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Vehicle Routing Problem with Mixed fleet of
conventional and heterogenous electric vehicles and

time dependent charging costs
Ons Sassi, Wahiba Ramdane Cherif-Khettaf and Ammar Oulamara

Abstract—In this paper, we consider a new real-life Heterogenous
Electric Vehicle Routing Problem with Time Dependant Charging
Costs and a Mixed Fleet (HEVRP-TDMF), in which a set of
geographically scattered customers have to be served by a mixed fleet
of vehicles composed of a heterogenous fleet of Electric Vehicles
(EVs), having different battery capacities and operating costs, and
Conventional Vehicles (CVs). We include the possibility of charging
EVs in the available charging stations during the routes in order to
serve all customers. Each charging station offers charging service
with a known technology of chargers and time dependent charging
costs. Charging stations are also subject to operating time windows
constraints. EVs are not necessarily compatible with all available
charging technologies and a partial charging is allowed.
Intermittent charging at the depot is also allowed provided that
constraints related to the electricity grid are satisfied.
The objective is to minimize the number of employed vehicles and
then minimize the total travel and charging costs.
In this study, we present a Mixed Integer Programming Model and
develop a Charging Routing Heuristic and a Local Search Heuristic
based on the Inject-Eject routine with three different insertion strate-
gies. All heuristics are tested on real data instances.

Keywords—charging problem, electric vehicle, heuristics, local
search, optimization, routing problem.

I. INTRODUCTION

THE substantial growth of the transport sector in recent
years has made it the prime player in energy consumption

and greenhouse gas emissions. Providing better planning of
urban transportation services becomes certainly challenging
due to the crowded traffic infrastructure, increasing customer
expectations and rules set by municipalities. Nowadays, the
governments are more and more aware of the urgency to
tackle transport problems and conserve the environment.
Moreover, there has been a significant body of research on
making urban transportation more efficient and sustainable.
Investing in more environmentally friendly and safe modes
of transportation such as the Electric Vehicles (EVs) is
becoming a necessity today. In fact, the EV represents
nowadays a credible alternative to the more conventional
engines. Convinced that this green vehicle is one of the
responses to the worldwide environmental and energy issues,
governments and business organizations pay today particular
attention to quickly install EVs in every city and to optimize
their use.
However, EVs are currently facing several weaknesses
related to the limited driving range, the long charging
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time, the availability of a charging infrastructure and the
high purchasing costs. Thus, the deployment of a large
scale of EVs needs, mainly in the business context, a prior
reorganization of the vehicles’ routes in order to meet the EV
limits related to the battery range and to satisfy the customers.

This work is an extension of the real-world problem that
was addressed in the framework of the French national R&D
project Infini Drive, led by La Poste Group, ERDF (French
Public Electricity Distribution Network Manager) and seven
other companies and research laboratories. This project has
been funded by ADEME (French Environment and Energy
Control Agency) as part of the ’Vehicle of the Future’ pro-
gram. It aims at designing, with a progressive approach, a
system for managing charging infrastructures that allows for
economically viable and ecologically sustainable deployment
of EVs fleets of companies and public authorities.
Furthermore, this study follows on from the work presented
in [1] where exact and heuristic methods were presented to
solve the joint EV scheduling and charging problem. This
studied problem consists in assigning EVs and CVs to already
constructed routes and optimizing EVs charging. Within this
study, we extend this problem to the case where the routes need
to be constructed and assigned to the available vehicles with
the objective of minimizing the overall routing and charging
costs.
We propose to study a new Heterogenous Electric Vehicle
Routing Problem including many realistic constraints, in which
a set of geographically scattered customers have to be served
by a fleet of CVs and EVs operating with plug-in batteries.
EVs need to be charged in charging stations during the trips
in order to serve all customers.
More precisely, our problem can be defined as follows: Given
a set of customers, a set of charging stations having different
types of chargers, proposing different time dependant charging
costs and subject to operating time windows constraints, and a
number of heterogenous EVs and CVs. We seek to minimize
the number of used vehicles while fostering the use of EVs,
as well as minimizing both transportation and charging costs
for visiting customers, while every customer is visited exactly
once and routes start and end at the depot. During the trips,
EVs could be charged, either totally, at any of the available
charging stations while satisfying temporal, battery and load
capacity constraints.
In order to minimize their investment costs of charging in-
frastructure, companies may accept to share their charging



infrastructures with other EVs users. However, they impose
that charging should only be undertaken during limited time
intervals and propose time dependant charging costs that may
allow for the smoothing of the energy consumption curve
and the avoiding of energy consumption peaks. Thus, we
consider that the charging stations propose time-dependant
charging costs, have predefined opening time windows and
allow charging using different charging technologies. Within
this study, we consider that the charging stations could propose
three different charging technologies: (i) Level 1 charger which
is the slowest charging level that provides charging with a
power of 3.7 kW ; (ii) Level 2 charger offers charging with a
power of 22 kW and (iii) Level 3 charger which is the fastest
charging level that delivers a power of 53 kW.
Charging at the depot is also allowed and it could be intermit-
tent provided that charging constraints related to the electricity
grid are satisfied. In fact, at each time period t, the total grid
power available to charge EVs is limited and the electricity
cost may vary. Different Level 1 chargers are available at the
depot and could be used during the night to charge EVs. Level
2 chargers are also available and could be used during a limited
time interval.
To the best of our knowledge, no previous study was devoted
to tackle this problem in the literature.
To solve the HEVRP-TDMF, we develop a Constructive
Heuristic and a Local Search Heuristic based on the Inject-
Eject routine with three different insertion strategies. All
heuristics are tested on real data instances.
The paper is organized as follows. In Section II, a review of
related literature is presented. In Section III, we introduce the
notation in detail. In Section IV, we provide a mixed-integer
linear programming formulation of HEVRP-TDMF. Section V
describes the solving approaches. Experimental results on real
data instances are presented in Section VI. Section VII gives
a short summary and conclusion of the paper.

