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Lift-contractions
∗

Petr A. Golovach† Daniël Paulusma† Marcin Kamiński‡

Dimitrios M. Thilikos§,¶

Abstract

We introduce and study a partial order on graphs – lift-contractions. A graph
H is a lift-contraction of a graph G if H can be obtained from G by a sequence
of edge lifts and edge contractions. We give sufficient conditions for a connected
graph to contain every n-vertex graph as a lift-contraction and describe the struc-
ture of graphs with an excluded lift-contraction.

Keywords: edge contractions, edge lifts, immersions, treewidth.

1 Introduction

All graphs in this paper are undirected, loopless, and without multiple edges (unless
mentioned otherwise). V (G) and E(G) denote the vertex and edge set of a graph G,
respectively. The degree of a vertex v ∈ V (G) is the number of edges incident with
it. Kn is the complete graph on n vertices. Given an edge e of a graph G, the result
of the contraction of e in G is the graph obtained by removing e from G and then
identifying its endpoints to a single vertex ve. For notions and notations not defined
here, we refer the reader to the monograph [5].

Given two edges e1 = {x, x1} and e2 = {x, x2} of G, incident with the same vertex
x, and such that x1 6= x2, we define the lift of e1 and e2 in G as the graph obtained
by removing e1 and e2 from G and then adding the edge {x1, x2}. If a contraction
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or edge lift creates multiple edges, we reduce their multiplicity to one and keep the
graph simple.

Partial orders. The study of partial orders on graphs is one of the basic research
avenues in graph theory. One of the most comprehensive studies of partial orders is
the theory of Graph Minors by Robertson and Seymour [11] (see also the last chapter
of [5]). A graph H is a minor of another graph G (H ≤m G) if H can be obtained
from G by a sequence of vertex deletions, edge removals, and edge contractions. Some
more restricted graph containment relations than graph minors, like contractions [3]
or induced minors [9] have also been studied.

Graph immersions form another partial order that has been considered in the
literature [4]. A graph H is an immersion of G if H can be obtained from G by a
sequence of vertex deletions, edge removals, and edge lifts. The last operation was
introduced by Lovász under the name of splitting as a reduction method to maintain
edge connectivity [8].

In this paper, we introduce and study lift-contractions. We say that a graph H
is a lift-contraction of a graph G if H can be obtained from G by a sequence of edge
lifts and edge contractions. We also define lift-minors. We say that a graph H is a
lift-minor of a graph G if H can be obtained from G by a sequence of vertex and edge
deletions, edge lifts and contractions.

Being a lift-contraction (lift-minor) is a partial relation between graphs and we
denote it by H ≤lc G (H ≤lm G). If a graph H can be obtained from G by a sequence
of contractions, we say that H is a contraction of G and we denote this by H ≤c G.
Clearly, H ≤c G ⇒ H ≤lc G ⇒ H ≤lm G and H ≤m G ⇒ H ≤lm G.

Forcing complete graphs. When studying a partial order ≤ on graphs, it is inter-
esting to know under what conditions onG, for a fixed graphH, H ≤ G. Kostochka [7]
and Thomason [13] independently proved that if the average degree of G is at least
cn

√
log n, then G contains Kn as a minor (for some constant c > 0). Bollobás [2]

showed that if the average degree of G is at least cn2, then G contains Kn as a topo-
logical minor1 (for some constant c > 0). Recently, DeVos, Dvořák, Fox, McDonald,
Mohar and Scheide [4] proved that if the minimum degree of G is at least 200n, then
G contains Kn as an immersion. For all these three partial orders, containing Kn

implies containing any n-vertex graph.
In this paper, we identify three conditions on a connected graph G that force any

n-vertex graph as a lift-contraction of G.

Theorem 1.1. There exists a constant c such that every connected graph G of
treewidth at least c · n4 contains every n-vertex graph as a lift-contraction.

Theorem 1.2. There exists a function f : N → N such that every 2-connected graph
of pathwidth at least f(n) contains every n-vertex graph as a lift-contraction.

1
H is a topological minor of G, when some subdivision of H is a subgraph of G.
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Theorem 1.3. There exists a function f : N → N such that every connected graph
with at least f(n) vertices and minimum degree at least 3 contains every n-vertex
graph as a lift-contraction.

We note that none of the three conditions above is alone enough to force all n-
vertex graphs as a lift or as a contraction. In order to see this, consider a complete
graph K with an arbitrarily large number of vertices. Because an edge lift does not
change the number of vertices, we cannot obtain a graph with fewer vertices than K
by taking edge lifts only. Because contracting an edge in K yields a new complete
graph, we cannot obtain any non-complete graph by performing edge contractions
only.

Structural theorem. Another point of focus, when studying partial orders on
graphs, is to understand the structure of nontrivial ideals in this order. The best
known example is the structural theorem on graphs with an excluded minor by Robert-
son and Seymour [11]. Recently, a structural description of graphs with an excluded
topological minor was discovered by Grohe and Marx [6] and with an excluded im-
mersion by Wollan [14].

