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Chapter 3
Probabilistic Analyses of Lattice
Reduction Algorithms

Brigitte Vallée and Antonio Vera

Abstract The general behavior of lattice reduction algorithms is far from being
well understood. Indeed, many experimental observations, regarding the execution
of the algorithms and the geometry of their outputs, pose challenging questions,
which remain unanswered and lead to natural conjectures yet to be settled. This sur-
vey describes complementary approaches which can be adopted for analyzing these
algorithms, namely, dedicated modeling, probabilistic methods, and a dynamical
systems approach. We explain how a mixed methodology has already proved fruit-
ful for small dimensions p, corresponding to the variety of Euclidean algorithms
(p = 1) and to the Gauss algorithm (p = 2). Such small dimensions constitute an
important step in the analysis of lattice reduction in any (high) dimension, since the
celebrated LLL algorithm, due to Lenstra, Lenstra, and Lovdsz, precisely involves a
sequence of Gauss reduction steps on sublattices of a large lattice.

General Context

The present study surveys the main works aimed at understanding, both from a the-
oretical and an experimental viewpoint, how the celebrated LLL algorithm designed
by Lenstra, Lenstra, and Lovasz performs in practice. The goal is to precisely quan-
tify the probabilistic behavior of lattice reduction and attain a justification of many
of the experimental facts observed. Beyond its intrinsic theoretical interest, such a
justification is important as a fine understanding of the lattice reduction process con-
ditions algorithmic improvements in major application areas, most of them being
described in this book: cryptography (see [28, 31]), computational number theory
(see [21,22, 35]), integer programming (see [1]), etc. The results obtained in this
perspective may then be applied for developing a general algorithmic strategy for
lattice reduction.
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Varied Approaches

We briefly describe now three ditferent points of view: dedicaled modeling, proba-
bilistic methods, and dynamical systems approach.

Dedicated Modeling. Probabilistic models are problem-specific in the various appli-
cations of lattice reduction. For each particular area, special types of lattice bases are
used as input models, which induce rather different quantitative behaviors, An anal-
ysis of the lattice reduction algorithms under such probabilistic models aims at
characterizing the behavior of the main parameters — principally, the number of
iterations, the geometry of reduced bases, and the evolution of densities during an
execution.

Probabilistic Methods. The probabilistic line of investigation has already led to tan-
gible results under the (somewhat unrealistic) models where vectors of the input
basis are independently chosen according to a distribution that is rotationally invari-
ant. In particular, the following question has been answered: what is the probability
for an input basis to be already reduced? A possible extension of this study to realis-
tic models and to the complete algorithm (not just its input distribution} is discussed
here.

Dyramical Systems Approach. Thanks to earlier results, the dynamics of Euclid’s
algorithm is now well-understood — many results describe the probabilistic behav-
ior of that algorithm, based on dynamical systems theory as well as related tools,
like transfer operators. These techniques are then extended to dimension p = 2
{Gauss’ algorithm). We examine here the possible extensions of the “dynamical
analysis methodology™ to higher dimensions. The first step in such an endeavor
should describe the dynamical system for the LLL algorithm, which is probably a
complex object, for p > 2.

Historical and Bibliographic Nofes

Over the past 20 years, there have been several parallel studies dedicated to the
probabilistic behavior of lattice reduction algorithms, in the two-dimensional case
as well as in the general case.

The Two-Dimensional Case. The history of the analysis of lattice reduction algo-
rithms starts before 1982, when Lagarias [23] performs in 1980 a first (worst—case)
analysis of the Gauss algorithms in two and three dimensions, In 1990, Valiée [38]
exhibits the exact worst—case complexity of the Gauss algorithm. In the same year,
Flajolet and Vallée {16} perform the first probabilistic analysis of the Gauss algo-
rithm: they study the mean value of the number of iterations in the uniform model.
Then, in 1994, Daudé et al. [14] obtain a complete probabilistic analysis of the
Gauss algorithm, with a “dynamical approach,” but still under the uniform model.
The same year, Laville and Vallée [24] study the main output parameters of the algo-
rithm (the first minimum, Herimite’s defect), under the uniform model, still. In 1997,
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Vallée [39] introduces the model “with valuation” for the Sign Algorithm: this is an
algorithm for comparing rationals, whose behavior is similar to the (Gauss algorithm.
In 2000, Flajolet and Vallée [17] precisely study all the constants that appear in the
analysis of the Sign Algorithm. Finally, in 2007, Vallée and Vera [45, 47] study
all the main paramelers of the Gauss algorithm {execution parameters and output
parameters) in the general model “with valuation.”