II. RELATED WORK

In this section, we review the literature related to the
Electric Vehicle Routing Problem and focus, specifically,
on the controlled EV charging problem and the EV routing
problem.
The EV charging problem as well as the EV routing
problem have attracted close attention from researchers and
business organizations in recent years. Thus, the number of
publications focusing on the EV has risen exponentially in
the last few years. A recent overview of many issues related
to the use of EVs for goods distribution can be found in [2].
We start by defining the controlled charging problem. This
problem consists in a better management of the charging
load in order to minimize the charging cost. A design of a
simulation environment, which produces charging schedules
using a multi-objective evolutionary optimization algorithm
is presented in [3]. An energy consumption scheduler
able to reduce peak power load in smart places based on
genetic algorithms is exposed in [4]. A concept of real-time
scheduling techniques for EV charging to minimize the
impact on the power grid and to guarantee the satisfaction

of consumers charging requirements is suggested in [5]. In
[1], the problem of jointly EVs scheduling and charging is
addressed. This problem consists in simultaneously assigning
EVs and CVs to already constructed routes and EVs charging
optimizing. The NP-Hardness of this problem is proven and
exact and heuristic methods are proposed and tested on real
data instances.
In the case where EVs routes are not already constructed, we
refer to the Electric Vehicle Routing Problem which is an
extension of the more general Vehicle Routing Problem (see
for example [6] and [7]).
The problem of energy-optimal routing is addressed in [8]. In
[9], the authors formulate the Green Vehicle Routing Problem
(GVRP) as a Mixed Integer Linear Program (MIP). Two
constructive heuristics are developed to solve this problem.
An overview of the GVRP is given in [10].
Schneider et al. [11] combine a Vehicle Routing Problem with
the possibility of refueling a vehicle at a station along the
route. They introduce the Electric Vehicle Routing Problem
with Time Windows and Recharging Stations (E-VRPTW),
which incorporates the possibility of recharging at any of the
available stations using an appropriate recharging scheme.
E-VRPTW aims at minimizing the number of employed
vehicles and total traveled distance.
We are also aware of more recent studies that were conducted
simultaneously with our work. In [12], the Electric Vehicle
Routing Problem with Time Windows and Mixed Fleet
(E-VRPTWMF) to optimize the routing of a mixed fleet of
EVs and CVs is addressed. On each visit to a recharging
station, EVs are recharged to their maximum battery capacity
with a constant recharging rate. To solve this problem,
an Adaptive Large Neighborhood Search algorithm that is
enhanced by a local search for intensification is proposed.
Almost the same problem is addressed in [13]. The only
difference here is the fact of considering heterogenous
vehicles that differ in their transport capacity, battery size and
acquisition cost. An Adaptive Large Neighbourhood Search
with an embedded local search and labelling procedure
for intensification is also used to solve the problem. In
[14], the authors present a variation of the electric vehicle
routing problem in which different charging technologies are
considered and partial EV charging is allowed. This problem
is the closest to our problem in the sense that we consider
different charging technologies and partial EV charging.
However, several major differences have to be outlined.
Firstly, we consider a mixed fleet composed of heterogenous
EVs and CVs. Secondly, the costs of charging at the depot
and at the charging stations are assumed to be time dependant.
Moreover, the charging stations are subject to operating time
windows constraints and charging at the depot is subject to
the grid’s maximum capacity constraints. Besides, EVs are
not necessarily compatible with all charging technologies.
In short, we differ from all the abovementioned studies in that
we consider a heterogenous fleet composed of EVs and CVs,
different types of charging stations and different charging
costs that depend on the time. Moreover, EV charging at
the depot could be intermittent and is subject to real-life
constraints such as the maximum grid capacity constraint.



We also consider that not all EV are compatible with fast
charging technologies and that partial charging is allowed.
Our objective function is also different. In fact, we aim at
minimizing total operating and charging costs involved with
the use of a mixed fleet. Our overall objective is to provide
enhanced optimization tools for EV charging and routing that
are relevant to real-life constraints.

III. PROBLEM DESCRIPTION AND NOTATION

We define the HEVRP-TDMF on a complete, directed
graph G = (V

′
, A). V

′
denotes the set of vertices composed

of the set V of n customers, the set F ′ of dummy vertices
generated to permit several visits to each vertex in the set F
of charging stations F = 1, . . . , f and D

′
the set of dummy

vertices generated to allow several visits to each charger
at the depot D = 1, . . . , d. The set of arcs is denoted by
A = {(i, j) | i, j ∈ V ′

, i 6= j}. The depot is denoted by either
0 or n + 1 depending if it is the initial or terminal node of
a route. We denote by V

′

0 the set V
′ ∪ {0}, by V

′

n+1 the set
V

′ ∪ {n+ 1} and by V
′

0,n+1 the set V
′ ∪ {0, n+ 1}.

The optimization time horizon [0, T ], which represents
typically a day, and is divided into T equidistant time
periods, t = 1, . . . , T , each of length δ, where t represents
the time interval [t − 1, t]. We define the night interval
[0, T0] ⊂ [0, T ] during which charging at the depot with
Level 1 chargers could be performed. Moreover, no customer
has to be served during the night. We define the service
interval [T0, T ] ⊂ [0, T ] during which all customers have
to be served and the EVs could be charged in the different
charging stations as well as in the depot using the available
chargers. A nonnegative demand qi is associated with each
customer i ∈ V , this represents the quantity of goods that
will be delivered to this customer. With each customer we
also associate a service time si. Each arc (i, j) ∈ A is
defined by a distance di,j and a nonnegative travel time
ti,j required to travel di,j . When it is traveled by an EV,
each arc (i, j) consumes an amount of energy ei,j equal
to r×dij , where r denotes a constant energy consumption rate.

Each charging station f ∈ F can deliver a maximum
charging power pf (kW), proposes a time dependent charging
cost cf,t,∀t = T0, . . . , T ; which represents the charging cost
during the time period t, expressed in (euros\kWh). The
chargers in charging station f are available during the time
window [af , bf ]. Accordingly, the EV must wait if it arrives
at charging station f before time af .