Here we obtain, as a consequence of Theorem 1.3, a structural description of
graphs with a forbidden lift-contraction. Informally, for a fixed graph H, any graph
G that does not contain H as a lift-contraction contains a set of vertices R whose
size depends only on the excluded graph H such that every connected component of
G[V \ R] is of treewidth at most 2 and has at most two neighbors in R. A simple
corollary of our structural result is that graphs with an excluded lift-contraction are
of bounded treewidth and thus of bounded chromatic number.

Paper structure. We start with some preliminary results in Section 2 which also
includes the proofs of Theorems 1.1 and 1.2. The proof of Theorem 1.3 is presented in
Section 3. In Section 4 we describe the structure of graphs with an excluded lift-minor.

2 Preliminary results

We prove below auxiliary results that will be useful later in the next sections, give
some definitions and prove Theorems 1.1 and 1.2.

Lemma 2.1. For every n-vertex graph H, H ≤lc K2n.

Proof. We prove that every n-vertex graph H is a lift-contraction of K2n. Let H
+ =

K2 × H. First we prove that H+ is a lift of K2n. Let V (H) = {v1, . . . , vn} and
V (H+) = {v′1, . . . , v′n, v′′1 , . . . , v′′n}. Let us assume that V (K2n) = V (H+) and observe
that H+ is a spanning subgraph of K2n. Let R be the set of non-edges of H, i.e., R =
{{u, v} | u, v ∈ V (H), u 6= v}\E(H). Notice that each {vi, vj} ∈ R corresponds to the
vertices v′i, v

′
j , v

′′
i , v

′′
j ∈ V (H+) such that the edges {v′i, v′′j }, {v′′i , v′j}, {v′i, v′j}, {v′′i , v′′j }

are present in K2n but not in H+. We use edge lifts to remove those edges. For every
{vi, vj} ∈ R, we lift the pairs of edges {v′i, v′′j }, {v′′j , v′′i } and {v′′i , v′j}, {v′j , v′i}. The
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result is H+. Now we contract edges {v′i, v′′i } for all i = 1, . . . , n and obtain H as
claimed.

The following observation can be easily proved by induction on r.

Observation 2.2. For every r ≥ 2, the complete r-partite graph, where each of its
parts has r− 1 vertices, has a perfect matching M such that for every two of its parts
there is exactly one edge in M intersecting both of them.

Figure 1: The graph F9

For an integer k > 1, the k-fan is the graph obtained from the path Pk on k
vertices by adding a dominating vertex vc. We denote the k-fan by Fk and say that
Pk is its spine and vc is its center (see Figure 1). The extreme vertices of a k-fan are
the endpoints of the path (i.e., the vertices x and y in Figure 1).

Lemma 2.3. For any connected graph G and n ≥ 2, if Fn(n−1) ≤lm G, then Kn ≤lc G.

Proof. If Fn(n−1) ≤lm G, then it is possible to obtain Fn(n−1) from G by a sequence
of vertex deletions, edge removals, edge contractions and edge lifts. We modify this
sequence as follows:

• a removal of an edge e such that e is a bridge in the already constructed graph
is replaced by the contraction of e, all other edge removals are deleted from the
sequence;

• a removal of a vertex v is replaced by the contraction of an edge incident with
v;

• a lift operation for edges {u, v}, {v, w} such that v has degree 2 in the already
constructed graph is replaced by the contraction of {u, v}.

By the resulting sequence of contractions and edge lifts, we obtain a graph G′ ≤lc G
such thatG′ contains Fn(n−1) as a spanning subgraph. Let the spine of this n(n−1)-fan
in G′ be a path P with VP = {v11, . . . , v1n−1, v

2
1, . . . , v

2
n−1, . . . , v

n
1 , . . . , v

n
n−1}. Let J be
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the complete n-partite graph with partition classes {v11, . . . , v1n−1}, . . . , {vn1 , . . . , vnn−1},
and let M be a perfect matching of J as in Observation 2.2. We choose an arbitrary

edge {vts, vt
′

s′} ∈ M . For each edge {vji , v
j′

i′ } ∈ M , where {vts, vt
′

s′} 6= {vji , v
j′

i′ }, we

lift the pair of edges {vji , vc} and {vj′i′ , vc} in G′. Then we contract {vts, vc}. In the
resulting graph, we contract, for each i ∈ {1, . . . , n}, all the edges in {{vij , vij+1} | j ∈
{1, . . . , n − 2}} to a single vertex ui. Observe that the resulting graph is a complete
graph with the vertex set {u1, . . . , un}. Hence, Kn ≤lc G

′ ≤lc G as claimed.

A tree decomposition of a graph G is a pair (X , T ) where T is a tree and X =
{Xi | i ∈ V (T )} is a collection of subsets of V (G) (called bags) such that:

1.
⋃

i∈V (T )Xi = V (G);

2. for each edge {x, y} ∈ E(G), {x, y} ⊆ Xi for some i ∈ V (T ), and

3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The adhesion of a tree decomposition ({Xi | i ∈ V (T )}, T ) is max{|Xi ∩Xj | | i, j ∈
V (T ), i 6= j} and its width is max{|Xi| − 1 | i ∈ V (T )}. The treewidth of a graph G
is the minimum width over all tree decompositions of G. A path decomposition of a
tree decomposition where the tree T is a path. The pathwidth of a graph G is the
minimum width of a path decomposition of it.

