2 ⊆ · · · ⊆ Dr and no point belongs in the boundary of two disks in D. We
call a sequence C = {C1, . . . , Cr}, r ≥ 2, of cycles of G concentric if there exists
a concentric sequence of closed disks D = {D1, . . . , Dr}, such that Ci is the

boundary of Di, i ∈ {1, . . . , r}. For i ∈ {1, . . . , r}, we set C̄i = Di, C̊i = C̄i \Ci,

and Ĉi = G ∩Di (notice that C̄i and C̊i are sets while Ĉi is a subgraph of G).

Given i, j, i ≤ j − 1, we denote by Âi,j the graph Ĉj \ C̊i. Finally, given a q ≥ 1,
we say that a set R ⊆ V (G) is q-dense in C if, for every i ∈ {1, . . . , r − q + 1},

V (Âi,i+q−1) ∩R 6= ∅.

Railed annulus. Let r and q be integers such that r ≥ 2 and q ≥ 1 and let G
be a graph embedded in the S0. A (r, q)-railed annulus in G is a pair (C,W)
such that C = {C1, C2, . . . , Cr} is a sequence of r concentric cycles that are all
met by a sequence W of q paths P1, P2, . . . , Pq (called rails) in such a way that
∪∪∪∪∪∪∪∪∪W ⊆ A1,r and the intersection of a cycle and a rail is always connected, that
is, it is a (possibly trivial) path.

Walls and subdivided walls. Let k ≥ 1. A wall of height k is the graph obtained
from a ((k + 1) × (2 · k + 2))-grid with vertices (x, y), x ∈ {1, . . . , 2 · k + 4},
y ∈ {1, . . . , k + 1}, after the removal of the “vertical” edges {(x, y), (x, y + 1)}
for odd x+ y, and then the removal of all vertices of degree 1. We denote such
a wall by Wk. A subdivided wall of height k is a wall obtained from Wk after
replacing some of its edges by paths without common internal vertices. We call
such a path an edge-path of W . The perimeter PW of a subdivided wall W of
height k is the cycle defined by its boundary. Let C2 = PW and let C1 be any
cycle of W that has no common vertices with PW . Notice that C = {C1, C2} is
a sequence of concentric cycles in G. We define the compass KW of W in G as
the graph Ĉ2.

Layers of a wall. Let W be a subdivided wall of height h ≥ 2. The layers of
W are recursively defined as follows. The first layer, J1, of W is its perimeter.
For i ∈ {2, . . . , ⌊h2 ⌋}, the i-th layer, Ji, of W is the perimeter of the subwall W ′

obtained from W by removing its perimeter and repetitively removing occurring
vertices of degree 1. We denote the layer set of W by JW = {J1, . . . , J⌊h

2 ⌋
}

Given a graph G we denote by gw(G) the maximum h for which G contains
a subdivided wall of height h as a subgraph. The next lemma follows easily
combining results in [20], [23], and [28].

Lemma 1. If G is a planar graph, then tw(G) ≤ 9 · gw(G) + 1.

3 The algorithm

This section is devoted to the proof of Theorem 2. We consider the following
slightly more general problem.



Planar Annotated Cyclability

Input: A plane graph G, a set R ⊆ V (G), and a non-negative integer k.
Question: Does there exist, for every set S of k vertices in R, a cycle C
of G such that S ⊆ V (C)?

In this section, for simplicity, we denote Planar Annotated Cyclability by
Π. Theorem 2 follows directly from the following lemma.

Lemma 2. There is an algorithm that solves Π in 22
O(k2 log k)

· n2 steps.

Problem/color-irrelevant vertices. Let (G, k,R) be an instance of Π. We call
a vertex v ∈ V (G) \ R problem-irrelevant if (G, k,R) is a yes-instance if and
only if (G \ v, k,R) is a yes-instance. We call a vertex v ∈ R color-irrelevant
when (G, k,R) is a yes-instance if and only if v ∈ R and (G, k,R \ {v}) is a
yes-instance.

Before we present the algorithm of Lemma 2, we need to introduce three
algorithms that are used in it as subroutines.

Algorithm DP(G,R, k, q,D)
Input: A graph G, a vertex set R ⊆ V (G), two non-negative integers k and q,
where k ≤ q, and a tree decomposition D of G of width q.
Output: An answer whether (G,R, k) is a yes-instance of Π or not.

Running time: 22
O(q·log q)

· n.

Algorithm DP is based on dynamic programming on tree decompositions of
graphs. The technical details are omitted in this extended abstract.

Algorithm Compass(G, q)
Input: A planar graph G and a non-negative integer q.
Output: Either a tree decomposition of G of width at most 18q or a subdivided
wall W of G of height q and a tree decomposition D of the compass KW of W
of width at most 18q.

Running time: 2q
O(1)

· n.

We describe algorithm Compass in Subsection 3.1.

Algorithm concentric cycles(G,R, k, q,W )
Input: A planar graph G, a set R ⊆ V (G), a non-negative integer k, and a sub-
divided wall W of G of height at least 392k2 + 40k.
Output: Either a problem-irrelevant vertex v or a sequence C = {C1, C2, . . . , C98k+2}
of concentric cycles of G, with the following properties:
(1) C̄1 ∩R 6= ∅.
(2) The set R is 32k-dense in C.
(3) There exists a sequence W of 2k + 1 paths in KW such that (C,W) is a

(98k + 2, 2k + 1)-railed annulus.
Running time: O(n).

We describe Algorithm concentric cycles in Subsection 3.2. We now use
the above three algorithms to describe the main algorithm of this paper that is
the following.



Algorithm Planar Annotated Cyclability(G,R, k)
Input: A planar graph G, a set R ⊆ V (G), and a non-negative integer k.
Output: An answer whether (G,R, k) is a yes-instance of Π, or not.

Running time: 22
O(k2 log k)

· n2.

[Step 1.] Let r = 98k2+2k, y = 16k, and q = 2y+4r. If Compass(G, q) returns
a tree decomposition of G of width w = 18q, then return DP(G,R, k, w) and
stop. Otherwise, the algorithm Compass(G, q) returns a subdivided wall W
of G of height q and a tree decomposition D of the compass KW of W of
width at most w.

[Step 2.] If the algorithm concentric cycles(G,R, k, q,W ) returns a problem-
irrelevant vertex v, then return Planar Annotated Cyclability(G\v,R\
v, k) and stop. Otherwise, it returns a sequence C = {C1, C2, . . . , Cr} of con-
centric cycles of G with the properties (1)–(3).

[Step 3.] For every i ∈ {1, . . . , r − 98k − 2} let wi be a vertex in Âi+k,i+33·k ∩R
(this vertex exists as, from property (2), R is 32k-dense in C), let Ri =

(R ∩ V (Ĉi)) ∪ {wi}, and let Di be a tree decomposition of Ĉi of width at
most w – this tree decomposition can be constructed in linear time from D
as each Ĉi is a subgraph of KW .

[Step 4.] If, for some i ∈ {1, . . . , r− 98k− 2}, the algorithm DP(Ĉi, Ri, k, q,Di)
returns a negative answer, then return a negative answer and stop. Otherwise
return Planar Annotated Cyclability(G,R\v, k) where v is some vertex

of Ĉ1 that belongs in R (the choice of v is possible due to property (1)).

Proof of Lemma 2. The only non-trivial step in the above algorithm is Step 4.
Its correctness follows from Lemma 6, presented in Subsection 3.3.

We now proceed with the analysis of the running time of the algorithm.