We consider a set MEV = {1, . . . ,mEV} of EVs and a set
MCV = {mEV + 1, . . . ,mEV + mCV} of Combustion Engine
Vehicles (CVs), needed to serve all customers. Each EV k
operates with a battery characterized by a nominal capacity
of embedded energy CEk(kWh) and a State of Charge at
time t = 0 (SoC0

k) expressed as a percentage of CEk (0%
= empty; 100% = full). At low and high SoC’s values, the
battery tends to degrade faster ([15] and [16]). In order to
improve its lifetime after repeated use and to respect the

security issues, at each time t, SoCt
k should be in the interval

[SoCMin
k , SoCMax

k ], where SoCMin
k and SoCMax

k are the minimal
and maximal allowable values of SoC, respectively.
Each EV (CV) is characterized by a maximum capacity QEV

(QCV) (m3) which represents the maximum quantity of goods
that could be transported by the vehicle. Denote by FCCV

and FCEV (euros/ day) the fixed costs related to CVs and
EVs, respectively. Denote by OCEV

k (OCCV
k ) the operating

costs (euros/kilometer) related to the maintenance of the EV
(CV), accidents, etc. Thus, if an arc (i, j) is traveled by an
EV k (CV k), this has an operating cost denoted by costEV

i,j,k

(costCV
i,j,k) and is computed as: costEV

i,j,k = di,j × OCEV
k

(respectively costCV
i,j,k = di,j ×OCCV

k ).
At the depot, a given number of slow chargers are available
to charge the EVs during the optimization horizon [0, T ] and
a predefined number of fast chargers are available to charge
the vehicles only during the service time [T0, T ].
At each time period t, each charger in the depot can apply on
EV k a charging power pkt ∈ [pMin, pMax] where pMin and pMax

are the minimal and maximal powers that can be delivered
by the charger, respectively. Thus, an EV charged with a
power pkt during the time period t retrieves a total amount
of energy equal to δ × pkt(kWh). We denote by GPt the
electricity grid capacity available for EV charging at time t;
i.e., at each time period t, the total grid power available to
charge all EVs is limited to GPt. Let c

′

t be the energy cost
during t.
Each customer i ∈ V should be visited, by either an electric
or conventional vehicle, exactly once during [T0, T ]. Each
charging station could be visited as many times as required or
not at all. When charging is undertaken in a charging station
f , it is assumed that only the required quantity of energy is
injected into the EV battery. Thus, EVs could be partially
charged.

Since we consider, within this study, many charging tech-
nologies (slow and fast charging), we should also consider the
fact that not all EVs technologies are compatible with fast
charging. Thus, when we plan the charging of an EV, only the
charging stations proposing compatible charging technologies
should be considered. A feasible solution to our problem is
composed of a set of feasible routes assigned to adequate
vehicles and a feasible EVs charging planning.
A feasible route is a sequence of nodes that satisfies the
following set of constraints:

• Each route must start and end at the depot;
• the overall amount of goods delivered along the route,

given by the sum of the demands qi for each visited
customer, must not exceed the vehicle capacity (QEV or
QCV);

• the total duration of each route, calculated as the sum of
all travel durations required to visit a set of customers,
the time required to charge the vehicle during the interval
[T0, T ], the service time of each customer and, eventually,
the waiting time of the EV if it arrives at a charging
station before its opening time, could not exceed T −T0;

• no more than mEV EVs and mCV CVs are used;



• each customer should be visited between T0 and T ;
• the following charging constraints are satisfied:

– The charging level of the battery of each EV k must
always be in the interval[SoCMin

k , SoCMax
k ];

– when charging is undertaken, the EV should be
charged with a compatible charging technology;

– when the EVs are charged at the depot, the total
power used to charge them does not exceed the
grid’s maximum capacity and the minimum and the
maximum powers of chargers should be respected;

– during [0, T0], EV charging at the depot could only
be performed using the available Level 1 chargers;

– at each charging station f , charging could only
be undertaken during its operating time window
[af , bf ];

We seek to construct a minimum number of tours such that
all customers are served, all EVs are optimally charged and
the total cost of routing and charging is minimized.

IV. PROBLEM FORMULATION

In this section, we propose a Mixed Integer Programming
Model (MIP) for the HEVRP-TDMF. Let F

′

k (respectively,
D

′

k and Dk ) be the set of external charging stations in
F

′
(respectively, chargers in D

′
and chargers in D) that are

compatible with the vehicle k. We introduce the following
decision variables:
xEV
ijk: is a 0-1 variable equal to 1 if an EV k = 1, . . . ,mEV

travels from i ∈ V ′

0 to j ∈ V ′

n+1 and 0 otherwise.
xCV
ijk: is a 0-1 variable equal to 1 if a CV k = 1, . . . ,mCV

travels from i ∈ V ∪{0} to j ∈ V ∪{n+1} and 0 otherwise.
ykt : is a 0-1 variable equal to 1 if the vehicle k = 1, . . . ,mEV

is charged during the time interval t ∈ [0, T0] and 0 otherwise.
pktg : decision real variable denoting the charging power level
applied to EV k = 1, . . . ,mEV using a charger g at the depot
at time interval t ∈ [0, T0] (kW).
ttjk: decision real variable specifying the time of arrival of a
vehicle k = 1, . . . ,mEV +mCV at vertex j ∈ V ′

.
Ea

jk: real variable specifying the amount of energy available
when arriving at node j with EV k (kWh).
El

jk amount of energy available when leaving node j with EV
k (kWh).
y

′

tfk: 0-1 variable specifying if an EV k is charged during the
time period t ∈ [T0, T ] in charging station f ∈ F ′

k ∪D
′

k .
p

′

tfk: real variable representing the charging rate of EV k at
time period t ∈ [T0, T ] in charging station f ∈ F

′

k ∪ D
′

k

(kW).
ljk: real variable specifying the amount of load left in the
vehicle k after visiting node j (m3).
Wjk: the waiting time for EV k when arriving at charging
station j ∈ F ′

k ∪D
′

k .
The mathematical formulation (P) of HEVRP-TDMF is as
follows:

Min
∑

k∈MEV

∑
i∈V ′

0 ,j∈V
′
n+1

costEV
i,j,k × xEV

ijk +

∑
k∈MCV

∑
i∈V ∪{0},j∈V ∪{n+1}

costCV
i,j,k × xCV

ijk +

∑
k∈MEV

∑
f∈F ′

k
∪D′

k

∑
t∈[T0,T ]

cf,t × p
′

tfk +

∑
k∈MEV

∑
j∈D

∑
t∈[0,T0]

c
′

t × pktj +
∑

k∈MEV

∑
j∈V ′

FCEV × xEV
0jk +

∑
k∈MCV

∑
j∈V

FCCV × xCV
0jk +

∑
k∈MEV

∑
f∈F ′

k
∪D′

k

β ×Wfk (1)

∑
k∈MEV

∑
j∈V ′ ;i 6=j

xEV
ijk +

∑
k∈MCV

∑
j∈V ′ ;i 6=j

xCV
ijk = 1, ∀i ∈ V

(2)∑
k∈MEV

∑
j∈V ′

n+1
;i 6=j

xEV
ijk ≤ 1, ∀i ∈ F

′
∪D

′

(3)

∑
k∈MEV

∑
j∈V ′

n+1
;i6=j

xEV
ijk − xEV

jik = 0, ∀i ∈ V
′

(4)

∑
k∈MCV

∑
j∈V ∪{n+1};i 6=j

xCV
ijk − xCV

jik = 0, ∀i ∈ V (5)∑
j∈V ′ ;i6=j

xEV
0jk ≤ 1, ∀k ∈MEV (6)∑

j∈V ;i 6=j

xCV
0jk ≤ 1, ∀k ∈MCV (7)

mEV∑
k=1

pktj ≤ GPt, ∀t ∈ [0, T0],∀j ∈ Dk (8)

pMin × ykt ≤ pktj , ∀t ∈ [0, T0],∀k ∈MEV,∀j ∈ Dk (9)

pktj ≤ pMax × ykt, ∀t ∈ [0, T0],∀k ∈MEV,∀j ∈ Dk (10)

SoC0
k

100
+

∑
t≤T0−1 δ × pktj

CEk
≤ SoCMax

k

100
,∀t ∈ [0, T0],∀k ∈MEV,∀j ∈ Dk (11)

SoC0
k

100
+

∑
t≤T0−1 δ × pktj

CEk
≥ SoCMin

k ,∀t ∈ [0, T0],

∀k ∈MEV,∀j ∈ Dk (12)

ttjk ≥ ttik + (ti,j + si)× xEV
ijk − T × (1− xEV

ijk),

∀i ∈ V ∪ {0},∀j ∈ V
′

n+1; i 6= j,∀k ∈MEV (13)

ttjk ≥ ttik + (ti,j + si)× xCV
ijk − T × (1− xCV

ijk),

∀i ∈ V ∪ {0},∀j ∈ V
′

n+1; i 6= j,∀k ∈MCV (14)

ttjk ≥ ttik + ti,j × xEV
ijk +

t=T∑
t=T0

δ × y
′

tik − (T + r × CEk)×

(1− xEV
ijk),∀i ∈ F

′

k ∪D
′

k,∀j ∈ V
′

n+1,∀k ∈MEV (15)

T0 ≤ ttjk ≤ T, ∀j ∈ V
′

0,n+1,∀k ∈MEV ∪MCV (16)



aj ≤ ttjk +Wjk ≤ bj , ∀j ∈ F
′

k ∪D
′

k,∀k ∈MEV (17)

SoCMin
k

100
≤

EA
jk

CEk
≤ SoCMax

k

100
, ∀j ∈ V

′

n+1, ∀k ∈MEV
(18)

SoCMin
k

100
≤ EL

jk ≤
SoCMax

k

100
, ∀j ∈ V

′

n+1, ∀k ∈MEV (19)

EA
jk = EL

jk, ∀j ∈ V,∀k ∈MEV (20)

EA
jk ≤ EL

ik − r × di,j × xEV
ijk + CEk(1− xEV

ijk),

∀i ∈ V
′

0 ,∀j ∈ V
′

n+1,∀k ∈MEV (21)

EL
jk = EA

jk +

t=T∑
t=T0

d× p
′

tjk, ∀j ∈ F
′

k ∪D
′

k,∀k ∈MEV

(22)

0 ≤ p
′

tjk ≤ pj × y
′

tjk, ∀j ∈ F
′

k ∪D
′

k,∀t ∈ [T0, T ],

∀k ∈MEV (23)∑
k∈MEV

∑
j∈D′

k

p
′

tjk ≤ GPt, ∀t ∈ [T0, T ] (24)

t=T∑
t=bj

y
′

tjk +

t=aj∑
t=T0

y
′

tjk = 0, ∀j ∈ F
′

k ∪D
′

k,∀k ∈MEV (25)

ljk ≥ lik + qj −QEV × (1− xEV
ijk),

∀i ∈ V
′

n+1, j ∈ V, i 6= j,∀k ∈MEV (26)

ljk ≥ lik + qj −QCV × (1− xCV
ijk),

∀i ∈ V
′

n+1, j ∈ V, i 6= j,∀k ∈MCV (27)

ljk ≥ lik −QEV × (1− xEV
ijk),

∀i ∈ V
′

n+1, j ∈ F
′

k ∪D
′

k, i 6= j,∀k ∈MEV (28)

ljk ≤ QEV, ∀j ∈ V
′

n+1,∀k ∈MEV (29)

ljk ≤ QCV, ∀j ∈ V
′

n+1,∀k ∈MCV (30)

Wjk ≥ aj − ttjk, ∀j ∈ F
′

k ∪D
′

k,∀k ∈MEV (31)

xEV
ijk;x

CV
ijk; ykt; y

′

tjk ∈ {0, 1};EL
jk;E

A
jk; ljk; ptk;

p
′

tjk; ttjk; ljk;Wjk ≥ 0,∀i, j, t, k ∈ V
′

0,n+1 (32)