Proof of Theorem 1.1. From Lemmas 2.1 and 2.3, G does not contain F2n2−2n as a
minor; otherwise we are done. A graph with no K2 × Ck minor, where Ck is a cycle
on k vertices, has treewidth at most 60k2−120k+63 [1]. As Fk is a minor of K2×Ck,
the same bound holds for graphs with no Fk minor. The result follows by taking
k = 2n2 − 2n.

Proof of Theorem 1.2. According to a result mentioned in [12], for any pair of graphs
G and H such that G is an outerplanar graph and H has a vertex whose removal
leaves a tree, there is a constant cG,H such that every 2-connected graph of pathwidth
at least cH,G contains G or H as a minor. By taking both G and H to be a k-fan,
we conclude that there is a function f : N → N such that every 2-connected graph
of pathwidth at least f(k) contains Fk as a lift-minor. Then Lemma 2.3 yields the
result.

3 Proof of Theorem 1.3

Let Wk be the graph obtained from Fk by adding an edge between its extreme vertices
(assuming that k ≥ 3). Let K3,k be the complete bipartite graph whose parts have
exactly 3 and k vertices. We denote by K−

4 the graph obtained from K4 by removing
an edge, and we call the vertices of degree 2 in it base vertices. Examples of these
graphs are shown in Figure 2. We let Γr = K2 × Pr. We denote by Mr the graph
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Figure 2: The graphs W11, K3,5, and K−
4 .

obtained if we take r copies of K4, pick a vertex in each of them, and then identify
all chosen vertices to a single vertex. We denote by Nr the graph obtained as follows.
We take r copies of K−

4 . In each copy we choose an arbitrary base vertex and call it
a left base vertex, and say that another base vertex is right. Then we identify all left
vertices and all right vertices. Finally, we denote by Lr the graph obtained if we take
r copies of K−

4 , pick a left and right base vertices in each copy, and then identify the
right base vertex of the (i − 1)-th copy and the left base vertex of the i-th copy for
i ∈ {2, . . . , r}. See Figure 3 for examples.

Figure 3: The graphs M8, N4, Γ6, and L4.

We need the following lemmas.

Lemma 3.1. For each k ≥ 1, it holds that Fk ≤lm Wk, Fk ≤lm K3,k, Fk ≤lm Mk,
Fk ≤lm Nk, Fk ≤lm Γk, and Fk ≤lm Lk.

Proof. Clearly, Fk ≤lm Wk. Because Γk consists of two paths on k vertices joined by
a matching, it is straightforward to see that we obtain Fk by contracting all the edges
of one path.

For K3,k, denote by u1, u2, u3 and v1, . . . , vk the vertices of the respective partition
sets. For i ∈ {1, ⌊k/2⌋}, we lift the edges {v2i−1, u1}, {u1, v2i}, and for i ∈ {1, ⌈k/2⌉−
1}, {v2i, u2}, {u2, v2i+1} are lifted. Now Fk with the center u3 is a subgraph of the
obtained graph.
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Recall that Mk is obtained from k copies of K4 by identifying vertices chosen in
each copy. Let xi, yi, zi and v be the vertices of the i-th copy (v is a common vertex) for
i ∈ {1, . . . , k}. We obtain Fk as follows: for i ∈ {1, . . . , k−1}, we lift {xi, v}, {v, yi+1},
and then xi, yi, zi are contracted to a single vertex for all i ∈ {1, . . . , k}.

Consider now Nk obtained from k copies of K−
4 . Let xi, yi, vl, vr be the vertices

of the i-th copy where vl, vr are the common base vertices for i ∈ {1, . . . , k}. For
i ∈ {1, . . . , k − 1}, we lift {xi, vl}, {vl, yi+1} and observe that Fk is a subgraph of the
obtained graph.

Finally, assume that Lk consists of k copies of K−
4 with the vertices xi, yi, ui, vi

where ui, vi are base vertices and vi = ui+1 for i ∈ {1, . . . , k−1}. For i ∈ {1, . . . , k−1},
we lift the edges {xi, vi} and {ui+1, xi+1}. Afterward we contract the edges {u1, x1},
{v1, y1}, {vk, xk}, {uk, yk}. This gives us the graph Γk. Because Fk ≤lm Γk, as shown
above, this means that Fk ≤lm Lk.

Lemma 3.2. Let G be a 3-connected graph with at least four vertices, {u, v} ∈ E(G).
Then G can be contracted to K4 in such a way that {u, v} is an edge of the obtained
graph.

Proof. The graph G has at least three internally vertex disjoint (u, v)-paths. Hence,
there are at least two vertex disjoint (u, v)-paths P1, P2 that avoid the edge {u, v}.
The set {u, v} does not separate V (P1) \ {u, v} and V (P2) \ {u, v}. Therefore, there
is a path that joins these sets, and the claim follows.