The Dynamical Analysis Methodology. From 1995, Vallée has built a general method
for analyzing a whole class of ged algorithms. These algorithms are all based on the
same principles as the Euclid algorithms (divisions and exchanges), but they differ
on the kind of division performed. This method, summarized for instance in [37],
views an algorithm as a dynamical system and nses a variety of tools, some of them
coming from analysis of algorithms (generating functions, singularity analysis, etc.)
and other ones being central in dynamical systems, like transfer operators. The inter-
est of such an analysis becomes apparent in the work about the Gauss Algorithm
{14], previously described, which is in fact the first beginning of dynamical anal-
ysis. The dynamical systems underlying the Gauss algorithms are just extensions
of systems associated to the (centered) Euclid algorithms, which first need a sharp
understanding. This is why Vallée returns to the one-dimensional case, first performs
average-case analysis for a large variety of Euclidean algorithms and related param-
eters of interest: number of iterations [41], bit-complexity {(with Akhavi} [5], and
bit-complexity of the fast varianis of the Euclid algorithms (with the CAEN group)
[10]. From 2003, Baladi et al. [6,27] also obtain distributional results on the main
parameters of the Euclid algorithms - number of iterations, size of the remainder
at a fraction of the execution, and bit-complexity — and show that they all follow
asymptolic normal laws.

Tt is now natural to expect that most of the principles of dynamical analysis can
be applied to the Gauss algorithm. The first work in this direction is actually done
by Vallée and Vera, quite recently (2007), and completes the first work [14],

The General Case, The first probabilistic analysis of the LLL algorithm is performed
by Daudé and Valiée on 1994 [15] under the “random ball model.” These authors
obtain an upper bound for the mean number of iterations of the algerithm. Then,
in 2002, Akhavi [3] studies the probabilistic behavior of a random basis (again,
under the random ball model) and he detects {wo different regimes, according to
the dimension of the basis relative to the dimension of the ambient space. In 2006,
Akhavi et al, [4] improve on the previous study, while generalizing it to other ran-
domness models {the so-called spherical models): they exhibit a limit model when
the ambient dimension becomes large. These studies itlustrate the importance of the
model “with valuation” for the local bases associated to the input.

In 2003, Ajtat [2] exhibits a randomness model of input bases (which is called
the Ajtai model in this paper), under which the probabilistic behavior of the LLL
algorithm is close to the worst-case behavior. In 2006, Nguyen et al. [30] study
random lattices together with their parameters relevant to lattice reduction algo-
rithms. In 2006, Nguyen and Stehlé [30] conduct many experiments for the LLL
algorithms under several randomness models. They exhibit interesting experimental
phenomena and provide conjectures that would explain them.
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The Two-Dimensional Case as a Main Tool for the General Case. This paper
describes a first attempt to apply the dynamical analysis methodology to the LLL
algorithm: the LLL algorithm is now viewed as a whole dynamical system that runs
in parallel many two-dimensional dynamical systems and “gathers” all the dynam-
ics of these small systems, This (perhaps) makes possible to use the precise results
obtained on the Gauss algorithm — probabilistic and dynamic - as a main tool for
describing the probabilistic behavior of the LLL algorithm and its whole dynamics.

Plan of the Survey

Section “The Lattice Reduction Algorithm in the Two-Dimensional Case” explains
why the two-dimensional case is central, introduces the lattice reduction in this par-
ticular case, and presents the Gauss algorithm, which is our main object of study.
Section “The LLL Algorithm” is devoted to a precise description of the LLL algo-
rithm in general dimension; it introduces the main parameters of interest: the output
parameters, which describe the geometry of the output bases, and the execution
parameters, which describe the behavior of the algorithm itself. The results of the
main experiments conducted regarding these parameters on “useful” classes of lat-
tices are also reported there. Finally, we introduce variants of the LLL algorithm,
where the role of the Gauss algorithm becomes more apparent than in standard
versions, Section “What is a Random (Basis of a} Lattice?” describes the main prob-
abilistic models of interest that appear in “real life” applications — some of them are
given because of their naturalness, while other ones are related to actual applications
of the LLL algorithm. Section “Probabilistic Analyses of the LLL Algorithm in the
Spherical Model” is devoted to a particular class of models, the so-called spherical
models, which are the most natural models (even though they do not often surface
in actual applications). We describe the main results obtained under this model: the
distribution of the “local bases,” the probability of an initial reduction, and mean
value estimates of the number of ilerations and of the first minimum.

