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Square Roots of Minor Closed Graph Classes

Nestor V. Nestoridisa, Dimitrios M. Thilikosa

aDepartment of Mathematics, National and Kapodistrian University of Athens,
Panepistimioupolis, GR-15784 Athens, Greece

Abstract

Let G be a graph class. The square root of G contains all graphs whose
square belong in G. We prove that if G is non-trivial and minor closed, then
all graphs in its square root have carving-width bounded by some constant
depending only on G. As a consequence, every square root of such a graph
class has a linear time recognition algorithm.

Keywords: square roots of graphs, branch-width, carving-width, graph
minors.

1. Introduction

Let G be a graph class. The square root of G is defined as the graph class

√
G = {G | G2 ∈ G},

where the square G2 of a graph G is the graph obtained from G after adding
edges between all pairs of vertices that share a common neighbor.

In [3], Harary, Karp, and Tutte provided a complete characterization
of the graphs in

√
P where P is the class of all planar graphs. Notice that

planar graphs are minor closed, i.e. a minor of every graph in P also belongs
in P.

According to the characterization of [3], all graphs in
√
P are outerplanar

and have bounded degree. This implies that graphs in
√
P have a very

specific “tree-like” structure and it is a natural question whether this is the
case for more general graph classes. In this paper we extend this result,
in the sense that the same tree-like property holds for every minor closed
graph class that is non-trivial (i.e. that does not contain all graphs). In
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fact, we prove (in Section 3) that, in this case, the correct “tree-likeness”
property if given by the parameter of carving-width, introduced by Seymour
and Thomas in [10]. As a consequence, we prove in Section 4 that the square
root of any non-trivial minor closed graph class has a linear time recognition
algorithm. This extends the algorithmic results of [5] where a linear time
algorithm was given for recognizing the square roots of planar graphs.

2. Definitions

We next give some definitions that are necessary in order to formally
define carving width. This will permit us to give the formal statement of
our combinatorial result.

Boundaries in graphs and hypergraphs. In this paper we deal with graphs
and hypergraphs. For a (hyper)graph G we denote by V (G) its vertex set
and by E(G) the set of its (hyper)edges. If S ⊆ V (G) (resp. F ⊆ E(G)) we
denote S = V (G) \ S (resp. F = E(G) \ F ).

Given a vertex set S ⊆ V (G), we define by EG(S) as the set of hyperedges
containing vertices in S. For simplicity we also denote EG(v) = EG({v}).
We also define ∆(G) = max{|EG(v)| | v ∈ V (G)}. Given a set S ⊆ V (G),
we define

∂G(S) = EG(S) ∩ EG(S).

Notice that ∂G is a symmetric function, i.e. for every S ⊆ V (G), ti holds
that ∂G(S) = ∂G(S). Also given a set F ⊆ E(G), we set

∂∗G(F ) = (
⋃
f∈F

f) ∩ (
⋃
f∈F

f)

Given a hypergraph G we define its dual as the hypergraph

G∗ = (E(G), {EG(v) | v ∈ V (G)}).

Notice that the hypergraphs G and G∗ have the same incidence graph with
the roles of their two parts reversed. Given a set S ⊆ V (G) (resp. F ⊆
E(G)) we denote by S∗ (resp. F ∗) their dual hyperedges (resp. vertices) in
G∗.

Using duality, we also define ∆∗(G) = ∆(G∗). Clearly, for a simple
graph G, ∆∗(G) = 2. Moreover, the above definitions imply that for every
F ⊆ E(G), (∂∗G(F ))∗ = ∂G∗(F

∗).
A graph H is a minor of a graph G, and we write H ≤ G, if H can be

obtained by some subgraph of G after contracting edges (the contracting an
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edge e = {x, y} is the operation that introduces removes x and y from G
and introduces a new vertex ve that is made adjacent with all the neighbors
of x and y in G, except from x and y). A graph class G is minor closed if
every minor of a graph in G is also a graph in G.

Carving-width. Given a tree T we denote the set of its leaves by L(T ) and
we call it ternary if all vertices in V (T ) \L(T ) have degree 3. A carving de-
composition of a hypergraph G is a pair (T, ρ), where T is a ternary tree and
ρ is a bijection from V (G) to L(T ). The bridge function β : E(T )→ 2E(G) of
a carving decomposition maps every edge e of T to the set ∂G(ρ−1(L(T ′)))
where T ′ is one of the two connected components of T \ e. The width of
(T, ρ) is equal to maxe∈E(T ) |β(e)| and the carving-width of G, cw(G), is
the minimum width over all carving decompositions of G. The following
observation is a direct consequence of the definitions.