We also need the following proposition.

Proposition 3.3 ([10]). There exists a function g : N → N such that every graph
excluding Wk and K3,k as a minor has a tree-decomposition of width at most g(k) and
adhesion at most two.

Recall that for two vectors of integers x = (xw, . . . , x1) and y = (yw, . . . , y1), x < y
lexicographically, if there is k ∈ {1, . . . , w− 1} such that xi = yi for i ∈ {k+1, . . . , w}
and xk < yk. For a tree decomposition (X , T ) of width w, denote by bi the number
of bags of size i for i ∈ {1, . . . , w+ 1}. We say that such a tree decomposition (X , T )
with adhesion at most two is minimal, if the vector b = (bw, . . . , b1) is lexicographi-
cally minimal, where the minimum is taken over all tree decompositions of width at
most w and adhesion at most two. We need the following property of minimal tree
decompositions.

Lemma 3.4. Let X = {Xi | i ∈ V (T )} be a minimal tree decomposition of a connected
graph G of minimum degree at least 3. For a bag Xi denote by G[Xi] the graph
obtained from G[Xi] by the addition of (non-existing) edges {u, v} for the pairs if
vertices u, v ∈ Xi such that there is another bag Xj with Xi ∩Xj = {u, v}. Then the
following holds.

a) No bag is a subset of another bag.
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b) For each bag Xi, either i) G[Xi] is a bridge in G and i is not a leaf of T , or
ii) G[Xi] is a triangle and for each u ∈ V (Xi), there is another bag Xj with
u ∈ Xj, or iii) G[Xi] is a 3-connected graph with at least four vertices.

c) If Xi, Xj are distinct bags, Xi ∩ Xj = {x, y}, then there is a (x, y)-path in G
that avoids the vertices of Xi \ {x, y}.

Proof. Statement a) follows directly from the minimality. Notice that it implies that
there are no bags of size one, since G is a connected graph of minimum degree at
least 3.

We now prove b). Let Xi = {u, v} be a bag of size two. We claim that v and u are
adjacent. To see this, assume to the contrary that u and v are not adjacent. Let also
ev and eu be the first and the last edge of a path in the connected graph G starting
from v and finishing at u. Let also Xiu (resp. Xiv) be a bag where the edge eu (resp.
ev) is contained. As G is connected, i cannot be in the path of T connecting iv and
iu. Therefore, we may assume that either iv is in the path of T connecting i and iu
or that iu is in the path of T connecting i and iv. In both cases, the third condition
of the definition of a tree decomposition implies that either u ∈ Xiv or that v ∈ Xiu ,
a contradiction to a). Hence, u, v are adjacent, and because u, v are not included in
another bag, {u, v} is a bridge. Clearly, i cannot be a leaf of T , as G has no vertices
of degree one.

Now suppose that Xi = {u, v, w} be a bag of size 3. Since the minimum degree of
G is at least 3, each vertex of Xi is included to another bag. We are left to prove that
G[Xi] is a triangle. To obtain a contradiction, assume that u and v are not adjacent.
Then there is no bag Xj , j 6= i, with u, v ∈ Xj . We modify the tree decomposition
as follows. The node i is replaced by two adjacent nodes i′, i′′. Let Xi′ = {u,w} and
Xi′′ = {v, w}. For each j such that Xj ∩ Xi 6= ∅, we join j with i′ by an edge if
Xi ∩Xj ⊆ {u,w}, and we join j with i′ if Xi ∩Xj = {v} or Xi ∩Xj = {v, w}. We
obtain a tree decomposition, where a bag of size tree is replaced by two bags of size 2.
This contradicts the minimality of the original tree decomposition.

Finally suppose that Xi = {u1, . . . , xp} is a bag of size p ≥ 4. To obtain a
contradiction, assume that H = G[Xi] is not 3-connected. Then it has a cut set S of
size at most two. Let X be the set of vertices of a component of the graph obtained
from H by the removal of S. Let Y = X ∪ S and Z = V (H) \ X. Notice that for
any bag Xj , Xi ∩ Xj ⊆ Y or Xi ∩ Xj ⊆ Z. We modify the tree decomposition as
follows. The node i is replaced by two adjacent nodes i′, i′′. Let Xi′ = Y and Xi′′ = Z.
For each j such that Xj ∩Xi 6= ∅, we join j with i′ by an edge if Xi ∩Xj ⊆ Y and
Xi∩Xj∩X 6= ∅, and we join j with i′ if Xi∩Xj ⊆ Z. We obtain a tree decomposition,
where a bag of size p is replaced by two bags of size at most p− 1. This contradicts
the minimality of the original tree decomposition. Hence we have proven b).

Now we prove c). Suppose that Xi, Xj are distinct bags, Xi ∩ Xj = {x, y} and
x, y are not adjacent. To obtain a contradiction, assume that there is no (x, y)-paths
in G that avoids the vertices of Xi \ {x, y}. Let T be rooted in i. The root defines
the parent-child relation on V (T ). Clearly, j is a child of i. Denote by p the last
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descendant of i with the same property as i, i.e., p has a child q, Xp∩Xq = {u, v} and
there is no (u, v)-paths in G that avoids the vertices of Xp \ {u, v}, and no child of p
satisfies this condition. Then Xq has at least three vertices, and the graph obtained
from G[Xq] by the removal of the edge {u, v} is disconnected, but it contradicts b).