Observe first that the call of Compass(G, q) in Step 1 takes 2k
O(1)

·n steps and,

in case, a tree decomposition is returned, the DP requires 22
O(k2 log k)

· n steps.
For Step 2, the algorithm concentric cycles takes O(n) steps and if it returns a
problem-irrelevant vertex, then the whole algorithm is applied again for a graph
with one vertex less. Suppose now that Step 2 returns a sequence C of concentric
cycles of G with the properties (1)–(3). Then the algorithm DP is called O(k2)

times and this takes in total 22
O(k2 log k)

·n steps. After that, the algorithm either
concludes to a negative answer or is called again with one vertex less in the set
R. In both cases where the algorithm is called again we have that the quantity
|V (G)| + |R| is becoming smaller. This means that the recursive calls of the
algorithm cannot be more than 2n. Therefore the total running time is bounded

by 22
O(k2 log k)

· n2 as required. ⊓⊔

3.1 The algorithm Compass

Before we start the description of algorithm Compass we present a result that
follows by Proposition 1, the algorithms in [25] and [4], and the fact that finding
a subdivision of a planar k-vertex graph H that has maximum degree 3 in a



graph G can be done, using dynamic programming, in 2O(k·log k) · n steps (see
also [1]).

Lemma 3. There exists an algorithm A1 that, given a graph G and an integer
h, outputs either a tree decomposition of G of width at most 9h or a subdivided

wall of G of height h. This algorithm runs in 2h
O(1)

· n steps.

Description of algorithm Compass Let q′ = 9q. We use the routine A2 that
receives as input a subdivided wall W of G with height equal to some even
number h and outputs a subdivided wall W ′ of G such that with W ′ has height
h/2 and |V (KW ′)| ≤ |V (G)|/4. A2 uses the fact that, in W, there are 4 vertex-
disjoint subdivided subwalls of W of height h/2. Among them, A2 outputs the
one with the minimum number of vertices and this can be done in O(n) steps.
The algorithm Compass uses as subroutines the routine A2 and the algorithm
A1 of Lemma 3.1.

Algorithm Compass(G, q)
[Step 1.] if A1(G, 2q) outputs a tree decomposition D of G with

width at most 2q′ then return D,
otherwise it outputs a subdivided wall W of G of height 2q

[Step 2.] Let W ′ = A2(W )
if A1(KW ′ , 2q) outputs a tree decomposition D of
KW ′ with width at most 2q′ then return W ′ and D,
otherwise W ←W ′ and go to Step 2.

Notice that, if A terminates after the first execution of step 1, then it outputs
a tree decomposition of G of width at most 2q′. Otherwise, the output is a
subdivided wall W ′ of height k in G and a tree decomposition of KW ′ of width
at most 2q′ (notice that as long as this is not the case, the algorithm keeps
returning to step 2). The aplication of routine A2 ensures that the number
vertices of every new KW is at least four times smaller than the one of the

previous one. Therefore, the i-th call of the the algorithm A1 requires O(2h
O(1)

·
n

22(i−1) ) steps. As
∑∞

i=0
1
22i = O(1), algorithm Compass has the same running

time as algorithm A1.

3.2 The Algorithm concentric cycles

We require first the following two lemmata, The first one is strongly based on
the combinatorial Lemma 11 that is the main result of Section 4.

Lemma 4. Let (G,R, k) be an instance of Π and let C = {C1, . . . , Cr} be a

sequence of concentric cycles in G such that V (Ĉr) ∩ R = ∅. If r ≥ 16 · k, then

all vertices in Ĉ1 are problem-irrelevant.

Proof. We observe that for every vertex v ∈ V (G), if (G \ v,R, k) ∈ Π then
(G,R, k) ∈ Π because G \ v is a subgraph of G and thus every cycle that exists
in G \ v also exists in G.

Assume now that (G,R, k) ∈ Π, let v ∈ Ĉ1, and let S ⊆ V (G), |S| ≤ k. We
will prove that there exists a cycle in G \ v containing all vertices of S. As



(G,R, k) ∈ Π, there is a cyclic linkage L = (C, S) in G. If v /∈ V (C), then
C ⊆ G \ v and we are done. If v ∈ V (C), let L′ = (C ′, S) be a C-weakly
cheap cyclic linkage in graph H = G[V (C) ∪

(

∪ri=1V (Ci)
)

], and assume that
v ∈ V (C ′). Then C ′ meets all cycles of C and its penetration in C is more than
16 · |S|, which contradicts to Lemma 11. Thus, v /∈ V (C ′) which means that
there exists a cyclic linkage with terminals S that does not meet v. As S was
arbitrarily chosen, vertex v is problem-irrelevant. ⊓⊔

Lemma 5. Let y, r, q, z be positive integers such that y+1 ≤ z ≤ r, G be a graph
embedded on S0 and let R ⊆ V (G) be the set of annotated vertices of G. Given a
subdivided wall W in G of height h = 2 ·max{y, ⌈ q8⌉}+4r, then either G contains

a sequence C′ = {C ′
1, C

′
2, . . . , C

′
y} of concentric cycles such that V (Ĉ ′

y) ∩ R = ∅
or a sequence C = {C1, C2, . . . , Cr} of concentric cycles such that:
1. C̄1 ∩R 6= ∅.
2. R is z-dense in C.
3. There exists a collection W of q paths in KW , such that (C,W) is a (r, q)-

railed annulus in G.
Moreover, a sequence C′ or C of concentric cycles as above can be constructed

in O(n) steps.

Proof. Let p = max{y, ⌈ q8⌉}. We are given a subdivided wall W of height h =
2 · p+ 4r. We define C = {C1, . . . , Cr} such that Ci = Jh

2 −p−2i+2, i ∈ {1, . . . , r}.

Notice that there is a collection W of 8p vertex disjoint paths in W such that
(C,W) is a (r, q)-railed annulus. If (C̄1) ∩ R = ∅, then C′ = {Jh

2
, . . . , Jh

2 +y−1}

is a sequence of concentric cycles where (J̄h
2 +y−1) ⊆ int(C1) and we are done.

Otherwise, we have that C satisfies property 1. Suppose now that Property 2 does
not hold for C. Then there exists some i ∈ {1, . . . , r} such that Ai,i+z−1∩R = ∅.
Notice that Ai,i+z−1 contains 2z − 1 > 2y layers of W which are crossed by
at least 2y of the paths in W (these paths certainly exist as 2y < 8p). This
implies the existence of a wall of height 2y in Ai,i+z−1 which, in turn contains
a sequence C′ = {C ′

1, . . . , C
′
y} of concentric cycles. As (C̄ ′

y) ⊆ Ai,i+z−1 we have

that V (Ĉ ′
y)∩R = ∅ and we are done. It remains to verify property 3 for C. This

follows directly by including in W ′ any q ≤ 8p of the disjoint paths of W. Then
(C,W ′) is the required (r, q)-railed annulus. It is easy to verify that all steps of
this proof can be turned to an algorithm that runs in linear, on n, number of
steps.
Description of algorithm concentric cycles This algorithm first applies the
algorithm of Lemma 5 for y = 16k, r = 98k2 + 2k, q = 2k + 1, and z = 32k.
If the output is a sequence C′ = {C ′

1, C
′
2, . . . , C

′
y} of concentric cycles such that

V (Ĉ ′
y)∩R = ∅ then, the algorithm returns a vertex w of Ĉ ′

1. As V (Ĉr)∩R = ∅,
Lemma 4, implies that w is problem-irrelevant. If the output is a sequence C the
it remains to observe that conditions 1–3 match the specifications of algorithm
concentric cycles.

3.3 Correctness of algorithm Planar Annotated Cyclability

As mentioned in the proof of Lemma 2, the main step – [step 4] – of algorithm
Planar Annotated Cyclability is based in Lemma 6 bellow.



Lemma 6. Let (G,R, k) be an instance of problem Π and let b = 98k + 2 and
r = 98k2 + 2k. Let also (C,W) be an (r, 2k + 1)-railed annulus in G, where

C = {C1, . . . Cr} is a sequence of concentric cycles such that Ĉ1 contains some
vertex v ∈ R and that, R is 32k-dense in C. For every i ∈ {1, . . . , r − b} let

Ri = (R ∩ V (Ĉi)) ∪ {wi}, where wi ∈ V (Âi+k+1,33k+i+1) ∩R. If (Ĉi+b, Ri, k) is
a NO-instance of Π, for some i ∈ {1, . . . , r− b}, then (G,R, k) is a NO-instance
of Π. Otherwise vertex v is color-irrelevant.

We first prove the following lemma, which reflects the use of the rails of a
railed annulus and is crucial for the proof of Lemma 6.