The first step towards a precise study of other, more *useful,” models is a
fine understanding of the two-dimensional case, where the mixed methodology is
employed. In Section “Returning to the Gauss Algorithm”, we describe the dynam-
ical systems that underlie the (two) versions of the Gauss algorithms, together with
two (realistic) input probabilistic models of use: the model “with valuation” and the
model “with fixed determinant.” Sections “Analysis of Lattice Reduction in Two-
Dimensions: The Output Parameters” and “Analysis of the Execution Parameters
of the Gauss Algorithm” on the precise study of the main parameters of inter-
est — either output parameters or execution parameters — under the model “with
valuation.” Finally, Section “First Steps in the Probabilistic Analysis of the LLL
Algorithm” returns to the LLL algorithm and explains how the results of Sections
“Returning to the Gauss Algorithm — Analysis of the Execution Parameters of the
Gauss Algorithm” could (should?) be used and/or extended to higher dimensions.
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The Lattice Reduction Algorithm
in the Two-Dimensional Case

A lattice £ C R of dimension p is a discrete additive subgroup of R”, Such
a lattice is generated by integral linear combinations of vectors from a family
B :={b1,bs,...bp) of p < n linearly independent vectors of R”, which is called a
basis of the lattice £. A lattice is generaled by infinilely many bases that arc related
to each other by integer matrices of determinant 1. Lattice reduction algorithms
consider a Euclidean lattice of dimension p in the ambient space R” and aim at
finding a “reduced” basis of this latiice, [ormed with vectors almost orthogonal and
short enough, The LLL algorithm designed in [25] uses as a sub-algorithm the lat-
tice reduction algorithm for two dimensions (which s called the Gauss al gorithm):!
it performs a succession of steps of the Gauss algorithm on the “local bases,” and
it stops when all the local bases are reduced (in the Gauss sense). This is why it is
important to precisely describe and study the two-dimensional case. This is the pur-
pose of this section: it describes the particularities of the lattices in two dimensions,
provides two versions of the two-dimensional lattice reduction atgorithm, namely
the Gauss algorithm, and introduces its main parameters of interest.

We also see in this article that the Gauss algorithm solves the reduction problem
in an optimal sense: it returns a minimal basis, after a number of iterations, which is
al most linear with respect to the input size. This type of algorithms can be general-
ized in small dimenstons. For instance, in the three-dimensional case, Vallée in 1987
{42] or Semaev more recently {33] provide optimal algorithms, which directly find a
minimal basis, after a linear number of iterations. However, algorithms of this qual-
ity no longer exist in higher dimensions, and the LLL algorithm can be viewed as
an approximation algorithm that finds a good basis {not optimal generally speaking)
after a polynomial number of iterations (not linear generally speaking).

Lattices in Two-Dimensions

Up to a possible isometry, a two-dimensional lattice may always be considered
as a subset of B2, With a small abuse of language, we use the same notation for
denoting a complex number z € € and the vector of R* whose components are
{Nz, Jz). For a complex z, we denote by |z| both the modulus of the complex z and
the Euclidean norm of the vector z; for two complex numbers u, v, we denote by
{u - v) the scalar product between the two vectors i and v, The following relation
between two complex numbers i, v will be very useful in the sequel

v (u-v) | det(n,v)
e Juef?

(3.1

1Tt seems that the Gauss algorithm, as it is described here, is not actually due to Gauss, but due to
Lagrange.
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Fig. 3.1 A lattice and three of its bases represented by the paralielogram they span. The basis on
the feft is minimal (reduced), while the two other ones are skew

A lattice of two-dimensions in the complex plane  is the set £ of elements of C
(also called vectors) defined by

L=ZudZv={au+bv, aheclZ},

where (i, v), called a basis, is a pair of R-linearly idependent elements of €.
Remark that in this case, due to (3.1}, one has J¥(v/u) # 0.