The objective function, measured in monetary units, consists
in minimizing five costs: (i) the routing cost, (ii) the charging
cost engendered by charging EVs in the charging stations
during [T0, T ], (iii) the cost of charging EVs at the depot
during [0, T0], (iv) the vehicles total fixed cost and (v) the total
cost engendered by the waiting time; where β is a coefficient
estimating the cost lost because of waiting during one period
of time.
Constraints (2) ensure that each customer is visited exactly
once. Constraints (3) guarantee that each charging station
is visited at most one time. Constraints (4) and (5) enforce
that the number of incoming arcs is equal to the number of
outgoing arcs for each node. Constraints (6) and (7) ensure

that each vehicle is at most assigned to one route. Constrains
(8)-(12) concern charging EVs at the depot. Constraints (8)
ensure that, at each time period t ∈ [0, T0], the total power
used to charge the EVs does not exceed the grid’s maximum
capacity. Constraints (9) and (10) guarantee the respect of the
minimum and the maximum powers of chargers when charging
the EVs. Constraints (11) and (12) ensure that the SoC of each
EV is in the interval [SoCMin, SoCMax]. Constraints (13)-(15)
link arrival times at nodes i and j and permit to eliminate
the sub-tours. Constraints (16) ensure that the arrival time to
each node should be in the interval [T0, T ] and constraints (17)
make sure that the arrival time to any charging station should
be in its operating period. Constraints (18) and (19) enforce
that the energy amount available when arriving at node j or
when leaving it never exceeds the maximum allowable SoC
or goes bellow the minimum allowable SoC. Constraints (20)
guarantee that the amount of energy available when arriving
at a customer j is equal to the energy amount available
when leaving it. Constraints (21) link the amounts of energy
available when arriving to nodes i and j. Constraints (22) take
into account the quantity of energy charged at charging station
j. Constraints (23) ensure that the power used to charge an
EV during a given time period does not exceed the charging
power that could be delivered by the chargers of this station.
Constraints (24 prohibit the exceeding of the available grid’s
maximum capacity. Constraints (25) prohibit any charging at
a charging station outside its opening hours. Constraints (26)-
(30) ensure the respect of the vehicles capacity constraints. The
waiting time for vehicle k at charging station j is defined by
the constraints 31. Finally, constraints (32) define the domain
of all used variables.

V. SOLVING APPROACHES

A. Charging Routing Heuristic

In this section, we introduce a Charging Routing Heuristic
(CRH) to solve the HEVRP-TDMF. This heuristic is used
to generate initial solutions within a short computational
time and it consists of two steps. In the first step, a
feasible charging scheme for EVs at the depot during
[0, T0] is generated. In the second step, a joint routing and
charging planning for the service period [T0, T ] is determined.

Step 1: EVs Charging at the depot during [0, T0]:
This step aims at designing EVs charging strategies at the
depot during the time interval [0, T0] while satisfying the
electricity grid and the chargers constraints. Those charging
constraints could limit EV charging in the sense that the
available EVs will not necessarily be fully charged at t = T0.
Our objective is to minimize charging costs while at the
same time giving the priority of charging to the EVs (i) with
low operating costs, (ii) whose state of charge is still very
low, (iii) which are not compatible with all available charing
technologies and (iv) whose charging is more costly.
At t = 0, it is assumed that all batteries of EVs are empty.
The heuristic starts by sorting the time periods according to
the ascending order of electricity costs. Let Tsorted be the
sorted table of all time periods in [0, T0]. With each EV,



we associate a priority prioritykt that translates the fact that
EV k has or not higher priority to charging than the other
available EVs. This priority is computed as: prioritykt =
SoCtk

SoCmax
+ Comp Costk

Comp Costtotal
+ 1

kmk×OCEV
k

,
where:
• kmk is an estimation of the average number of kilometers

traveled by EV k,
• Comp Costk =

∑t=T
t=T0

1
ct

; where ct is the average
charging cost at all charging stations in which vehicle
k could be charged during the time period t; i.e., ct =∑

f∈F (k)(
1

|F (k)| )×cft; where f ∈ F (k) if and only if EV
k is compatible with the charging technology proposed
by f ,

• Comp Costtotal =
∑t=T0

t=T
1∑

f∈F
( 1
|F | )×cft

.

The heuristic selects the first available time period in Tsorted
as well as the EV with the lowest priority and charges it
with the minimal possible charging power between: (i) the
maximal power of chargers, (ii) the grid’s capacity that is still
available, and (iii) the maximum power that will completely
full the vehicle’s battery. The grid’s capacity is then updated
and if the new grid’s capacity is still positive, the CRH selects
a new different EV with the lowest priority. This procedure
is repeated until no possible charging could be undertaken.
At the end of the first step, a charging scheme is available
for all EVs.

Step 2: Joint charging and routing during [T0, T ]:
Initially, a list of mEV +mCV empty routes is created.
While at least an EV is still available, the heuristic continues
with selecting an EV with a maximum priority. It inserts
then iteratively the customers into an active route at the
position causing minimal increase in tour cost until a violation
of capacity or battery capacity of the selected EV occurs.
The heuristic anticipates, when possible, any violation due to
the battery capacity constraint by inserting charging stations
during the tour construction. The best charging station is
selected among the compatible and available charging stations
belonging to the neighborhood V (i) of the current node i,
where V (i) of all nodes within the circle defined by the center
i and the radius α; where α is the maximum distance that could
be traveled by the EV using its current state of charge (see
Figure 1)). If a violation occurs or the total route time exceeds
T − T0, the current route is assigned to the selected vehicle,
another EV with a maximum priority is selected and a new
route is activated.
When a customer could not be reached using any of the
available EVs, it is assigned to the CV engendering the
minimal cost increase in the solution cost while satisfying the
capacity and the total route duration constraints, until at most
the predefined number of routes (mEV +mCV ) is constructed.
An illustrative example of the second step of CRH is given in
the Figure 1.
Algorithm 3 provides more details about the CRH heuristic.