Observation 1. For every hypergraph G, it holds that ∆(G) ≤ cw(G).

The main combinatorial result of this paper is the following.

Theorem 1. For every non-trivial minor closed graph class G there is a
constant cG such that all graphs is

√
G have carving-width at most cG.

The proof of Theorem 1 uses the parameter of branch-width defined
in [7].

Branch-width. A branch decomposition of a graph G is a pair (T, τ), where
T is a ternary tree and τ is a bijection from E(G) to L(T ). The boundary
function ω : E(T )→ 2V (G) of a branch decomposition maps every edge e of T
to the set ∂∗G(ρ−1(L(T ′))) where T ′ is one of the two connected components
of T −{e}. The width of (T, τ) is equal to maxe∈E(T ) |ω(e)| and the branch-
width of G, bw(G), is the minimum width over all branch decompositions
of G.

The following observation is a direct consequence of the duality between
the functions ∂G and ∂∗G.

Observation 2. For every hypergraph G it holds that bw(G) = cw(G∗).

3. Walls and squares

Walls. A wall of height k, k ≥ 1, is obtained from a ((k+1)× (2k+2))-grid
with vertices (x, y), x ∈ {0, . . . , 2k + 1}, y ∈ {0, . . . , k}, after removing the
“vertical” edges {(x, y), (x, y + 1)} for odd x + y.We denote such a wall by
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Wk. A subdivided wall of height k is obtained by the wall Wk with some
edges of Wk replaced by paths without common internal vertices. If, in such
a subdivided wall, all edges have been subdivided at least once, then we say
that it is properly subdivided.

The following result follows from the results in [6] and [7].

Proposition 1 ([6] and [7])). There is a function g : N → N such that
every graph G with branchwidth at least g(k) contains the (k × k)-grid as a
minor.

A direct consequence of Proposition 1 is the following.

Lemma 1. There exists a function f such that every graph G with branch-
width at least f(k) contains a properly subdivided wall of height k as a sub-
graph.

Proof. Let W ′k be the graph taken from a k-wall if we subdivide each
edge once. Notice that W ′k is a subgraph of the ((4k + 3) × (4k + 3))-grid.
The lemma follows from Proposition 1 and the fact that minor relation and
topological minor relation are identical when the host graph has maximum
degree 3 (notice that ∆(W ′k) ≤ 3). �

Let H be a ((k+1)×(2k+2))-grid where k is a positive odd integer. Let
also Wk a spanning subgraph that is a k-wall as explained above. Let also
G be a subdivision of Wk where the non-subdivision vertices are denote as
coordinates of H (we call these vertices original). In particular, we denote
the vertex ofH with coordinates i, j by ai,j (see Figure 1). For i ∈ {0, . . . , k−
1} and j ∈ {0, . . . , 2k+1} where i+j is even, we denote by P

(v)
i,j the path that

has replaced the edge {ai,j , ai+1,j} in Wk and we call these paths vertical.

For i ∈ {0, . . . , k} and j ∈ {0, . . . , 2k}, we denote by P
(h)
i,j the path that has

replaced the edge {ai,j , ai,j+1} and we call these paths horizontal We denote
by Li, i ∈ {0, . . . , k} the path P hi,0⊕ · · · ⊕P hi,2k, we direct it from ai,0 to ai,2k

and we call it i-th line of G. We also define, for l ∈ {0, . . . , k}, the l-th
meander of G as the path

Ml = P
(v)
0,2l ⊕ P

(h)
1,2l ⊕ P

(v)
1,2l+1 ⊕ P

(h)
2,2l ⊕ P

(v)
2,2l ⊕ . . .

⊕P (v)
k−2,2l+1 ⊕ P

(h)
k−1,2l ⊕ P

(v)
k−1,2l.

Finally, for every original vertex ai,j where 0 ≤ j ≤ 2k (1 ≤ j ≤ 2k+ 1),
we define rightG(ai,j) (leftG(ai,j)) as the vertex of the directed path Li that
appears right after (before) ai,j .