Amongst all the bases of a lattice £, some that are called reduced enjoy the prop-
erty of being formed with “short” vectors. In dimension 2, the best reduced bases
are minimal bases that satisfy optimality properties: deline # Lo be a first minimum
of a lattice £ if it is a nonzero vector of £ that has smallest Euclidean norm; the
Iength of & first minimum of £ is denoted by A1 (£). A second minimum v is any
shortest vector amongst the vectors of the lattice that are linearly independent of
one of the first minimum i; the Euclidean length of a second minimum is denoted
by A2(L). Then a basis is minimal il it comprises a first and a second minimum
(See Fig. 3.1). In the sequel, we focus on particular bases that satisfy one of the two
following properties:

(P} It has a positive determinant [i.e., det(x, v} > 0 or I(v/u) > 0]. Such a basis
is called posifive.

(A) It has a positive scalar product [i.e., (- v} = 0 or f(v/u} = 0]. Such a basis is
called acute.

Without loss of generalily, we may always suppose that a basis is acute (resp.
positive), as one of (u, v) and {u, —v)} is.
The following resuft gives characterizations of minimal bases. Its proof is omitted.

Proposition 1. [Characterizations of minimal bases.]

{P) [Positive bases.] Let (i, v) be a positive basis. Then the following hve condi-
tions (u) and (b) are equivalent:

(a) The basis (w,v) is minimal

() The pair (u, v) satisfies the three simultaneous inequalities:
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1 )
(P : Hzl, (Py) : |Eﬁ(z)!§—, and (P): (1) >0
b H] 2 u
(A} [Acute bases.] Ler (i, v) be an acute basis. Then the following rwo conditions
{e0) and (b) are equivalent:

PGAuUss{u, v)
Input. A positive basis («, v) of C with || < [u], |z(v, )] < (1/2).
Output. A positive minimal basis (u, v) of L{u, v) with Jv] > Jul.
While |vf < |ujdo
(1, v) i= (v, —u);
= lz(nw);

VIi=Vv—qu,

() The basis (i, v) is minimal
(h) The pair (u,v) satisfies the two simultaneous inequalities:

(A1) : Hzl and  (Ap) 059?(%)5%.

The Gaussian Reduction Schemes

There are two reduction processes, according as one focuses on positive bases or
acute bases. Accordingly, as we study the behavior of the algorithm itself, or the
geometric characteristics of the output, it will be easier to deal with one version
than with the other one: for the first case, we will choose Lhe acute framework, and
for the second case, the positive framework.

The Positive Gauss Algorithm

The positive lattice reduction algorithm takes as input a positive arbitrary basis and
produces as output a positive minimat basis. The positive Gauss algorithm aims at
satisfying simultaneously the conditions (P) of Proposition . The conditions ( £y)
and {P3) are simply satisfied by an exchange between vectors followed by a sign
change v := —v. The condition (P) is met by an integer translation of the type

Vi= v - qu with g = [t(v,1)], t{v,u} =N (5) = (T—":l, {3.2)
u

where | x] represents the integer nearest” to the real x. After this translation, the
new coefficient T(v, 1) satisties 0 < |v(v, u})| < (1/2).

2 The function |.v] is extended to the negative numbers with the relation fx] = —|—x].
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On the input pair (i, v} == (vg, v1), the positive Gauss Algorithm computes a
sequence of vectors v; defined by the relations

Vigr =-vip Hgivi with g o= [o(vio, )] (3.3)
Here, each quotient ¢; is an integer of Z, the final pair (v,, vp41) satisfies the

conditions (P} of Proposition 1, and P(u,v) := p denotes the number of iterations,
Each step defines a unimodular matrix A; with det M; = 1,

M= 1 with KRR P VY
! 10/}’ vy ! viey
so that the algorithm produces a matrix M for which

("P“):M("‘) with M= M, Mp1-...-My. (3.4

Vp Vo
The Acute Gauss Algorithm
The acute reduction algorithm takes as input an arbitrary acule basis and produces as
output an acute minimal basis, This AGAUSS algorithm aims at satisfying simulta-
neously the conditions (A4) of Proposition 1. The condition (A1) is simply satisfied
by an exchange, and the condition (A4,) is met by an integer translation of the type
vi=e(v — qu) with g = |t(v,u)7, e =sign(z(v,1) — |z(v,1)]),

where t(v, 1) is defined as in (3.2). Aller this (ransformation, the new coelficient
(v, u) satisfies 0 < t{v,u} < (1/2).