Fig. 1. Illustrative example of the CRH: Assume that an available EV at the
depot could reach all nodes in V (D) and the cost of the arc (D, i) is minimal.
Before adding i to the active route, the heuristic checks the neighborhood of
i (list of all reachable nodes). In our case, V (i) = ∅. Thus, if the EV visits
the customer i, it will be blocked there since its state of charge will not
be sufficient to go back to the depot. The heuristic continues by selecting
the node m and checking its neighborhood. In our case, V (m) = e. The
customer m will then be added to the active route since the EV will be able
to get charged after visiting m.

Overview of the CRH



Algorithm 1 Charging Routing Algorithm

1: Input: A graph G = (V
′
, A) and set of mEV +mCV empty

routes
2: Output: A set of routes assigned to at most mEV + mCV

vehicles
3: Step 1
4: Let C = (c′1, . . . , c

′
T0
), G = (g1, . . . , gT0) and E =

(ek1 , . . . , e
k
T0
) be three vectors of T0 elements, where c′t, t =

1, . . . , T0, is the electricity cost during the time interval [t−1, t],
gt, t = 1, . . . , T0, is the residual capacity of the electricity
grid during the time interval [t − 1, t] and ekt , t = 1, . . . , T0,
k = 1, . . . ,mEV , is the quantity of energy injected in the battery
of EV k during the time interval [t − 1, t]. Parameter ekt is
initialized to zero.

5: Sort the vector C in the nondecreasing order of c
′
t and let C =

(c′π(1), . . . , c
′
π(Tj)

) be the sorted vector
6: for each time interval [π(t)− 1, π(t)] such that gπ(t) > 0 do
7: while Charging could be undertaken; i.e., there exists at least

one available charger and one vehicle k such that ekπ(t) = 0
and vk > 0; where vk is is maximum quantity of energy that
could be injected in the battery of vehicle k without exceeding
the maximum allowable State of Charge do

8: Compute the priority associated with each EV and select
the EV with the lowest priority among all vehicles having
ekπ(t) = 0 and vk > 0

9: Calculate Energy to ejectπ(t) = min{pMax × δ, gπ(t) ×
δ, vk}

10: Update ekπ(t) = Energy to ejectπ(t) and gπ(t) = gπ(t)−
Energy to ejectπ(t)

δ
11: end while
12: end for
13: The charging schedule of all EVs at the depot is given, for each

vehicle k, by the power vector that should be applied to EV k

P = (
ek1
δ
, . . . ,

ekT0
δ

).
14: Step 2
15: while the maximum number of routes is not yet reached AND

there exists at least one customer that is not yet served do
16: Select the EV with the highest priority prioritykT0

at t = T0

among all available EVs not yet assigned
17: while the total route duration is less than T − T0 do
18: Sort the list of nodes either randomly or in increasing order

of the angle between the depot and a randomly chosen point
and select the first customer i in the list

19: Let V (i) be the set of all neighbors of node i not yet visited
and that could be visited using the remaining battery energy
of the current vehicle.

20: Select a node j from V (i) such that the cost ci,j of arc
(i, j) is minimal and there exists at least one customer and
a compatible charging station, or the depot, or a charging
station in V (j) ∩ F (j).

21: if V (j) is empty or it only contains customers then
22: the vehicle should get charged before visiting j, in that

case insert the least cost compatible charging station
while ensuring that this charging station will be available
when the EV arrives at it

23: end if
24: if (V (j) is empty OR it only contains customers or in-

compatible charging stations) AND charging is not possible
then

25: Assign i to the CV having a sufficient capacity and
engendering a minimum insertion cost

26: end if
27: end while
28: end while

B. Inject-Eject Routine-Based Local Search

In this section, we propose a new Inject-Eject Routine-
Based Local Search (IELS) which starts from a given starting
solution and improves it using the inject-eject routine. The
heuristic CRH is used to generate an initial solution to the
problem.
First of all, we introduce the following parameters:

• Iter: This parameter controls the size of the main loop
of the algorithm.

• IterIE: This parameter specifies the number of times the
inject-eject routine should be repeated.

• Num: This parameter controls the size of the neighbor-
hood list that will be used in the inject-eject procedure.

For each solution, the heuristic performs Iter iterations of
the following neighborhood ejection and injection strategy.
First, a node j and a set of Num − 1 additional nodes that
are located the nearest possible to j (in terms of costs), are
selected at random (the selected neighbors may be in different
routes and are not necessary in V (j)).
This neighborhood of Num nodes is then ejected from the
solution. It is possible to eject a charger or to decrease the
charging time at a given charger, in that case, the solution
may become unfeasible, and a supplementary penalty is
then added to the total solution cost. The ejected nodes are
then re-inserted back into the partial solution using one of
three different insertion methods: random insertion, insertion
method with regret search and score-based insertion method.
If the solution becomes infeasible, we insert a new least-cost
charger in the route while ensuring that the constraints related
to the compatibility of the charging stations to the EV as
well as the station’s operating time windows constraints are
satisfied.
If a new route is created, the vehicle ownership cost is added
to the total route cost.
After all customers have been re-inserted back into the
solution using one of the three insertion methods, if the
resulting solution is better than the original solution, then the
next iteration continues with the new solution. Otherwise, the
original solution is re-loaded and the next iteration continues.
At the end of the run, the best solution found during the
search is reported.
In the following, we detail the different insertion methods as
well as the inject-eject algorithm.

1) Random Insertion Method: This method consists in
randomly selecting a node among the list of ejected nodes
and inserting it in the position that generates the minimal
cost increase in the total solution cost. Different random
orderings to inject the nodes are tried. The insertion at each
route position is evaluated. If the insertion of a customer in
a given route position leads to a violation of the load or
total time constraints, this route position will not be accepted.
However, if the insertion of a customer in a given route
position still satisfies the load and total time constraints but
leads to a violation of the energy constraints (in the case
where the EV needs more energy to serve this customer
or the time planned for charging decreases since it depends



on the opening time windows of the charging stations), this
method tries to repair the solution by inserting chargers in the
route while ensuring the compatibility between the EV and
the chargers and satisfying the charging stations’ operating
time windows constraints. At each update of the routing and
charging solution, the total solution cost is reevaluated.