4



y

P
(v)
3,7

P
(h)
5,11

L2

M2

a14,7

x

Figure 1: A properly subdivided wall G of height 8. The big (resp. small) vertices are

the original (subdivision) vertices. The paths P
(v)
3,7 , P

(h)
5,11, L2 and the 2-meander M2 are

depicted in G. Notice that x = leftG(a14,7) and y = rightG(a14,7).

Wk. A subdivided wall of height k is obtained by the wall Wk with some
edges of Wk replaced by paths without common internal vertices. If, in such
a subdivided wall, all edges have been subdivided at least once, then we say
that it is properly subdivided.

dddd1
The following result follows from the results in [6] and [7].

Proposition 1 ([6] and [7])). There is a function g : N ! N such that
every graph G with branchwidth at least g(k) contains the (k ⇥ k)-grid as a
minor.

A direct consequence of Proposition 1 is the following.

Lemma 1. There exists a function f such that every graph G with branch-
width at least f(k) contains a properly subdivided wall of height k as a sub-
graph.

Proof. Let W 0
k be the graph taken from a k-wall if we subdivide each

edge once. Notice that W 0
k is a subgraph of the ((4k + 3) ⇥ (4k + 3))-grid.

The lemma follows from Proposition 1 and the fact that minor relation and
topological minor relation are identical when the host graph has maximum
degree 3 (notice that �(W 0

k)  3). ⇤
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Figure 1: A properly subdivided wall G of height 8. The big (resp. small) vertices are

the original (subdivision) vertices. The paths P
(v)
3,7 , P

(h)
5,11, L2 and the 2-meander M2 are

depicted in G. Notice that x = leftG(a
14,7) and y = rightG(a

14,7).

We denote by Kr the complete graph on r vertices. Also we use the
notation Kr,q for the complete bipartite graph with parts of size r and q.

Lemma 2. Let k be a positive odd integer. If G is a properly subdivided
wall of height k, then Kk+2 ≤ G2.

Proof. For each i ∈ {0, . . . , k} we define the path Pi of G2 as follows: If Li =
(x0, x1, . . . , xm) is the i-th horizontal path ofG, then L̄i = (x0, x2, x4, . . . , xm′)
where m′ = m or m′ = m − 1 depending on whether m is even or not. We
set S =

⋃
i∈{0,...,k} V (L̄i).

Our next step is to define the paths Qj of G2, l ∈ {0, . . . , k}. Let Ml be
the l-th meander of G. Following the definition of a meander, we denote

• P (v)
i,2l = (yi,2l1 , . . . , yi,2lwi,2l), for even i ∈ {0, . . . , k − 1} (assuming that

yi,2l1 = ai,2l and yi,2lwi,2l = ai+1,2l),

• P (v)
i,2l+1 = (yi,2l+1

1 , . . . , yi,2l+1
wi,2l+1), for odd i ∈ {0, . . . , k − 2} (assuming

that yi,2l+1
1 = ai,2l+1 and yi,2l+1

wi,2l+1 = ai+1,2l+1),

• P (h)
i,2l = (zi,2l1 , . . . , zi,2lmi,2l), i ∈ {1, . . . , k − 1} (assuming that zi,2l1 = ai,2l

and zi,2lmi,2l = ai,2l+1).
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For each even i ∈ {0, . . . , k−1}, we set P̄
(v)
i,2l = (ȳi,2l1 , yi,2l2 , . . . , yi,2lwi,2l−1, ȳ

i,2l
wi,2l)

where

ȳi,2l1 =

{
yi,2l1 if yi,2l1 6∈ S
rightG(yi,2l1 ) if yi,2l1 ∈ S

ȳi,2lwi,2l
=

{
yi,2lwi,2l if yi,2lwi,2l 6∈ S
rightG(yi,2lwi,2l) if yi,2l1 ∈ S.

and for each odd i ∈ {0, . . . , k − 1}, we set P̄
(v)
i,2l+1 = (ȳi,2l+1

1 , yi,2l+1
2 , . . .