Now we are in position to prove Theorem 1.3.

Proof of Theorem 1.3. We set k = 2n(2n − 1) and assume that G does not contain
Fk as a lift-minor. Also, keep in mind that k > 2. From Lemmas 2.1 and 2.3 it is
enough to prove that |V (G)| cannot be bigger than f(k) where f is a function that
will be determined later in the proof.

Notice that by Lemma 3.1, Wk and K3,k both contain Fk as a lift-minor. Hence,
by Proposition 3.3, G has a tree-decomposition of width at most g(k) and adhesion
at most two. We assume that X = {Xi | i ∈ V (T )} is a minimal and, subject to this
condition, for a given X , a tree T with the maximum number of leaves is chosen.

Let L ⊆ X be the set of bags corresponding to the leaves of T . Our strategy is to
observe that if the size of G is big enough, then either T has many leaves or there is
a long path in T with all vertices of degree two in T . Then we construct a lift-minor
Fk using either the leaf-bags or the path-bags. For this, we first bound the number
of leaves in T . Then we take the size of G to be sufficiently big so that, given that
both the treewidth of X and the number of leaves in T are bounded, we can force the
existence of a path in T . We need the following claim.

Claim 1. There is a function f1 such that if Fk 6≤lm G, then |L| < f1(k).

Proof of Claim 1. Let us assume that |L| ≥ f1(k) for some f1 that will be determined
in the end of the proof of this claim and consider the graphs LX = G[X], for each
X ∈ L. There are at most two vertices in each LX that have neighbors outside X
in G. Let SX be the set of such vertices for each X ∈ L. Denote by LX the graph
obtained from LX by joining vertices of SX by an edge (if |SX | = 1, then LX = LX).
By Lemma 3.4, X has at least four vertices and LX is 3-connected for each X ∈ L.
We set

S1 = {SX | X ∈ L and |SX | = 1} and S2 = {SX | X ∈ L and |SX | = 2}.

If SX ∈ S1, then the 3-connectivity of LX implies that K4 is a contraction of
LX = LX by the Tutte’s theorem (see c.f. [5]). In case |SX | = 2, we define L−

X as
the graph taken from LX by removing, if exists, the edge with endpoints in SX . The
3-connectivity of LX and Lemma 3.2 imply that L−

X can be contracted to K−
4 in a

way that the two base vertices are the vertices of SX .
We now construct an auxiliary graph J by taking G− = G[

⋃
X∈X\LX] and then,

for every S ∈ S2, adding an edge connecting the two vertices of S (if such an edge
already exists, then do not add it). Let us call essential the edges connecting in J
the two vertices of some S ∈ S2 (notice that an essential edge of J is not necessarily
present in G).
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We assign weights to the vertices and edges of J : each vertex v ∈ V (J) receives
weight |{L ∈ L | {v} = SL}| and each edge e ∈ E(J) receives weight |{L ∈ L | e =
SL}|. Observe that the essential edges are exactly those with positive weights and
recall that the sum of the weights of the edges and vertices of J is at least f1(k). We
prove a series of subclaims.

Subclaim 1.1. The sum of the weights of the vertices in J is less than k.

Proof of Subclaim 1.1. Suppose that is not correct. Then contract in G all edges that
do not belong to some of the graphs in {LX | SX ∈ S1} and obtain a graph that, in
turn, can be contracted to Mk. But then, from Lemma 3.1, G should contain Fk as a
lift-minor, a contradiction.

Subclaim 1.2. There is a function f2 such that J does not have more than f2(k) blocks
with essential edges.

Proof of Subclaim 1.2. Notice that for each block B of J , there is a unique block
B′ of G such that V (B) ⊆ V (B′), and for different blocks B1, B2, V (B1) and V (B2)
are included in distinct blocks of G. Observe also that if B is a block of J with
at least one essential edge, then the corresponding block B′ in G can be contracted
to K4 by Lemma 3.4. That way, we have that G can be contracted to a bridgeless
graph W where each of its blocks is a K4 and such that the number of blocks in W
is equal to the number of blocks in J with essential edges. Notice that W cannot
contain a cut vertex w with the property that W − w has k or more connected
components, otherwise W could be contracted to Mk and therefore Fk ≤lm Mk ≤lm G
by Lemma 3.1; a contradiction. Moreover, the diameter of W should be less than
k, otherwise W contains Lk as a minor. Then Fk ≤lm Lk ≤lm G by Lemma 3.1, a
contradiction. It is now easy to verify that the number of blocks in W is bounded by
some function f2 of k. The subclaim follows.

From Subclaim 1.1, the sum of weights of the edges of J is more than f1(k) − k.
From Subclaim 1.2, one of the blocks of J denoted by B should have total-edge weight
at least f1(k)−k

f2(k)
.