Algorithm 2 Random Insertion Method
1: Input: A partial solution to the HEVRP-TDMF and a list of

ejected nodes Eject
2: Output: A solution to the HEVRP-TDMF
3: trial: is the number of times the Random Insertion Method

should be repeated for each list of ejected nodes
4: best increase cost =∞
5: best total solution cost=cost of the best solution found
6: while tr < trial do
7: Generate a list of ejected nodes Eject and sort it randomly
8: while Eject 6= ∅ do
9: Select a node j from the list Eject

10: for each route position do
11: try to inject j in this route position
12: if the insertion is possible and increase cost <

best increse cost then
13: best increse cost = increase cost
14: else
15: if the insertion satisfies the total load and total time

constraints and violates the energy constraints then
16: try to inject a charger using the Charger Insertion

Method
17: if increase cost < best increse cost then
18: best increse cost = increase cost
19: end if
20: end if
21: else
22: do not accept this insertion
23: end if
24: end for
25: Evaluate the cost of inserting j in a new route
26: if increase cost < best increse cost then
27: best increse cost = increase cost
28: end if
29: end while
30: if total solution cost < best total solution cost then
31: best total solution cost = total solution cost
32: save the best order of injected nodes
33: end if
34: end while
35: inject all nodes of Eject and eventually some chargers in the

best route positions defined

2) Insertion Method With Regret Search: The insertion
method with regret search uses the same cheapest insertion
method as the random insertion method, but allows previous
insertions to be undone if this removal allows for a cheaper
insertion of the current customer under consideration. This is
similar to the notion of regret described in [17].
At each step, the cheapest next insertion and the maximum
cost reduction caused by deleting a node (which is not one of
the partial solution vertices participating in the insertion) from
the current partial solution are compared. The inject-eject
moves remain temporary and become final only when all
ejected nodes are re-injected. Algorithm 3 describes the
insertion method with regret search.

Algorithm 3 Insertion Method with Regret Search
1: Input: A partial solution and a list Eject of ejected nodes
2: Output: A set of routes
3: trial: is the number of times the Insertion Method with regret

should be repeated for each list of ejected nodes
4: node to eject = −1
5: max eject cost = −∞
6: for (tr = 0; tr < trial) do
7: Create a random permutation of the list Eject
8: Let RandEject be the new list of ejected nodes engendered

by the random permutation
9: for (j = 0; j < Num) do

10: Find the cheapest way to insert the current node (including
creating a new route) and eventually the best charging
station f∗ and the best route position p∗ to insert it

11: for (k = 0; k < j) do
12: if the node RandEject[k] isn’t involved in the cheapest

insertion then
13: if The ejection cost of RandEject[k] is greater than

the maximum ejection cost (max eject cost) then
14: node to eject = RandEject[k]
15: end if
16: end if
17: end for
18: if There is no node to eject OR the cost of insertion of

RandEject[j] is greater than max eject cost then
19: Insert RandEject[j] in the route position engendering

the minimum cost increase in the solution cost
20: insert eventually f∗ in p∗

21: else
22: Eject the node node to eject and insert the node

RandEject[j] in the cheapest insertion position as well
as eventually f∗ in p∗

23: end if
24: end for
25: end for

3) Score-Based Insertion Method: The Score-Based
Insertion Method is based on the idea of associating a score
with each node to inject. This idea is inspired from the
Parallel Regret Algorithm introduced in [18].
For this method, the Eject list is only composed of customers.
However, it is possible to inject and eject chargers to repair
the solution. A score is associated with each node of the
Eject list. This score translates the difficulty of injecting the
node in the current solution. For each node j ∈ Eject, we
compute the score score(j) using a penalty penalty(j, r)
which is related to the cost of injecting an ejected customer
j in a specific route r. The score score(j) used to select the
next customer j to inject in the current solution includes (i)
the penalty occurred when the customer j is not assigned
to its preferred route; (ii) the distance of j to the closest
available charging station (dj,fc ); (iii) the number of available
charging stations that could be reached by the EV after
visiting customer j (ηf ).
We have then:
score(j) = penalty(j, r) + dj,fc − ηf ,
where penalty(j, r) is the difference between the cost
engendered by inserting the customer j, and eventually a
charger, in the second best route position and the cost of
inserting it in the best route position. When a customer could
only be inserted in one possible route position, the penalty
penalty(j, r) takes a large value imposing that the customer



should be inserted in the best route position.
Algorithm 4 details the Score-Based Insertion Method.

Algorithm 4 Score-Based Insertion Method Algorithm
1: Input: A partial solution and a list Eject of ejected customers
2: Output: A solution to the HEVRP-TDMF
3: for each customer j in Eject do
4: Compute the costs engendered by injecting j in each route

position including the possibility of injecting a charger when
needed to repair the solution

5: compute the score score(j)
6: end for
7: while Eject 6= ∅ do
8: Select the customer j with the maximum value of score
9: if the cost of injection of j in a new route is cheaper then

the cost of inserting j in any of the already constructed routes
then

10: initialize a new route r̃
11: inject j in this route
12: else
13: insert j in the best route position
14: exclude it from Eject
15: end if
16: for each customer j in Eject do
17: update the score score(j)
18: end for
19: end while

In the following, we will detail the Charger Insertion
Method which is used by the different insertion methods when
a violation of the energy constraints occurs.
When an ejected node has to be injected in the solution,
different route positions are evaluated and a violation of the
energy constraints may occur. Rather then excluding this route
position, we try to repair the solution by injecting a charger in
the unfeasible route. This Charger Insertion Method searches
the best charging charger and the best route position that
engender the least charging cost and guarantee the feasibility
of the route.