Lemma 7. Let G be a graph embedded on the sphere S0, r, k two positive inte-
gers, and (C,W) be an (r, 2·k+1)-railed annulus of G with C = {C1, . . . , Cr} being
its sequence of concentric cycles, W = {W1, . . . ,W2k+1} its rails and r ≥ 16 · k.

Let also S ⊆ V (G) such that S ∩ Ĉr = ∅ and |S| = k. Then for every two ver-
tices u, v ∈ V (C1), if there exists a cyclic linkage L = (C, S), with penetration
k+1 ≤ pC(L) ≤ r−1, in G, then there exists a path Pu,v with ends u and v that
meets all vertices of S.

Proof. Let fL be the path-coloring of the cyclic linkage L. As Wi is a path with
endpoints w′

i ∈ V (C1) and w′′
i ∈ V (Cr), we define the ordering {w′

i, . . . , w
′′
i } of

V (Wi) and call it the natural ordering of Wi. Furthermore, for every Wi ∈ W,
let mL(Wi) = fL(P ) if P is the first path (with respect to the natural ordering
of Wi) of P(L) that Wi meets and mL(Wi) = 0 if Wi does not meet C.

Let Cj ∈ C. We pick an arbitrary vertex vj1 ∈ V (Cj) and order V (Cj) starting

from vj1 and continuing in clockwise order. Let {vj1, . . . , v
j
|V (Cj)|

} be such an

ordering of the vertices of Cj . We assign to each vertex of vji ∈ Cj a “color” from

the set {0, . . . k} as follows: cL(v
j
i ) = 0 if vji /∈ V (Cj)∩V (C) and cL(v

j
i ) = fL(P )

if vji ∈ V (Cj) ∩ V (P ), where P ∈ P(L).
For the rest of the proof, if P0 is a path, P0(v, w) is the subpath of P0 with
endpoints v and w. We examine two cases:

1. At least k + 1 paths of W (i.e. rails of the railed annulus) meet C. Then, as
|P(L)| = k, there exist two rails Wi,Wj ∈ W and a path P ∈ P(L) such that
mL(Wi) = mL(Wj) = fL(P ). Let V (C1) ∩ V (Wi) be the vertices of path
Q1,i and V (C1) ∩ V (Wj) the vertices of path Q1,j . Then, we let x ∈ V (C1)
be the endpoint of Q1,i that is not w

′
i and y ∈ V (C1) be the endpoint of Q1,j

that is not w′
j (notice that x and y can coincide with u and v). Let also x′ be

the vertex of V (P ) ∩ V (Wi) with the least index in the natural ordering of
Wi and y′ be the vertex of V (P )∩V (Wj) with the least index in the natural
ordering of Wj . We observe that there exist two vertex disjoint paths P1

and P2 with endpoints either v, x and u, y or v, y and u, x, respectively. We
define path Pu,v = (C \P (x′, y′))∪Wi(x, x

′)∪Wj(y, y
′)∪P1∪P2. Path Pu,v

has the desired properties.
2. There exist k′ = k + 1 paths, say W ′ = {W1, . . . ,Wk′}, of W that do not

meet C. As the penetration of C is at least k+1, for every j ∈ {r−k, . . . , r},
V (Cj ∩ C) 6= ∅. For every i ∈ {1, . . . , k′} and every j ∈ {r − k, . . . , r} we



assign to the vertex wj
i of V (Wi ∩ Cj) with the least index in the natural

ordering of Wi, a “color” from the set {1, . . . , k} as follows: cL(w
j
i ) = cL(v)

if there exists a v ∈ V (C) and a subpath Cj(w
j
i , v) (starting from wj

i and
following Cj in counter-clockwise order) such that it does not contain any
other vertices of V (C) as internal vertices. For every Wi ∈ W

′, we assign

to Wi a set of colors, χi =
⋃k+1

j=1 cL(w
j
i ). Let P be the set of all maximal

paths of Cr without internal vertices in C. Certainly, any Wi ∈ W
′ intersects

exactly one path of P. We define the equivalence relation ∼ on the set of
rails W ′ as follows: Wi ∼ Wi′ if and only if Wi and Wi′ intersect the same
path of P. We distinguish two subcases:

– The number of equivalence classes of ∼ is k′. Then, there exist two rails
Wi,Wi′ ∈ W

′ and j, j′ ∈ {r − k, . . . , r} such that cL(w
j
i ) = cL(w

j
i′) =

cL(P ) for some path P ∈ P(L).
– The number of equivalence classes of ∼ is strictly less than k′. Then,

there exist two rails Wi,Wi′ ∈ W
′ such that cL(w

j
i ) = cL(w

j
i′) for every

j ∈ {r−k, . . . , r}. Therefore, there exist j, j′ ∈ {r−k, . . . , r} with j 6= j′

such that cL(w
j
i ) = cL(w

j′

i′ ) = cL(P ) for some path P ∈ P(L) (this holds
because |{r − k, . . . , r}| = k + 1).

For both subcases, as cL(w
j
i ) = cL(P ), there exist a vj ∈ V (P ) and a subpath

Cj(w
j
i , vj) of Cj and, similarly, as cL(w

j′

i′ ) = cL(P ), there exist a vj′ ∈ V (P )

and a subpath Cj(w
j′

i′ , vj′) of Cj′ . These two subpaths do not contain any
other vertices of C apart from vj and vj′ , respectively. Moreover, let x be
the vertex of V (Wi ∩ C1) of the least index in the natural ordering of Wi

and y the vertex of V (Wi′ ∩ C1) of the least index in the natural ordering
of Wi′ . As in case 1, observe that there exist two vertex disjoint paths P1

and P2 with endpoints either v, x and u, y or v, y and u, x, respectively. We

define path Pu,v = (C \ P (vj , vj′)) ∪ Cj(w
j
i , vj) ∪ Cj(w

j′

i′ , vj′) ∪Wi(w
j
i , x) ∪

Wi′(w
j′

i′ , y) ∪ P1 ∪ P2. Path Pu,v has the desired properties ⊓⊔

Proof (of Lemma 6). We first prove that if (Ĉi+b, Ri, k) is a yes-instance of Π
for every i ∈ {1, . . . , r− b}, then (G,R, k) is a yes-instance of Π iff (G,R \ v, k)
is a yes-instance of Π.
For the non-trivial direction, we assume that (G,R \ v, k) is a yes-instance of Π
and we have to prove that (G,R, k) is also a yes-instance of Π. Let S ⊆ R with
|S| ≤ k. We have to prove that S is cyclable in G. We examine two cases:

1. v /∈ S. As (G,R \ v, k) is a yes-instance of Π, clearly there exists a cyclic
linkage L = (C, S) in G, i.e., S is cyclable in G.

2. v ∈ S. As r ≥ k(98k+1) and S ≤ k, there exists i such that Ai,i+98k∩S = ∅.
We distinguish two sub-cases:

Subcase 1. S ⊆ C̄i+98k+1. Then, as (Ĉi+98k+1, Ri+98k+1, k) is a yes-instance

of Π, then S is cyclable in Ĉi+98k+1 and therefore also in G.

Subcase 2. There is a partition {S1, S2} of S into two non-empty sets, such

that S1 ⊂ C̊i and S1 ∩ C̄i+98k+1 = ∅. As R is 32k-dense in C, there exists
a vertex v1 ∈ S ∩ Ai+k+1,i+33k+1 and a vertex v2 ∈ S ∩ A50+k+1,i+82k+1.