, yi,2l+1
wxi,2l−1, ȳ

i,2l+1
wi,2l+1) where

ȳi,2l+1
1 =

{
yi,2l+1
1 if yi,2l+1

1 6∈ S
leftG(yi,2l+1

1 ) if yi,2l+1
1 ∈ S

ȳi,2l+1
wi,2l+1

=

{
yi,2l+1
wi,2l+1 if yi,2l+1

wi,2l+1 6∈ S
leftG(yi,2l+1

wi,2l+1) if yi,2l+1
wi,2l+1 ∈ S.

Observe that for each i ∈ {1, . . . , k − 1} and l ∈ {0, . . . , k} the vertices in

P
(h)
i,2l \ S induce a path in G2 which we denote by P̄

(h)
i,2l .

Notice, that for every odd i ∈ {1, . . . , k − 2} it holds that

V (P̄
(v)
i−1,2l) ∩ V (P̄

(h)
i,2l ) = {ȳi−1,2lwi−1,2l

} (1)

V (P̄
(h)
i,2l ) ∩ V (P

(v)
i,2l+1) = {ȳi,2l+1

1 }. (2)

Also, for every even i ∈ {2, . . . , k − 1} is also holds that

V (P̄
(v)
i−1,2l+1) ∩ V (P̄

(h)
i,2l ) = {ȳi−1,2l+1

wi−1,2l+1
} (3)

V (P̄
(h)
i,2l ) ∩ V (P̄

(v)
i,2l) = {ȳi,2l1 }. (4)

From (1)–(4) we obtain that

M̄j = P̄
(v)
0,2l⊕ P̄

(h)
1,2l⊕ P̄

(v)
1,2l+1⊕ P̄

(h)
2,2l⊕ P̄

(v)
2,2l⊕ . . .⊕ P̄

(v)
k−2,2l+1⊕ P̄

(h)
k−1,2l⊕ P̄

(v)
k−1,2l

is a path in G2 for each l ∈ {0, . . . , k}.
As paths in M̄ = {M̄l | l ∈ {0, . . . , k}} avoid all vertices of S, we have

that for each i, l ∈ {0, . . . , k} V (L̄i)∩V (M̄l) = ∅. Moreover, by construction,
any two paths inM are vertex disjoint. Recall also that the same holds for
the paths in L̄ = {L̄i | i ∈ {0, . . . , k − 1}}.
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We claim that for each i, l ∈ {0, . . . , k} there is an edge ei,l in G2 with
one endpoint in L̄i and the other in M̄l. Indeed it is easy to see that one
can take

ei,l =

{
{ai,2l, left(ai,2l)} if (i, l) ∈ {(0, k), (k, k)}
{ai,2l, right(ai,2l)} otherwise

Now we are ready to prove that G2 contains Kk+2 as a minor. For this,
we first remove from G2 all edges that are neither edges of paths in M̄ ∪ L̄
nor edges in E = {ei,l | (i, l) ∈ {0, . . . , k}2}. Then we contract all edges
of the remaining graph except from those in E and we end up to a graph
isomorhpic to Kk+1,k+1 that, in turn, can be further contracted to Kk+2. �
Extended carving-decompositions. Let us relax the definition of a carv-
ing decomposition in the case of graphs in the following way: let G be a
graph, T be a ternary tree rooted on some, say r, of its leaves, and a surjec-
tion σ : L(T ) \ {r} → V (G). As T is rooted each edge of T can be seen as a
directed edge pointing towards the root. Let f = (x, y) be such an edge and
let Tx and Ty be the two connected components of T \f such that r ∈ V (Ty).
Let also Vx = σ(L(Tx)) and Vy = σ(L(Ty)). We define the bridge set of f
as β(f) = {{a, b} ∈ E(G) | a ∈ Vx and b ∈ Vy \ Vx}. We call each such pair
(T, σ) an extended carving decomposition of G and we define its width as the
maximum |β(f)| over all f ∈ E(T ).

Lemma 3. If G has an extended carving decomposition of width at most k,
then it also has a carving decomposition of width at most k.