We now construct the graph B∗ from B by repeatedly removing or contracting
non-essential edges: for a non-essential edge {u, v}, if {u, v} is a cut set in the already
constructed graph, then we remove the edge, else we contract the edge. Notice that a
non-essential edge can be identified with an essential one after one of these operations
(in such a case, such a new edge is essential). Observe also that these operations
maintain 2-connectivity. Hence, B∗ is 2-connected. If during such a contraction two
edges become one, the weight of the new edge is the sum of the weights of the two
edges. Notice that the total edge-weight of B∗ is the same as in B, that is at least
f1(k)−k

f2(k)
. Notice also that at most two edges of zero weight may survive in of B∗

and this may happen only when B∗ is a triangle where two or one of its edges have
positive weights. Clearly, none of the edges in B∗ may have weight at least k as, then,
the same sequence of edge contractions and removals in G would create a graph that
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contains Nk as a minor. Then Fk ≤lm Nk ≤lm G by Lemma 3.1; a contradiction. We
obtain that the total weight of the edges in B∗ is lower bounded by f1(k)−k

k·f2(k)
. In what

follows, we will take f to be big enough so that this lower bound is greater than 2
and therefore, we may assume that all edges of B∗ have positive weight. This implies
that

|E(B∗)| ≥ f1(k)− k

k · f2(k)
(1)

Our next step is to observe that the maximum degree of B∗ is less than k. Suppose
towards a contradiction that some vertex y of B∗ is incident with at least k edges.
Recall that B∗ is 2-connected and thus B∗− y is connected. Therefore, if we contract
in B∗ all edges that are not incident to y, we create a single edge with total weight
at least k. As before, this implies that Fk ≤lm Nk ≤lm G; a contradiction.

Our next observation is that every path in B∗ has length at most k − 1. Indeed,
a path of length at least k in B∗ would imply the existence in G of Lk as a minor, a
contradiction, since by Lemma 3.1 Fk ≤lm Lk ≤lm G.

According to the two observations above, B∗ has at most f3(k) edges for some

function f3. This, combined with (1), implies that f3(k) ≥ f1(k)−k

k·f2(k)
for some specific

choice of the functions f2 and f3. If we now take f1 to be big enough so that this
inequality is violated, we have a contradiction and the claim follows.

Notice that the fact that each bag of X has at most g(n(n − 1)) vertices implies
that X has at least f(n)/g(k) bags. Therefore, the tree T has ≥ f(n)/g(k) vertices
and from the above claim, less than f1(k) of them are leaves (recall that k = n(n−1)).
But then we can choose the function f such that T contains a path P of 24(k+1)3+3
vertices such that all internal vertices of P have degree two in T . By the fact that
the minimum degree of G is at least 3, we obtain that at most the half of the graphs
induced by the bags corresponding to the vertices of P are bridges. We call the
bags corresponding to these bridges of G bridge edges of G and we may assume that
this path P has at least 12(k + 1)3 internal vertices that correspond to bags that
are not inducing bridges in G. Let H be the graph obtained from G[

⋃
i∈V (P )Xi] by

contracting all bridge edges. Our aim is to arrive to a contradiction by showing that
H (and therefore G as well) contains either Lk, or Fk, or Γk as a minor. Notice that
X gives rise to a path decomposition X ′ = {X0, . . . , Xr+1} of H containing at least
12(k + 1)3 + 2 bags (we first crop from X the bags corresponding to P and then we
suppress bridge bags). Recall that the number of leaves in T is maximum. Then each
bag Xi of X ′ can be of one of the following types:

• (1-1-type) Qi = H[Xi] is a 3-connected graph. Moreover, if i ∈ {1, . . . , r} then
such a Xi contains two vertices xil and xir such that {xil} = Xi ∩ Xi−1 and
{xir} = Xi ∩Xi+1.

• (1-2-type) Qi = H[Xi] contains three vertices xil, xiru and xird such that the
addition in H[Xi] of the edge {xiru, xird} makes it 3-connected or a triangle (we
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Figure 4: The types of bags in X = {X0, . . . , Xr+1}.

denote this enhanced graph by Qi). Moreover, if i ∈ {1, . . . , r}, then {xil} =
Xi ∩Xi−1, {xiru, xird} = Xi ∩Xi+1 and xil /∈ {xiru, xird}.

• (2-1-type) Qi = H[Xi] contains three vertices xilu, xild and xir such that the
addition in H[Xi] of the edge {xilu, xild} makes it 3-connected or a triangle (we
denote this enhanced graph by Qi). Moreover, if i ∈ {1, . . . , r}, then {xilu, xild} =
Xi ∩Xi−1, {xir} = Xi ∩Xi+1 and xir /∈ {xilu, xild}.

• (2-2-type) Qi = H[Xi] contains the vertices xilu, x
i
ld, x

i
ru and xird where xilu 6=

xild, x
i
ru 6= xird, |{xilu, xild, xiru, xird}| ∈ {3, 4}, and the addition in H[Xi] of the

edges {xiru, xird} and {xilu, xild} makes it 3-connected (we denote this enhanced
graph by Qi). Moreover, if i ∈ {1, . . . , r}, then {xilu, xild} = Xi ∩ Xi−1 and
{xiru, xird} = Xi ∩Xi+1.