AGAUSS (i, v)
Input. An acute basis (i, v) of © with lv| < [u], 0 < (v, 1) < (1/2).
Qutput. An acute minimal basis (u, v) of £{x, v) with |v} = [u].
While [v] <iuldo
(u,v) := (v, u);
g = lr(v,)] ;e r=sign (v, 1) — [t (v, ) ]);
viz=g(v—qu);

On the input pair (1, v) = (wp, w1}, the Gauss Algorithm computes a sequence
of vectors w; defined by the relations w41 = &; (Wi~ —4G; w;) with

g i= [r(wi—, wi)], g = sign{r(wi—, wi) — |t (wi—1, W) 3.5

Here, each quotient §; is a positive integer, p = P(u,v) denotes the number
of iterations [this equals the previous one], and the final pair (w,, w,) satisfies
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the conditions (4) of Proposition 1. Each step defines a unimodular matrix A; with

detN; = —g; = +1,
:N' Wi
I 1171'_.1 ]

N = (—8:'3'? 8:‘), with (Wf+1)
i 0 Wy

so that the algorithm produces a matrix A for which

(“}P-I—i)_N(“)l) With N::NP'NP—I"".N]'

Wy Wo

Comparison Between the Two Algorithms

These algorithms are closely related, but different. The AGAUSS Algorithm can
be viewed as a lolded version of the PGAUSS Algorithm, in the sense defined in
[7]. We shall come back to this fact in Section “Relation with the Centered Euclid
Algorithm”, and the following is troe.

Consider two bases: a positive basis (vo,v1) and an acute basis (wp, wy), which
satisfy wo = vg and wy = 01 vy with 1 = £ 1. Then the sequences of veciors (v;)
and (w;) computed by the two versions of the Gauss algorithm (defined in (3.3) and
{(3.5)) satisfy wi = n; v; for some 1; = 1 and the quotient ; is the absolute value
of quotient g;.

Then, when studying the two kinds of parameters — execulion parameters or
output parameters — the two algorithms are essentially the same. As already said,
we shall use the PGAUSS Algorithm for studying the output parameters, and the
AGAUss Algorithm for the execution parameters.

Main Parameters of Interest
The size of a pair (u, v) € Z[i] x Z[i] is
£, v) = max{€((ul®), L(4v[*)} = 2max{(lu]), L(VD},

where £(x) is the binary length of the integer x. The Gram matrix G(u,v) is

defined as .
Nl (e
Glu,v) = ((u-v) o2 ) .

In the following, we consider subsets §2p7, which gather all the (valid) inputs of
size M relative to each version of the algorithm. They will be endowed with some
discrete probability P37, and the main parameters become random variables defined
on these sets.

All the computations of the Gauss algorithm are done on the Gram matrices
G(v;,vi41) of the pair (v;, vi4.1). The initialization of the Gauss algorithm computes
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the Gram Matrix of the initial basis: it computes three scalar products, which takes
a guadratic time’ with respect to the length of the input £(u, v). After this, ail the
computations of the central part of the algorithm are directly done on these matri-
ces; more precisely, each step of the process is an Euclidean division between the
two coellicients of the first line of the Gram matrix G(v;, vi—1) of the pair (v;, vi—1)
for obtaining the quotient g;, [ollowed with the computation of the new coelficients
of the Gram matrix G(v; 41, v;), namely

[vigt]? 1= [viea |2 =2¢; (vi-vim1)} +aFvil?, iprvi) o= gi il*— (i w).