Proof. Let (T, σ) be such an extended carving decomposition. We apply
on (T, σ) the following transformation until this is not possible any more:
if for some v, in σ−1(v) contains at least two vertices a and b then replace
σ by σ \ {(a, v)} and replace T by the tree that is obtained if we remove a
and then we dissolve the resulting vertex of degree 2. It is easy to see that
each new pair (T, σ) has width at most k. Also when the above procedure
finishes, σ−1 is a bijection from V (G) to L(T ) \ {r}. If now we remove
r from T and dissolve the resulting vertex of degree 2, we have a branch
decomposition (T ′, σ−1) of G with width at most k. �

Lemma 4. For every graph G, cw(G) ≤ ∆(G) · bw(G).
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Proof. We set δ = ∆(G). Let (T, τ) be a branch decomposition of G
with width at most k. We now define an extended carving decomposition
(T ′, σ) of G as follows: Take T and for each v ∈ L(T ) we define two new
vertices v1 and v2 and we make them adjacent to v. For each such v where
τ−1(v) = {z, w}, we set σ(v1) = z and σ(v2) = w. In the resulting tree
we pick arbitrarily an edge, we subdivide it and we make the subdivision
vertex adjacent with new vertex r. In the resulting graph T ′, r will be the
root. Let f = (x, y) be an edge of T ′. We set X = σ(L(Tx)) \ σ(L(Ty)),
Y = σ(L(Ty))\σ(L(Tx)) and S = σ(L(Tx))∩σ(L(Ty)). Notice that ω(f), as
defined by the branch decomposition (T, µ), is exactly the set S, therefore
S is a separator of G and |S| ≤ k. We conclude that each edge in ω(f)
has one endpoint in S and the other in Y . As each vertex in S has degree
≤ ∆(G), we obtain that ω(f) ≤ k · d. Therefore, (T ′, σ) is an extended
branch decomposition of G with width ≤ k ·d. The lemma now follows from
Lemma 3. �

We are now ready to prove the main result of this paper.

Proof of Theorem 1. As G is non-trivial class we choose a graph H 6∈ G
and we assume that H has h vertices. As G is minor closed, G excludes Kh

as a minor. Therefore if G ∈
√
G, then G2 does not contain Kh as a minor.

From Lemma 1, G does not contain as a subgraph a properly subdivided
wall of height ≥ h− 2. From Lemma 1, bw(G) < f(h− 2). Notice also that
∆(G) ≤ h − 1. Then, from Lemma 4, cw(G) < (h − 1) · f(h − 2) and the
Theorem follows if we set cG = (h− 1) · f(h− 2). �

In the rest of this section we will also bound the branch-width of the
squares of the graphs in G. This will be useful for the algorithmic conse-
quences of our results in Section 4.

Lemma 5. For every graph G it holds that cw(G2) ≤ 2·(cw(G))2−cw(G).

Proof. Let (T, ρ) be a carving decomposition of G of width at most k. We
will prove that (T, ρ) is a carving decomposition of G2 of width at most
2k2 − k. We use the notation β and β′ in order to distinguish the bridge
sets for G and G2 respectively. Let f ∈ E(T ). As ∆(G) ≤ cw(G), it is
enough to prove that β′(f) ≤ 2 · k · (∆(G)− 1) + k. To prove this, we first
define S = ρ−1(T ′) where T ′ is one of the connected components of T −{e}.
We define L = S ∩ (

⋃
e∈β(f) e) and R = S ∩ (

⋃
e∈β(f) e). Finally, for each

e = {x, y} ∈ β(f) where x ∈ L and y ∈ R, we define the sets

QR(e) = {{x, z} | z ∈ NG(y) ∩ S}
QL(e) = {{z, y} | z ∈ NG(x) ∩ S}

8



We claim that each edge e′ = {v, u} ∈ β′(f) \ β(f) belongs in QR(e) ∪
QL(e) for some e ∈ β(f). For this, suppose that e′ = {v, u} where v ∈ S and
u ∈ S. As e′ is not an edge in G and there is a vertex z ∈ V (G) such that
{v, z}, {z, u} ∈ E(G). If z ∈ S then {z, u} ∈ β(e) and therefore e′ ∈ QL(e)
for e = {z, u}. If z ∈ S then {v, z} ∈ β(e) and therefore e′ ∈ QR(e) for
e = {v, z}. In both cases, the claim holds.

Notice now that for each e = {x, y} ∈ β(f), |QR(e)∪QL(e)| = |QR(e)|+
|QL(e)|. As |QR(e)| ≤ |NG(y)| − 1 ≤ ∆(G)− 1 and |QL(e)| ≤ |NG(x)| − 1 ≤
∆(G) − 1, we conclude that |QR(e) ∪ QL(e)| ≤ 2 · (∆(G) − 1). Therefore
|β′(f) \ β(f)| ≤ 2 · k · (∆(G)− 1) and the claim follows. �

Lemma 6. Let G be a class that is minor closed and let G ∈
√
G. Then

bw(G2) ≤ 4 · c2G − 2 · cG.