For i ∈ {1, 2}, let S′
i = Si ∪ {vi} and observe that |Si| ≤ k. Let C1 =

{Ci+49k, . . . , Ci} and C2 = {Ci+49k, . . . , C98k}. As (Ĉi+98k+1, R98k+1, k) is a

yes-instance of Π, S′
1 is cyclable in Ĉi+98k+1. Also, (G,R \ v, k) is a yes-

instance, S′
2 is cyclable in G. For each i ∈ {1, 2}, there exists a cyclic linkage

Li = (Ci, S
′
i) that has penetration at least k+ 1 in Ci. We may assume that

Li is Ci-cheap. Then, By Lemma 4, the penetration of Li in Ci is at most
49k. Let L′

i = (Ci, Si), i ∈ {1, 2}. For notational convenience we rename C1
and C2 where C1 = {C1

1 , . . . , C
1
49k+1} and C2 = {C2

1 , . . . , C
2
49k+1} (notice that

C1
49k+1 = C2

1 ). Let x, y be two distinct vertices in Ci+49k. For i ∈ {1, 2}, we
apply Lemma 7, for r = 49k + 1, k, Ci, W, and x and y and obtain two
paths Pi, i ∈ {1, 2}, such that Si ⊆ V (Pi) and whose endpoints are x and y.
Clearly, P1∪P2 is a cycle whose vertex set contains S as a subset. Therefore
S is cyclable in G, as required. ⊓⊔

4 Vital cyclic linkages

Tight sequences. A sequence C = {C1, . . . , Cr} of concentric cycles of G is tight
in G, if

– C1 is surface minimal, i.e., there is no closed disk D of S that is properly
contained in C̄1 and whose boundary is a cycle of G;

– for every i ∈ {1, . . . , r−1}, there is no closed diskD such that C̄i ⊂ D ⊂ C̄i+1

and such that the boundary of D is a cycle of G.

Graph Linkages. Let G be a graph. A graph linkage in G is a pair L = (H,T )
such that H is a subgraph of G without isolated vertices and T is a subset of
the vertices of H, called terminals of L, such that every vertex of H with degree
different than 2 is contained in T . Set P(L), which we call path set of the graph
linkage L, contains all paths of H whose endpoints are in T and do not have any
other vertex in T . The pattern of L is the graph

(T,
{

{s, t} | P(L) contains a path from s to t in H
}

).

Two graph linkages of G are equivalent if they have the same pattern and are
isomorphic if their patterns are isomorphic. A graph linkage L = (H,T ) is called
weakly vital (reps. strongly vital) in G if V (H) = V (G) and there is no other
equivalent (resp. isomorphic) graph linkage that is different from L. Clearly, if
a graph linkage L is strongly vital then it is also weakly vital. We call a graph
linkage L linkage if its pattern has maximum degree 1 (i.e., it consists of a
collection of paths). We call a graph linkage L cyclic linkage if its pattern is a
cycle.

CGL-configurations. Let G be a graph embedded on the sphere S0. Then we say
that a pair Q = (C,L) is a CGL-configuration of depth r if C = {C1, . . . , Cr}
is a sequence of concentric cycles in G, L = (H,T ) is a graph linkage in G,

and T ∩ V (Ĉr) = ∅, i.e., all vertices in the terminals of L are outside Ĉr. The
penetration of L in C, pC(L), is the number of cycles of C that are intersected



by the paths of L (when L = (C, S) is cyclic we will sometimes refer to the
penetration of L as the penetration of cycle C). We say that Q is touch-free if
for every path P ∈ L, the number of connected components of P ∩ Cr is not 1.

Cheap graph linkages. Let G be a graph embedded on the sphere S0, let C =
{C1, . . . , Cr} be a sequence of cycles in G, and let L = (H,T ) be a graph linkage

where T ⊆ V (G \ Ĉr)(notice that (C,L) is a CGL-configuration). We define the
function c that matches graph linkages of G to positive integers such that

c(L) = |E(L) \
⋃

i∈{1,...,r}

E(Ci)|.

A graph linkage L of G is C-strongly cheap (resp. C-weakly cheap ), if T (L)∩

Ĉr = ∅ and there is no other isomorphic (resp. equivalent) graph linkage L′ such
c(L) > c(L′). Obviously if L is C-strongly cheap then it is also C-weakly cheap.

The proof of the next lemma is based on a suitable adaptation of the results
in [2] about weakly vital linkages to strongly vital cyclic linkages.

Tilted grids. Let G be a graph. A tilted grid of G is a pair U = (X ,Z) where
X = {X1, . . . , Xr} and Z = {Z1, . . . , Zr} are both sequences of r ≥ 2 vertex-
disjoint paths of G such that
– for each i, j ∈ {1, . . . , r} Ii,j = Xi ∩ Zj is a (possibly edgeless) path of G,
– for i ∈ {1, . . . , r} the subpaths Ii,1, Ii,2, . . . , Ii,r appear in this order in Xi.
– for j ∈ {1, . . . , r} the subpaths I1,j , I2,j , . . . , Ir,j appear in this order in Zj .
– E(I1,1) = E(I1,r) = E(Lr,1) = E(Lr,r) = ∅,
– the graph G∗

U taken from the graph GU = (
⋃

i∈{1,...,r} Xi) ∪ (
⋃

i∈{1,...,r} Zi)

after contracting all edges in
⋃

(i,j)∈{1,...,r}2 Ii,j is isomorphic to the (r× r)-

grid.

Tidy tilted grids. Given a plane graph G and a graph linkage L = (H,T ) of G we
say that a tilted grid U = (X ,Z) of G is an L-tidy tilted grid of G if T ∩DU = ∅
and DU ∩ L =∪∪∪∪∪∪∪∪∪Z where DU is the closed interior of the perimeter of GU .

From graph linkages to linkages. Let G be a graph and let L = (H,T ) be
a graph linkage of G. We denote by GL the graph obtained by subdividing
all edges incident to terminals and then removing the terminals. Similarly, we
define L∗ = (H∗, T ∗) so that H∗ is the graph obtained by subdividing all edges
incident to terminals, removing the terminals, and considering as terminals the
subdivision vertices. Notice that L∗ is a linkage of GL. Notice that if L is strongly
vital then L∗ is not necessarily strongly vital. However, if L is weakly vital, then
so is L∗.

The following proposition follows combining Lemmata 5, and 6, and Obser-
vation 3 of [2].

Proposition 2. Let G be a graph embedded on the sphere S0 and let Q = (C,L)
be a touch-free CGL-configuration of G, where C is tight in G and L is a C-weakly
cheap linkage whose penetration in C is at least r. Then G contains some L-tidy
tilted grid in G of capacity at least r/(4 · |P(L)|).



Lemma 8. Let G be a graph embedded on the sphere S0. If G contains a strongly
vital cyclic linkage L = (C, T ), then G does not contain a L-tidy tilted grid of
capacity 4.

Proof. Assume that L = (C, T ) is a strongly vital cyclic linkage in G and that Γ
is a L-tidy tilted grid of capacity 4 in G. Let also Γ ′ be the (4×4)-grid that we get
after contracting all edges of Γ whose ends have both degree 2 and G′ the graph
resulting from G after these contractions. Let V (Γ ′) = {vij | i, j ∈ {1, . . . 4}}
and E(Γ ′) = {{vij , vi′j′} | |i− i′|+ |j− j′| = 1}. Observe that Γ ′ is also a L-tidy
tilted grid of capacity 4 in G′ and that, if L is not strongly vital in G′ then it
is also not strongly vital in G. Let H = Γ ∪ C and H ′ be the contraction of H
that we get after contracting all edges of H whose ends have both degree 2. It
is not hard to confirm that for every possible H ′, its corresponding contraction
H ′ is isomorphic to H∗, where H∗ = Γ ′ ∪ P1 ∪ P2 ∪ P3 ∪ P4, where for every
i ∈ {1, 2, 3, 4}, Pi is a path of length 2 such that P1 connects v11 with v12, P2

connects v13 with v14, P3 connects v41 with v44 and P4 connects v42 with v43 (i.e.
for every cyclic linkage L = (C, T ) if we contract all edges of H = Γ ∪ C whose
ends have degree 2, we get a graph isomorphic to H∗ which is a (4× 4)-grid in
addition to some paths that are subgraphs of C).
It remains to show that there exists a cyclic linkage L′ = (C ′, T ) in G′, where
C ′ is different from C.

Lemma 9. Let G be a graph embedded on the sphere S0 that is the union of
r ≥ 2 concentric cycles C = {C1, . . . , Cr} and one more cycle C of G. Assume

that C is tight in G, T ∩ V (Ĉr) = ∅ and the cyclic linkage L = (C, T ) is strongly
vital in G. Then r ≤ 16 · |T | − 1.