Notice that for each i ∈ {0, . . . , r}, if Xi is of x-y-type and Xi+1 is of x′-y′-type,
then y = x′ and that y is the cardinality of the set Si = Xi ∩Xi+1. Observe also that
for any i ∈ {1, . . . , r− 1}, Si−1 \Si 6= ∅ and Si \Si−1 6= ∅, since otherwise if Si−1 ⊆ Si

or Si ⊆ Si−1, then the node i of T could be made a leaf, but this contradicts the
choice of T . Notice that each Qi is either a triangle or 3-connected by Lemma 3.4.
For 1 ≤ i ≤ j ≤ r, we let Hij = H[

⋃
h∈{i,...,j}Xh]. We need some properties of Hij

given in the next four claims.

Claim 2. Suppose that |Si−1| = 1, |Sj | = 1, and for h ∈ {i, . . . , j− 1}, |Sh| = 2. Then
the graph Hij contains three paths P1, P2, P

∗, where P1, P2 are internally vertex

disjoint (xil, x
j
r)-paths, P ∗ joins an internal vertex of P1 with some internal vertex of

P2 and avoids xil, x
j
r.

Proof of Claim 2. The graph Hij is 2-connected. Hence, there are two internally

vertex disjoint (xil, x
j
r)-paths P1 and P2. Notice that for each h ∈ {i, . . . , j − 1}, each

of the paths P1 and P2 contains exactly one vertex of Sh.
If j = i, then H is 3-connected, and because the minimum degree of G is at least 3,

Hij has at least four vertices. Moreover, as H is 3-connected we may assume that

P1, P2 have internal vertices. Observe also that {xil, x
j
r} is not a cut set of H. Hence,

there is a path P ∗ that joins an internal vertex of P1 with some internal vertex of P2.
Suppose that j > i. Notice that P1, P2 have internal vertices because xil /∈

{xiru, xird} and xjr /∈ {xjlu, x
j
ld}. If for every h ∈ {i, . . . , j}, |Xh| = 3, then there is
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h ∈ {i, . . . , j − 1} such that xhlu, x
h
ld are adjacent in G, since G has no vertices of

degree two. Then such an edge forms a path between an inner vertex of P1 and an
inner vertex of P2. Assume that there is an h ∈ {i, . . . , j} such that |Xh| ≥ 4. By
Lemma 3.4, Qh is 3-connected. If h = i, then xhru, x

h
rd are joined in Qh by at least

three internally vertex disjoint paths. At least one of these paths avoids xhr and the
edge {xhru, xhrd} and we have P ∗. If h = j, then we find P ∗ by the same arguments
using the symmetry. Let i < h < j. Then xhru, x

h
rd are joined in Qh by at least

three internally vertex disjoint paths, and at least one of these paths avoids the edges
{xhlu, xhld} and {xhru, xhrd}.
Claim 3. Suppose that i < r, |Si−1| = |Si| = |Si+1| = 2 and Sh−1 ∩ Sh ∩ Sh+1 = {u}.
Then the graph Hii+1 contains two paths P, P ∗, where P joins the unique vertices
Si−1 \{u}, Si+1 \{u} and avoids u, P ∗ joins an internal vertex of P with u and avoids
vertices of Si−1 ∪ Si+1 \ {u}.
Proof of Claim 3. Assume without loss of generality that u = xild = xird = xi+1

rd and
Si−1 \ (Si ∪ Si+1) = {xilu}, Si+1 \ (Si−1 ∪ Si) = {xi+1

ru }.
The graph H ii+1 obtained from Hii+1 by the addition of edges {xilu, u} and

{xi+1
ru , u} is 2-connected. Hence, there is a (xilu, x

i+1
ru )-path P in H ii+1 that avoids

u. Clearly, P is a path in Hii+1. This path contains at least one internal vertex
xiru. If |Xi| = |Xi+1| = 3, then xiru, x

i
rd are adjacent in G, since xiru has degree at

least 3. Then this edge forms a path between an inner vertex of P and u. Assume
that |Xi| ≥ 4. By Lemma 3.4, Qi is 3-connected. Then xiru, x

i
rd are joined in Qi by

at least three internally vertex disjoint paths, and at least one of these paths avoids
the edges {xilu, xild} and {xiru, xird}. We take this path as P ∗. If |Xi+1| ≥ 4, then we
find P ∗ by symmetrically applying the same arguments.

Claim 4. Suppose that for h ∈ {i − 1, . . . , j}, |Sh| = 2, and Si−1 ∩ Si = ∅. Then the
graph Hij contains two disjoint paths P1, P2 joining the vertices in {xild, xilu} with the

vertices in {xjrd, x
j
ru}.