Proof. Let G2 be a graph in G. From Theorem 1, cw(G) ≤ cG and,
from Lemma 5, cw(G2) ≤ 2 · c2G − cG . As G2 is a graph, we have that
∆∗(G2) = 2. This together with Observation 2 and Lemma 4, implies that
bw(G2) ≤ 4 · c2G − 2 · cG . �

4. Linear time recognition of
√
G

In this section we study the complexity of the following problem when
G is a minor closed graph class.

Square Root of G
Instance: A graph G.
Question: is G a member of

√
G?

Before we deal with the above problem, we briefly expose some known
facts on the recognition of minor closed graph classes. Let G be such a
class. We denote by obs(G) the set of minor minimal graph that do not
belong in G. Notice that any two graphs in obs(G) are incomparable with
respect to the minor relation. In their Graph Minors series, Robertson and
Seymour [9] proved that each such set is finite, and therefore the size of
its graphs is bounded by some constant c′G . Therefore, to check whether
an input graph G is a member of some minor-closed G, it sufices to check
whether some graph on obs(G) is a minor of G. If this is the case, return NO
as answer, otherwise return YES. In the same series of papers, Robertson
and Seymour proved that to check whether a fixed size graph H is a minor
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of an n-vertex graph G can be done in O(n3) steps. Morever, when the
input graph G has branchwidth at most k, this check can be done in time
f(k) · n, that is linear in n (see e.g. [8, 1, 4]). We use this fact to prove our
main algorithmic result.

Theorem 2. For every non-trivial graph class G that is minor closed, there
exists an algorithm deciding

√
G in linear time.

Proof. Let cG be the constant of Theorem 1 and let G be an input graph
to the problem of the recognition of

√
G. If ∆(G) > cG , then, from Ob-

servation 1, cw(G) > cG and the answer to the problem is NO. Assuming
that ∆(G) ≤ cG , the computation of G2 can be done in linear time. From
Lemma 6, if G ∈

√
G, then the branchwidth of G2 is at most c′G = 4·c2G−2·cG .

We now check whether bw(G2) ≤ c′G , e.g. using the algorithm of [2]. If the
answer is negative, then we safely return NO. Otherwise, it remains to check
whether G ∈ G for a graph of bounded branchwidth and this can be done
in linear time as commented above. �

[1] Isolde Adler, Frederic Dorn, Fedor V. Fomin, Ignasi Sau, and
Dimtrios M. Thilikos. Faster parameterized algorithms for minor con-
tainment. In 12th Scandinavian Workshop on Algorithm Theory—
SWAT 2010 (Bergen), volume 6139 of LNCS, pages 322 – 333. Springer,
Berlin, 2010.

[2] Hans L. Bodlaender and Dimitrios M. Thilikos. Constructive linear
time algorithms for branchwidth. In Automata, Languages and Pro-
gramming, 24th International Colloquium, ICALP’97, volume 1256 of
LNCS, pages 627–637. Springer, Berlin, 1997.

[3] Frank Harary, Richard M. Karp, and William T. Tutte. A criterion for
planarity of the square of a graph. J. Combinatorial Theory, 2:395–405,
1967.

[4] Illya V. Hicks. Branch decompositions and minor containment. Net-
works, 43(1):1–9, 2004.

[5] Yaw ling Lin and Steven S. Skiena. Algorithms for square roots of
graphs. SIAM Journal on Discrete Mathematics, 8:99–118, 1991.

[6] Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a
planar graph. J. Comb. Theory Series B, 41:92–114, 1986.

10



[7] Neil Robertson and Paul D. Seymour. Graph minors. X. Obstructions
to tree-decomposition. J. Combin. Theory Ser. B, 52(2):153–190, 1991.

[8] Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint
paths problem. Journal of Combinatorial Theory. Series B, 63(1):65–
110, 1995.

[9] Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s
conjecture. J. Combin. Theory Ser. B, 92(2):325–357, 2004.

[10] Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher.
Combinatorica, 14(2):217–241, 1994.

11


	Introduction
	Definitions
	Walls and squares
	Linear time recognition of G