Proof (of Lemma 9). Let σ : P(L) → T such that that σ is a bijection that
maps each path of P(L) to some of its endpoints. For every i ∈ {1, . . . , r}, we
define Q(i) = (C(i),L(i)) where C(i) = {C1, . . . , Ci} and L(i) = (C, T (i)) where

T (i) = T \ {σ(P ) | P ∩ Ĉi = ∅}. Notice that |T (i)| ≤ |T | − (i− 1). In the trivial
case where every Q(i) is not touch-free we derive easily that r = |T | and we
are done. Otherwise, let Q′ = (C′,L′) be the touch-free CGL-configuration in
{Q(1), . . . ,Q(r)} of the highest index, say i. Certainly, C′ = C(i) and Q′ is tight
in G. Moreover, L′ is strongly vital in G. From Lemma 8, G does not contain
an L′-tidy tilted grid of capacity 4. Clearly, GL as well does not contain an L′∗-
tidy tilted grid of capacity 4. Recall now that, as L′ is strongly vital in G, it is
also weakly vital in G and therefore L′∗ is weakly vital in GL′ . Notice also that
Q′∗ = (C′,L′∗) is a CGL-configuration of GL′ where C′ is tight in GL′ . As L′∗

is weakly vital in GL′ , then, by its uniqueness, L′∗ is C′-weakly cheap. Recall
that the penetration of L′ in C′ is r − (i − 1) and so is the penetration of L′∗

in C′. As Q′, and therefore Q′∗ as well, is touch-free we can apply Proposition 2
and obtain that GL′ contains some L′∗-tidy tilted grid of capacity at least (r −
(i− 1))/(4 · |P(L′∗)|). We conclude that (r − (i− 1))/(4 · |P(L)|) < 4, therefore
r ≤ 16 · |T | − 1 as required. ⊓⊔

A corollary of Lemma 9 with independent combinatorial interest is the following.

Corollary 1. If a plane graph G contains a strongly vital cyclic linkage L =
(C, T ), then tw(G) = O(|T |3/2).



Notice that, according to what is claimed in [2], we cannot restate the above
corollary for weakly vital linkages, unless we change the bound to be an ex-
ponential one. That way, the fact that treewidth is (unavoidably, due to [2])
exponential to the number of terminals for (weakly) vital linkages is caused by
the fact that the ordering of the terminals is predetermined.

Lemma 10. Let G be a graph embedded on the sphere S0 that is the union of
r concentric cycles C = {C1, . . . , Cr} and a hamiltonian cycle C of G. Let also

T ∩V (Ĉr) = ∅. If L = (C, T ) is C-strongly cheap then L is a strongly vital cyclic
linkage in G.

Proof. Assume that L is not strongly vital in G, i.e., there is an other, isomorphic
to L = (C, T ), cyclic linkage L′ = (C ′, T ′) in G. Then there exists an edge e ∈
E(C ′)∩E(C). But, as E(G) = E(C)∪

⋃r
i=1 E(Ci), we get that e ∈

⋃r
i=1 E(Ci).

Thus, |E(C ′) ∩
⋃r

i=1 E(Ci)| < |E(C) ∩
⋃r

i=1 E(Ci)| and, by the definition of
cheap graph linkages, c(L) > c(L′), which contradicts to the hypothesis that L
is C-strongly cheap. Therefore, L = (C, T ) is a strongly vital cyclic linkage in G,
as claimed. ⊓⊔

We are now able to prove the main combinatorial result of this paper.

Lemma 11. Let G be a plane graph with some sequence of concentric cycles C =
{C1, . . . , Cr}. Let also L = (C, T ) be a cyclic linkage of G where T ∩V (Ĉr) = ∅.
If L is C- strongly cheap then the penetration of L in C is at most r ≤ 16 · |T |−1.

Proof. Suppose that some path in P(L) intersects 16 · |T | cycles in the set
C∗ = {Cr−16·|T |+1, . . . , Cr}. Let G′ be the graph obtained by C ∪ ∪∪∪∪∪∪∪∪∪C∗ after
dissolving all vertices not in T that have degree 2 and let L′ = (C ′, T ) be the
linkage of G′ obtained from L if we dissolve the same vertices in the paths of
L. Similarly, by dissolving vertices of degree 2 in the cycles of C∗ we obtain a
new sequence of concentric cycles that, for notational convenience, we denote by
C′ = {C1, . . . , Cr′}, where r′ = 16 · |T |. L′ is C′-strongly cheap because L is C-
strongy cheap. Notice that C ′ is a Hamiltonian cycle of G′ and, from Lemma 10,
L′ is a strongly vital cyclic linkage of G′. We also assume that C′ is tight (oth-
erwise replace it by a tight one and observe that, by its uniqueness, L′ will be
cheap to this new one as well). As L′ is C′-strongly cheap and C′ is tight, from
Lemma 9, r′ ≤ 16 · |T | − 1, a contradiction. ⊓⊔

5 Hardness of the Cyclability Problem

In this section, we examine the hardness of Cyclability in general graphs. We
prove the following theorem:

Theorem 3. It is W[1]-hard to decide for a split graph G and a positive integer
k, whether G has k vertices such that there is no cycle in G that contains these
k vertices, when the problem is parameterized by k.



We first introduce some further notation.
For a set of edges S of a graph G, G[S] is the subgraph induced by S, i.e.,

S is the set of edges of G[S] and the vertices of G[S] are the vertices of G
incident to edges from S. We denote by δ(G) = min{degG(v)|v ∈ V (G)} the
minimum degree of G. For a set of vertices U, NG(U) = ∪v∈UNG(v)\U . A cycle
C in a graph G is Hamiltonian if V (C) = V (G). Respectively, a graph H is
Hamiltonian if it has a Hamiltonian cycle. A matching is a set of pairwise non-
adjacent edges. A vertex v is saturated in a matchingM if v is incident to an edge
of M . By x1 . . . xp we denote the path with the vertices x1, . . . , xp and the edges
{x1, x2}, . . . , {xp−1, xp}, and we use x1 . . . xpx1 to denote the cycle with the
vertices x1, . . . , xp and the edges {x1, x2}, . . . , {xp−1, xp}, {xp, x1}. For a path
P = x1 . . . xp and a vertex y, yP (Py resp.) is the path yx1 . . . xp (x1 . . . xpy
resp.). If P1 = x1 . . . xp and P2 = y1 . . . yq are paths such that V (P1) ∩ V (P2) =
{xp} = {y1}, then P1 + P2 is the concatenation of P1 an P2, i.e., the path
x1 . . . xp−1y1 . . . yq.

We need some auxiliary results.
The following lemma is due to Erdős [17]. Define the function f(n, δ) by

f(n, δ) =











(

n−δ
2

)

+ δ2 if n ≥ 6δ − 2,
(

(n+1)/2
2

)

+ (n−1
2 )2 if n ≤ 6δ − 3 and n is odd,

(

(n+2)/2
2

)

+ (n−2
2 )2 if n ≤ 6δ − 4 and n is even.

Lemma 12 ([17]). Let G be a graph with n ≥ 3 vertices. If δ(G) ≥ n/2 or
|E(G)| > f(n, δ(G)), then G is Hamiltonian.

Lemma 13. Let k ≥ 75 be an odd integer and let H be a graph such that

i) (k − 2)(k − 3)/2 < |E(H)| ≤ k(k − 1)/2 + 1,
ii) δ(H) ≥ (k − 1)/2,
iii) there is a set S ⊆ E(H) such that |S| > (k − 2)(k − 3)/2 and G[S] has at

most k + 2 vertices.

Then H is Hamiltonian.