Proof of Claim 4. The graph H ij obtained from Hij by the addition of edges {xild, xilu}
and {xjrd, x

j
ru} is 2-connected. If we subdivide the edges {xird, xiru}, {x

j
rd, x

j
ru}, and

denote the obtained vertices of degree two by u and v respectively, then the obtained
graph contains two internally vertex disjoint (u, v)-paths. The claim follows immedi-
ately.

Claim 5. Suppose that for t ∈ {i + 1, . . . , j − 1}, Si ∩ St = ∅, St ∩ Sj = ∅ and for
h ∈ {i − 1, . . . , j}, |Sh| = 2. Then the graph Hij contains paths P1, P2, P

∗, where

P1, P2 are disjoint paths joining the vertices in {xild, xilu} with the vertices in {xjrd, x
j
ru},

and P ∗ joins a vertex of P1 with some vertex of P2.

Proof of Claim 5. The paths P1 and P2 exists by Claim 4. Without loss of generality
we assume that P1 is a (xild, x

j
rd)-path and P2 is a (xilu, x

j
ru)-path.

If for every h ∈ {i, . . . , j}, |Xh| = 3, then there is h ∈ {i, . . . , j} such that xhlu, x
h
ld

are adjacent in G, since otherwise the vertices of St would have degree two. Then
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such an edge forms a path between P1 and P2. Assume that there is an h ∈ {i, . . . , j}
such that |Xh| ≥ 4. By Lemma 3.4, Qh is 3-connected. Then xhru, x

h
rd are joined in

Qh by at least three internally vertex disjoint paths, and at least one of these paths
avoids the edges {xhlu, xhld} and {xhru, xhrd}. Clearly, this path joins P1 and P2 in Hij .

Now we are ready to complete the proof of Theorem 1.3. Consider the sequence
S1, . . . , Sr. Recall that r ≥ 12(k + 1)3.

First, we show that the sequence |S1|, . . . , |Sr| contains at most k 1’s. Suppose
that |Sh1

| = . . . = |Shk+1
| = 1 for some 1 ≤ h1 < . . . < hk+1 ≤ r and that |Sh| = 2 for

all 1 ≤ h ≤ r with h /∈ {h1, . . . , hk+1}. Then we apply Claim 2 for Hh1h2
, . . . , Hhkhk+1

and conclude that H contains Lk as a minor which gives a contradiction because of
Lemma 3.1. As a consequence of this, the sequence |S1|, . . . , |Sr| contains a subse-
quence |Si|, . . . , |Sj | formed by at least 12(k + 1)2 consecutive 2’s (in Figure 4, this
holds for i = 1 and j = 2). This also means that for all h ∈ {i + 1, . . . , j}, Xh is a
2-2-type bag.

Now we prove that the sequence Si, . . . , Sj does not contain any subsequence

Si′ , . . . , Sj′ of more than 2k consecutive elements such that ∩j′

h=1Sh = {u}. Otherwise,
we apply Claim 3 for Hi′+1i′+2, Hi′+3i′+4 . . . , Hi′+2k−1i′+2k, and it follows that Fk is
a minor of H; a contradiction.

We have that the sequence Si, . . . , Sj contains a subsequence Sh1
, . . . , Sh3k

of
3k pairwise disjoint (not necessarily consecutive) elements. We apply Claim 5 for
Hh1h3

, Hh4h6
, . . . , Hh3k−2h3k

and Claim 4 for Hh3h4
, Hh6h7

, . . . , Hh3k−3h3k−2
and ob-

serve that Γk is a minor of H, a contradiction.

4 On the structure of lift-contraction-free graphs

Given a graph G and a subset S of V (G), we denote by NG(S) the set of vertices
not in S that are neighbors of vertices in S. We also define NG(S) = NG(S) ∪ S.
Theorem 1.3 implies the following structural theorem on the graphs excluding some
graph H as a lift-contraction. We call a vertex set R of a graph G 2-central if for
every connected component C of G \R, it holds that G[NG(V (C))] has treewidth at
most two and |NG(V (C))| ≤ 2. We need the following observation.

Observation 4.1. Let G be a graph with a 2-central set R and let G+ be the graph
obtained from G by the consecutive application of the following operations: i) edge
subdivisions and ii) additions of a new vertex adjacent to either a single vertex or two
adjacent vertices in the already constructed graph. Then R is a 2-central set in G+

as well.

Theorem 4.2. There exists a function f : N → N such that every connected graph G
that does not contain an h-vertex graph H as a lift-contraction contains a 2-central
set R of at most f(h) vertices.

Proof. Let f be the function that exists by Theorem 1.3. Assume that there is a
minimum size counterexample G and let n = |V (G)|. Clearly, n > f(h) as any graph
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of at most f(h) vertices satisfies trivially the property of the theorem. However, from
Theorem 1.3, a graph with more than f(h) vertices that does not contain H as a
lift-contraction, should contain some vertex v of degree at most two. We contract an
edge incident with v in the connected graph G, and denote by G′ the obtained graph.
Notice that the graph G′ also excludes H as a lift-contraction and, as |V (G′)| < n, G′

contains a 2-central set R of at most f(h) vertices. From Observation 4.1, R is also
a 2-central set in G.

References
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