Algorithm 5 Charger Insertion Method
1: Input: A partial solution with an infeasible route r̂ assigned to

EV k̂
2: Output:A feasible solution
3: feasible route cost =∞
4: for each charging station f̂ compatible with EV k̂ do
5: for each position p̂ in route r̂ do
6: if route r̂ becomes feasible if f̂ is inserted in p̂ AND the

time operating constraints of f̂ are satisfied then
7: Adjust the amount of energy to inject using the Charging

Adjustment Procedure
8: if feasible route cost < best feasible route cost

then
9: p∗ = p̂

10: f∗ = k̂
11: end if
12: end if
13: end for
14: end for

Algorithm 6 provides details on the Charging Adjustment
Procedure used to estimate the minimum required amount

of energy to inject in the EV when charging should be
undertaken.

Algorithm 6 Charging Adjustment Procedure
1: Input: Initial feasible solution r
2: Output:Improved feasible route r

′

3: r
′
:= r

4: Let (d0, p1, . . . , fx, . . . , pr, dn+1) be the sequence of customers
and charging stations of route r.

5: for each subsequence of customers between two charging stations
do

6: Calculate the minimum required amount of energy that should
be injected in the EV in the next charging station.

7: end for
8: Update the total cost and duration of r

′
.

Now, we have all sub-routines to describe the Inject-Eject
method. In the following, Algorithm 7 describes the Inject-
Eject method in detail.

Algorithm 7 Inject-Eject Method
1: Input: An initial solution S
2: Output:An improved solution S

′

3: best obj = solution cost(S)
4:
5: for d = 0; d < Iter do
6: Start with the best solution derived from the Charging Routing

Heuristic or the improved solutions
7: for a = 0; a < IterIE do
8: Start with finding a random node j (different from the

depot) to eject and eject a number Num − 1 of random
nodes from the list of neighbors of node j

9: Inject all ejected nodes again using one of the three insertion
methods described above

10: If the insertion method leads to an unfeasible route, repair
the solution by including a charger using the Charger
Insertion Method

11: If a new route is created, add the vehicle possession cost
to the total solution cost

12: end for
13: if total route cost < best obj then
14: conserve this solution
15: end if
16: end for

VI. COMPUTATIONAL RESULTS

We conducted numerical experiments on real data instances
provided by two French companies that manage large
heterogenous vehicle fleets. Our heuristics are implemented
using C++. All experiments were carried out on an Intel
Xeon E5620 2.4GHz processor, with 8GB RAM memory.
The half of EVs considered have 22 kWh battery packs and
the rest have 16 kWh battery packs.
The optimization procedure is based on a 24 hour period.
EVs charging at the depot could be performed during the
time interval [8pm, 8am]. The customers should be served
not earlier than 8 am and not later than 8 pm.
Concerning charging at the depot, prices for electricity
are based on those provided by EDF (French Electricity
Distribution company). At most mEV Level 1 chargers, with
a range of 1.5-3.7 kW could be used to charge EVs at the



depot during the night period. One Level 2 charger, with a
range of 1.5-22.0 kW, could be used to charge EVs during
the day. The minimal allowable SoC is fixed at 20% and the
maximal allowable SoC is fixed at 95% for all EVs. Initially,
the EVs batteries are empty (SoC=0%).
The operating cost of each EV expressed in
(euros\kilometer) is calculated as the sum of different costs
engendered by the maintenance, accidents, etc. This cost does
not include the electricity costs which are computed separately
and include EVs charging costs at the depot and other charging
stations. Concerning the CVs, their operating costs include
the costs engendered by the maintenance, accidents, etc., as
well as the gasoline cost which is calculated by multiplying
the gasoline consumption per kilometer by the cost per unit
of gasoline. Concerning charging at the different external
charging stations, we consider only stations proposing slow
charging (with Level 1 chargers) or medium charging (using
Level 2 chargers). Charging stations proposing fast charging
using Level 3 chargers are not considered within those
experiments since our real data instances include only EVs
that are not compatible with fast charging.
Experiments were conducted on 9 real data instances. The
number of nodes for the considered instances ranges between
300 and 550. We consider that 18 EVs and 8 CVs are available
to serve the customers. Each EV has a capacity that can take
the values 3, 4 or 5 m3. Each CV has a capacity of 5 m3. The
computational results obtained with the different heuristic
methods are summarized in Table VI. The entries of Tables VI
show, for the CRH, the value of the objective function of the
generated solution as well as the average run time in seconds
(s) and for the three other methods (IELS-Rand, IELS-Regret,
IELS-Score), the Gap of the generated solution (s) in relation
to the solution generated by the CRH (sCRH ) computed as:
Gap = s−sCRH

s as well as the average run time in seconds (s).
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The computational results show that the three different IELS
heuristics have generated the same solution for 4 instances. For
the remaining instances, we can notice that the IELS with re-
gret insertion method generates better solutions than the other
two methods. In fact, the IELS with regret insertion method
has an average improvement gap in relation to the CRH of
about 36%, compared to 34% for the score-based IELS and
32% for the IELS with regret insertion strategy. Concerning
the computational time, among all the IELS methods, the IELS
with random insertion method seems to be the fastest with an
average CPU of around one minute compared to around 2
minutes for the score-based IELS and around 5 minutes for
the IELS with regret insertion method.

VII. CONCLUSION

In this paper, we considered a new real-life Electric Vehicle
Routing Problem with Time Dependent Charging Costs and
Heterogenous Fleet. This problem consists in optimizing the
routing of a mixed vehicle fleet of EVs (having different
battery capacities and different operating costs) and CVs with
the objective of minimizing the overall routing and charging
costs. Contrary to existing studies that focus on the Electric Ve-
hicle Routing Problem, we consider that the charging stations,
which are subject to operating time windows constraints, pro-
pose charging using different charging technologies and time
dependent charging costs. Moreover, charging at the depot is
subject to the electricity grid and the chargers constraints. We
also consider the compatibility constraints between the EVs
and the different charging technologies. To solve this problem,
we developed a Charging Routing Heuristic to generate initial
solutions as well as an Inject-Eject-Based Local Search with
three different insertion strategies. All heuristic methods were
tested on real data instances.
As further work, we will test our methods on newly designed
data instances as well as on benchmark instances of some
related problems. Moreover, we will consider some classical
meta-heuristics to solve our problem.
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