Proof. Let H be an n-vertex graph that satisfies i)–iii). Let S ⊆ E(H) be a set
such that |S| > (k − 2)(k − 3)/2 and G[S] has at most k + 2 vertices. Let also
U = V (H)\V (G[S]). Denote by R the set of edges of G incident to vertices of U .
Since |S| > (k− 2)(k− 3)/2 and |E(H)| ≤ k(k− 1)/2+1, |R| ≤ 2k− 3. Because
δ(H) ≥ (k−1)/2, |R| ≥ |U |δ(H)/2 ≥ |U |(k−1)/4. We have that |U | ≤ 7, i.e., H
has at most k+ 9 vertices. Then because k ≥ 75, we obtain that n ≥ 6δ(G)− 3,

(

(n+ 1)/2

2

)

+
(n− 1

2

)2

≤
(k − 2)(k − 3)

2
< |E(H)|

and
(

(n+ 2)/2

2

)

+
(n− 2

2

)2

≤
(k − 2)(k − 3)

2
< |E(H)|.

We have that |E(H)| > f(n, δ(H)), and by Lemma 12, H is Hamiltonian. ⊓⊔



We are now in the position to prove Theorem 3:

Proof (of Theorem 3). We reduce the Clique problem. Recall that Clique asks
for a graph G and a positive integer k, whether G has a clique of size k. This
problem is well known to be W[1]-complete [16] when parameterized by k. Notice
that Clique remains W[1]-complete when restricted to the instances where k is
odd. To see it, it is sufficient to observe that if the graph G′ is obtained from
a graph G by adding a vertex adjacent to all the vertices of G, then G has a
clique of size k if and only if G′ has a clique of size k + 1. Hence, any instance
of Clique can be reduced to the instance with an odd value of the parameter.
Clearly, the problem is still W[1]-hard if the parameter k ≥ c for any constant c.

Let (G, k) be an instance of Clique where k ≥ 75 is odd. We construct the
graph G′

k as follows.

– For each vertex x ∈ V (G), construct s = (k − 1)/2 vertices vix for i ∈
{1, . . . , s} and form a clique of size ns from all these vertices by joining
them by edges pairwise.

– Construct a vertex w and edges {w, vix} for x ∈ V (G), i ∈ {1, . . . , s}.
– For each edge {x, y} ∈ E(G), construct a vertex uxy and edges {uxy, v

i
x}, {uxy, v

i
y}

for i ∈ {1, . . . , s}; we assume that uxy = uyx.

Let k′ = k(k− 1)/2 + 1. It is straightforward to see that G′ is a split graph. We
show that G has a clique of size k if and only if there are k′ vertices in G′

k such
that there is no cycle in G′

k that contains these k′ vertices.
Suppose that G has a clique X of size k. Let Y = {uxy ∈ V (G′)|x, y ∈ X,x 6=

y} and Z = Y ∪ {w}. Because |X| = k, |Z| = k(k − 1)/2 + 1 = k′. Observe that
Y is an independent set in G′

k and |Y | = |NG′(Y )|. Hence, for any cycle C in G′
k

such that Y ⊆ V (C), V (C) ⊆ Y ∪ NG′

k
(Y ). Because w /∈ Y ∪ NG′

k
(Y ), w does

not belong to any cycle that contains the vertices of Y . We have that no cycle
in G′

k contains Z of size k′.
Now we show that if G has no cliques of size k, then for any Z ⊆ V (G′

k) of
size k′, there is a cycle C in G′

k such that Z ⊆ V (C). We use the following claim.

Claim. Suppose that G has no cliques of size k. Then for any non-empty Z ⊆
{uxy|x, y ∈ V (G)} of size at most k(k − 1)/2 + 1, there is a cycle C in G′

k such
that Z ⊆ V (C) ⊆ Z ∪NG(Z) and C has an edge {vix, v

j
y} for some x, y ∈ V (G)

and i, j ∈ {1, . . . , s}.

Proof (of Claim). For a set Z ⊆ {uxy|x, y ∈ V (G)}, we denote by S(Z) the set
of edges {{x, y} ∈ E(G)|uxy ∈ Z}, and H(Z) = G[S(Z)].

If Z = {uxy}, then the triangle uxyv
1
xv

2
xuxy is a required cycle, and the claim

holds. Let r = |Z| ≥ 2 and assume inductively that the claim is fulfilled for
smaller sets.

Suppose thatH(Z) has a vertex x with degH(Z)(x) ≤ (k−3)/2. LetNH(Z)(x) =

{y1, . . . , yt}. Notice that t ≤ (k − 3)/2 = s − 1. Denote by Z ′ the set obtained
from Z by the deletion of uxy1

, . . . , uxyt
, and let H ′ = H(Z ′). If Z ′ = ∅, then

the cycle C = v1xuxy1
v2x . . . v

t
xuxyt

vt+1
x v1x satisfies the conditions and the claim

holds. Suppose that Z ′ 6= ∅. Then, by induction, there is a cycle C ′ in G′
k such

that Z ⊆ V (C ′) ⊆ Z ∪NG(Z) and C ′ has an edge {via, v
j
b} for some a, b ∈ V (G)



and i, j ∈ {1, . . . , s}. We consider the path P = v1xuxy1
v2x . . . v

t
xuxyt

vt+1
x . Then we

delete {via, v
j
b} and replace it by the path viaPvjb . Denote the obtained cycle by C.

It is straightforward to verify that Z ⊆ V (C) ⊆ Z∪NG(Z) and {via, v
1
x} ∈ E(C),

i.e., the claim is fulfilled.
From now we assume that δ(H(Z)) ≥ (k − 1)/2. We consider three cases.

Case 1. r ≤ (k − 2)(k − 3)/2.
Consider the graph G′

k−2. We show that this graph has a matching M of size
r such that every vertex of Z is saturated in M . By the Hall’s theorem (see, e.g.,
[7]), it is sufficient to show that for any Z ′ ⊆ Z, |Z ′| ≤ |NG′

k−2
(Z ′)|. Let p be the

smallest positive integer such that |Z ′| ≤ p(p− 1)/2. By the definition of G′
k−2,

|NG′

k−2
(Z ′)| ≥ p(k − 3)/2. Because p ≤ k − 2, |Z ′| ≤ p(p− 1)/2 ≤ p(k − 3)/2 ≤

|NG′

k−2
(Z ′)|.

LetM be a matching in G′
k−2 of size r such that every vertex of Z is saturated

in M . Clearly, M is a matching in G′
k that saturates Z as well. Let x1, . . . , xq be

the vertices of G such that for i ∈ {1, . . . , q}, {v1xi
, . . . , vsxi

} contains saturated in

M vertices. Because v1xi
, . . . , vsxi

have the same neighborhoods, we assume with-

out loss of generality that for i ∈ {1, . . . , q}, v1xi
, . . . , vtixi

are saturated. Observe
that since M is a matching in G′

k−2, ti ≤ s − 1. For i ∈ {1, . . . , q} and j ∈

{1, . . . , ti}, denote by uj
i the vertex of Z such that {vjxi

, uj
i} ∈M . We define the

path Pi = v1xi
u1
i v

2
xi
. . . uti

i v
ti+1
xi

for i ∈ {1, . . . , q}. Because all the vertices vjxi
are

pairwise adjacent, by adding the edges {vt1+1
x1

, v1x2
}, . . . , {v

tq−1+1
xq−1 , v1xq

}, {v
sq+1
xq , v1x1

},
we obtain from the the paths P1, . . . , Pq a cycle. Denote it by C. We have that
Z ⊆ V (C) ⊆ Z ∪ NG(Z) and {vt1+1

x1
, v1x2
} ∈ E(C), and we conclude that the

claim holds.

Case 2. (k − 2)(k − 3)/2 < r and for any S ⊆ E(H(Z)) such that |S| >
(k − 2)(k − 3)/2, H(Z)[S] has at least k + 3 vertices.

We use the same approach as in Case 1 and show that G′
k−2 has a matching

M of size r such that every vertex of Z is saturated in M . We have to show
that for any Z ′ ⊆ Z, |Z ′| ≤ |NG′

k−2
(Z ′)|. If |Z ′| ≤ (k − 2)(k − 3)/2, we use

exactly the same arguments as in Case 1. Suppose that |Z ′| > (k − 2)(k − 3)/2.
Then |S(Z ′)| = |Z ′| > (k − 2)(k − 3)/2. Hence, H(Z)[S(Z ′)] has at least k + 3
vertices. It implies that |NG′

k−2
(Z ′)| ≥ (k + 3)(k − 3)/2. Because k ≥ 75 and

|Z ′| ≤ r ≤ k(k−1)/2+1, |NG′

k−2
(Z ′)| ≥ (k+3)(k−3)/2 ≥ k(k−1)/2+1 ≥ |Z ′|.

Given a matching M that saturates Z, we construct a cycle that contains Z in
exactly the same way as in Case 1 and prove that the claim holds.

Case 3. (k − 2)(k − 3)/2 < r and there is S ⊆ E(H(Z)) such that |S| >
(k − 2)(k − 3)/2 and H(Z)[S] has at most k + 2 vertices.

By Lemma 13, H(Z) is Hamiltonian. Let p = |V (H(Z))| and denote by
R = x1 . . . xpx1 a Hamiltonian cycle in H(Z). Let U = {ux1x2 , . . . , uxp−1x1} and
let Z ′ = Z \ U .

We again consider G′
k−2. We show that this graph has a matching M of size

|Z ′| such that every vertex of Z ′ is saturated in M . We have to prove that for
any Z ′′ ⊆ Z ′, |Z ′′| ≤ |NG′

k−2
(Z ′′)|. If |Z ′′| ≤ (k− 2)(k− 3)/2, we use exactly the

same arguments as in Case 1. Suppose that |Z ′′| > (k − 2)(k − 3)/2. Let q be



the smallest positive integer such that |Z ′′| ≤ q(q− 1)/2. Clearly, q > k− 2. We
consider the following three cases depending on the value of q.

Case a). q = k − 1. Then H(Z ′′) has at least k − 1 vertices and at least
(k − 2)(k − 3)/2 + 1 edges. Because |Z| ≤ k(k − 1)/2 + 1, H(Z) has at most
2k − 3 edges that are not edges of H(Z ′′). Because δ(H(Z)) ≥ (k − 1)/2 and
k ≥ 75, H(Z) has at most 4 vertices that are not adjacent to the edges of H(Z ′′).
Then at most 8 edges of the Hamiltonian cycle R in H(Z) do not join vertices
of H(Z ′′) with each other. We obtain that at least k− 9 edges of R join vertices
of H(Z ′′) with each other.

Suppose thatH(Z ′′) has k−1 vertices. Then |Z ′′| ≤ (k−1)(k−2)/2−(k−9) ≤
(k2−5k+20)/2. BecauseH(Z ′′) has k−1 vertices, |NG′

k−2
(Z ′′)| = (k−1)(k−3)/2.

Since k ≥ 75, |Z ′′| ≤ |NG′

k−2
(Z ′′)|.

Suppose that H(Z ′′) has k vertices. If H(Z) has a vertex x that is not
adjacent to the edges of H(Z ′′), then at least (k− 1)/2 vertices of Z that corre-
spond to the edges incident to x are not in Z ′′. Then |Z ′′| ≤ |Z| − (k − 1)/2 −
(k − 9) ≤ (k2 − 4k + 21)/2. Because |NG′

k−2
(Z ′′)| = k(k − 3)/2 and k ≥ 75,

|Z ′′| ≤ |NG′

k−2
(Z ′′)|. If H(Z) has no vertex that is not adjacent to the edges of

H(Z ′′), then the edges of R join vertices of H(Z ′′) with each other. We have
that |Z ′′| ≤ k(k − 1)/2− k = k(k − 3)/2 and |Z ′′| ≤ |NG′

k−2
(Z ′′)|.

Finally, if H(Z ′′) has at least k+1 vertices, then |NG′

k−2
(Z ′′)| ≥ (k+1)(k−

3)/2 ≥ (k − 1)(k − 2)/2 ≥ |Z ′′|.

Case b). q = k. Then H(Z ′′) has at least k vertices and at least (k − 1)(k −
2)/2+1 edges. Because |Z| ≤ k(k− 1)/2+1, H(Z) has at most k− 1 edges that
are not edges of H(Z ′′). Because δ(H(Z)) ≥ (k − 1)/2 and k ≥ 75, H(Z) has
at most 2 vertices that are not adjacent to the edges of H(Z ′′). Then at most
4 edges of the Hamiltonian cycle R in H(Z) do not join vertices of H(Z ′′) with
each other. We obtain that at least k− 4 edges of R join vertices of H(Z ′′) with
each other.

Suppose that H(Z ′′) has k vertices. If H(Z) has a vertex x that is not
adjacent to the edges of H(Z ′′), then at least (k− 1)/2 vertices of Z that corre-
spond to the edges incident to x are not in Z ′′. Then |Z ′′| ≤ |Z| − (k − 1)/2 −
(k − 4) ≤ (k2 − 4k + 11)/2. Because |NG′

k−2
(Z ′′)| = k(k − 3)/2 and k ≥ 75,

|Z ′′| ≤ |NG′

k−2
(Z ′′)|. If H(Z) has no vertex that is not adjacent to the edges of

H(Z ′′), then the edges of R join vertices of H(Z ′′) with each other. We have
that |Z ′′| ≤ k(k − 1)/2− k = k(k − 3)/2 and |Z ′′| ≤ |NG′

k−2
(Z ′′)|.

Suppose that H(Z ′′) has at least k + 1 vertices. Then R has at least k + 1
edges and |Z ′| ≤ |Z| − (k+1) ≤ k(k− 3)/2. As |NG′

k−2
(Z ′′)| ≥ (k+1)(k− 3)/2,

|Z ′′| ≤ |NG′

k−2
(Z ′′)|.

Case c). q ≥ k + 1. Then H(Z ′′) has at least k + 1 vertices. We have that
R has at least k + 1 edges and |Z ′| ≤ |Z| − (k + 1) ≤ k(k − 3)/2. Because
|NG′

k−2
(Z ′′)| ≥ (k + 1)(k − 3)/2, |Z ′′| ≤ |NG′

k−2
(Z ′′)|.

We conclude that for any Z ′′ ⊆ Z ′, |Z ′′| ≤ |NG′

k−2
(Z ′′)|. Hence, G′

k−2 has a

matching M of size r such that every vertex of Z ′ is saturated in M .



Clearly, M is a matching in G′
k as well. Recall that R = x1 . . . xpx1 is a

Hamiltonian cycle in H(Z) and U = {ux1x2
, . . . , uxp−1x1

}. For i ∈ {1, . . . , p}, let
ti be the number of vertices in {v1xi

, . . . , vsxi
} that are saturated in M . Because

M is a matching in G′
k−1, ti ≤ s− 1.

We prove that there is j ∈ {1, . . . , p} such that tj < s − 1. Let q be the
smallest positive integer such that |Z| ≤ q(q−1)/2. The graph H(Z) has at least
q vertices. Suppose first that it has exactly q vertices. Then p = q and Z ′ = Z \U
has at most p(p− 1)/2− p = p(p− 3)/2 vertices. Also |NG′

k−2
(Z)| = p(k− 3)/2.

If p < k, at least one vertex in NG′

k−2
(Z) is not saturated and the statement

holds. Let p = k. Then because G has no cliques of size k, |Z| < k(k− 1)/2 and
|Z ′| < k(k − 3)/2. We have that |Z ′| < |NG′

k−2
(Z)| and at least one vertex in

NG′

k−2
(Z) is not saturated. If p ≥ k + 1, then |Z| = k(k − 1)/2 + 1. We have

that |Z ′| ≤ k(k − 3)/2 and |NG′

k−2
(Z)| ≥ (k + 1)(k − 3)/2. Hence, the there is

a non-saturated vertex in NG′

k−2
(Z). Suppose now that H(Z) has at least q + 1

vertices. Then p ≥ q + 1 and |Z ′| ≤ q(q − 1)/2 − (q + 1) = q(q − 3)/2 − 1. As
|NG′

k−2
(Z)| ≥ (q + 1)(k − 3)/2, |Z ′| < |NG′

k−2
(Z)| if q ≤ k. If q ≥ k + 1, then

|Z ′| ≤ |Z| − (k + 2) ≤ (k(k − 1)/2 + 1) − (k + 2) ≤ k(k − 3)/2 − 1. Because
|NG′

k−2
(Z)| ≥ (k+2)(k−3)/2, we again have a non-saturated vertex inNG′

k−2
(Z).

We considered all cases and conclude that at least one vertex of NG′

k−2
(Z) is not

saturated in M . Hence, there is j ∈ {1, . . . , p} such that tj < s−1. Without loss
of generality we assume that j = p.

Because v1xi
, . . . , vsxi

have the same neighborhoods, we assume without loss

of generality that for i ∈ {1, . . . , p}, v1xi
, . . . , vtixi

are saturated. For i ∈ {1, . . . , q}

and j ∈ {1, . . . , ti}, denote by uj
i the vertex of Z ′ such that {vjxi

, uj
i} ∈ M .

Notice that it can happen that ti = 0 and we have no such saturated vertices.
We define the path Pi = v1xi

u1
i v

2
xi
. . . usi

i vti+1
xi

if ti ≥ 1 and let Pi = v1xi
if ti = 0 for

i ∈ {1, . . . , p}. Let P = P1+vt1+1
x1

ux1x2
v1x2

+. . .+v
tp−1+1
xp−1 uxp−1xp

v1xp
+Pp and then

form the cycle C from P by joining the end-vertices of P by v
tp+1
xp v

tp+2
xp uxpx1

v1x1

using the fact that tp ≤ s − 2. We have that Z ⊆ V (C) ⊆ Z ∪ NG(Z) and

v
tp+1
xp v

tp+2
xp ∈ E(C). It concludes Case 3 and the proof of the claim. ⊓⊔

Let Z ⊆ V (G′
k) be a set of size k′. Let Z ′ = Z ∩ {uxy|{x, y} ∈ E(G)}.

If Z ′ = ∅, then Z is a clique and there is a cycle C in G′
k such that Z ⊆

V (C). Suppose that Z ′ 6= ∅. By Claim, there is a cycle C ′ in G′
k such that

Z ′ ⊆ V (C ′) ⊆ Z ′ ∪ NG(Z
′) and C ′ has an edge {vix, v

j
y} for some x, y ∈ V (G′)

and i, j ∈ {1, . . . , s}. Let {u1, . . . , up} = Z \ V (C ′). Notice that these vertices
are pairwise adjacent and adjacent to vix, v

j
y. We construct the cycle C from

C ′ by replacing {vix, v
j
y} by the path vixu1 . . . upv

j
y. It remains to observe that

Z ⊆ V (C) ⊆ Z ∪NG(Z). ⊓⊔

6 Dynamic Programming for Planar Cyclability

The purpose of this section is to present a dynamic programming-based algo-
rithm for the problem Planar Annotated Cyclability:



Algorithm DP(G,R, k, q,D)
Input: A graph G, a vertex set R ⊆ V (G), two non-negative integers k and q,
where k ≤ q, and a tree decomposition D of G of width q.
Output: An answer whether (G,R, k) is a yes-instance of Planar Annotated

Cyclability problem, or not.

Running time: 22
O(q·log q)

· n.

We observe that the question of Planar Annotated Cyclability can be
expressed in monadic second-order logic (MSOL). It is sufficient to notice that
an instance (G,R, k) is a yes-instance of Planar Annotated Cyclability

if and only if for any (not necessarily distinct) v1, . . . , vk ∈ R, there are sets
X ⊆ V (G) and S ⊆ E(G) such that v1, . . . , vk ∈ X and C = (X,S) is a cycle.
The property of C = (X,S) being a cycle is equivalent to asking whether

i) for any x ∈ X, there are two distinct e1, e2 ∈ S such that x is incident to e1
and e2,

ii) for any x ∈ X and any three pairwise distinct e1, e2, e3 ∈ S, e1 is not incident
to x or e2 is not incident to x or e3 is not incident to x, and

iii) for any Z1, Z2 ⊆ X such that Z1 ∩Z2 = ∅, Z1 6= ∅, Z2 6= ∅ and Z1 ∪Z2 = X,
there is {x, y} ∈ S such that x ∈ Z1 and y ∈ Z2.

By the celebrated Courcelle’s theorem (see, e.g., [6,5]), any problem that can be
expressed in MSOL can be solved in linear time for graphs of bounded treewidth.

As we saw, Planar Annotated Cyclability can be solved in f(q, k) · n
steps if the treewidth of an input graph is at most q. Next, we give a dynamic
programming algorithm in order to achieve better running time than the one
that Courcelle’s theorem provides:

Nice tree decompositions. Let G be a graph. A tree decomposition D = (T,X )
of G is called a nice tree decomposition of G if T is rooted to some leaf r and:

1. for any leaf l ∈ V (T ) where l 6= r, Xl = ∅ (we call Xl leaf node of D, except
from Xr which we call root node)

2. the root and any non-leaf t ∈ V (T ) have one or two children
3. if t has two children t1 and t2, then Xt = Xt1 = Xt2 and Xt is called join

node
4. if t has one child t′, then

– either Xt = Xt′ ∪ {v} (we call Xt insert node and v insert vertex)
– or Xt′ = Xt ∪ {v} (we call Xt forget node and v forget vertex)

Pairings. Let S be a set and let |S| = n. A pairing of S, is a graph H (we
allow the existence of loops) such that V (H) = S and degH(x) ≤ 2, ∀x ∈ S. We
denote by P(S) the set of all pairings of S.

Let (G,R, k) be an instance of Planar Annotated Cyclability and set
V \ R = B. Let also (T,X , r) be a nice tree decomposition of G, where r is the



root of T . For every x ∈ V (T ) let Tt be the subtree of T rooted at t (the vertices
of Tt are x and its descendants in T ). Then for every t ∈ V (T ), we define

Gt = G
[

⋃

t′∈V (Tt)

Xt′

]

It is clear that the restriction of a cycle, C of G, in Gt is a collection Q of vertex
disjoint paths in Gt with ends in Xt. Intuitively, this collection of paths indicates
“the way that C passes through Xt”. Each collection of paths in Q of Gt can be
mapped to a unique pairing PQ ∈ P(Xt).
Let S be a set and i ∈ N. We define S(i) = {A ⊆ S | |A| ≤ i} and S[i] = {A ⊆
S | |A| = i}.

7 Discussion

Notice that we have no proof that Cyclability is in NP. The definition of the
problem classifies it directly in ΠP

2 . This prompts us to conjecture the following:

Conjecture 1. Cyclability is ΠP
2 -complete.

Moreover, while we have proved that Cyclability is co-W[1]-hard, we have no
evidence on which level of the parameterized complexity hierarchy it belongs
(lower than the XP class). We find it an intriguing question whether there is
some i ≥ 1 for which Cyclability is W[i]-complete (or co-W[i]-complete).

Clearly, a challenging question is whether the, double exponential, parametric
dependance of our FPT-algorithm can be improved. We believe that this is not
possible and we suspect that this issue might be related with Conjecture 1.

References

1. Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Fast minor testing in
planar graphs. In: Algorithms - ESA 2010, 18th Annual European Symposium (1).
Lecture Notes in Computer Science, vol. 6346, pp. 97–109. Springer (2010)

2. Adler, I., Kolliopoulos, S.G., Krause, P.K., Lokshtanov, D., Saurabh, S., Thilikos,
D.M.: Tight bounds for linkages in planar graphs. In: Automata, Languages and
Programming - 38th International Colloquium, ICALP 2011. Lecture Notes in
Computer Science, vol. 6755, pp. 110–121. Springer (2011)

3. Aldred, R.E., Bau, S., Holton, D.A., McKay, B.D.: Cycles through 23 vertices in
3-connected cubic planar graphs. Graphs and Combinatorics 15(4), 373–376 (1999)

4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

5. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Information and Computation 85(1), 12–75 (1990)

6. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, Encyclopedia of mathematics and its applications,
vol. 138. Cambridge University Press (2012)

7. Diestel, R.: Graph theory, Graduate Texts in Mathematics, vol. 173. Springer,
Heidelberg, fourth edn. (2010)



8. Dirac, G.A.: In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre
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