Then the cost of the ith step is proportional to £(|g;|) - £(Jvi—1|%), and the bit-
complexity of the central part of the Gauss Algorithm is expressed as a function

of
P,y

By = ) Lail) - (v, (3.6)
i=t
where P(u, v) is the number of iterations of the Gauss Algorithm. In the sequel, B
will be called the bit-complexity.
The bit-complexity B(u, v) is one of our main parameters of interest, and we
compare it lo other simpler costs. Define three new costs, the quotient bit-cost
(1, v), the difference cost D (i, v), and the approximale difference cost D:

Plu,w) Pu,w)
Qv = Y g, D@y = Y g v —evlD]
i=1 i=1 (3.7)
Puv) Vit 2
Du,v) = Z E(|q,~|)lg|T .
f=1
which satisfy D(u, vy — D (u,v) = @{Q(«,¥)) and
B(u,v) = Q@u,v) L(u®) + D(u,v) + [D(u,v) — D(u, v}]. (3.8)

We are then led to study two main parameters related to the bit-cost, which may be
of independent interest:

(a) The additive costs, which provide a generalization of costs P and (7. They are
defined as the sum of elementary costs, which depend only on the quotients g;.
More precisely, from a positive elementary cost ¢ defined on N, we consider the
total cost on the input (i, v) defined as

Pluvy

Co@) = Y cgil). (3.9)

i==1

3 We consider the naive multiplication between integers of size M, whose bit-complexity is
(M),
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When the elementary cost ¢ satisfies c{m) = O{logm), the cost C is said to be
of moderate growth.

(b) The sequence of the i th length decreases d; fori € [1..p] (with p := P(u,v)])
and the total length decrease d = dp, defined as

2
, d .=

. 2
¥y

Vo

Ve
Vo

(3.10)

dj =

Finally, the configuration of the output basis (#1,7) is described via its Gram-
Schmidt orthogonalized basis, that is, the system (ir*,%*), where #* := T and V* is
the orthogonal projection of ¥ onto the orthogonal of < 17 >. There are three main
oulput parameters closely related to the minima of the lattice £(x, v),

Al vy = A (LG, vy = JH), e, v) = W = [v*], (3.11)

A2 (u, v) AG,vy 1)
y(u,v) 1= = =
|det(w, )| p(evy |9
We return later to these output parameters and shall explain in Section “A Varia-
tion for the LLIL Algorithm: The Odd-Even Algorithm” why they are so important
in the study of the LLL algorithm. We now return to the general case of lattice
reduction.

(3.12) |

The LLL Algorithm

We provide a description of the LLL algorithm, introduce the parameters of interest,
and explain the bounds obtained in the worst-case analysis. Then, we describe the
results of the main experiments conducted for classes of “useful” lattices. Finally,
this section presents a variant of the LLL algorithm, where the Gauss algorithm
plays a more apparent rle: it appears to be well-adapted to (further) analyses.

Description of the Algorithm

We recall that the LLL algorithm considers a Euclidean lattice given by a system B
formed of p linearly independent vectors in the ambient space R”. 1t aims at find-
ing a reduced basis, denoted by B formed with vectors almost orthogonal and short
enough. The algorithm (see Figure 3.2) deals with the matrix 7, which expresses the
system B as a function of the Gram-Schmidt crthogonalized system B*; the coef-
ficient m; ; of matrix P is equal to ©(d;, b}), with 7 defined in (3.2). The algorithm
performs two main types of operations (see Figure 3.2):
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bt by e by iy, ... b,
b 1 0 .- 0 0 0 0
bz Mo 1 B 0 0 0 0
P o= b m;i LT . 1 0 0 0
by | migrr Miga2 o0 Mg i 0 0
b, Myt Mpz oo Mpi  Mpipq ... L
by by

M 1 0
Uk T (mk+l‘k 1 )

LLL (1) [t > 1]

Input, A basis B of a lattice L of dimension p.
Output. A reduced basis BofL.
Gram computes the basis B* and the matrix P.
=1
Whilei < pdo
I- Diagonal-Size-Reduction (b;4;)
2 Test if focal basis I; is reduced : Is || > (1/0)]w;|?
if yes : Other-size-reduction (bi4)
i1
if not: Exchange b; and by
Recompute (B*, P);
Tf i#lthen i:=i—-1;

Fig. 3.2 The LLL algorithm: the matrix P, the local bases Uy, and the atgorithm itself

1. Size-reduction of vectors. The vector b; is size-reduced if all the coelficienis m; ;
of the ith row of matrix P satisfy |m; ;| < (1/2) forall j € [1..i — 1]. Size-
reduction of vector b; is performed by integer translations of &; with respect to
vectors b; forafl j e [1..i —1].

As subdiagonal coefficients play a particular réle (as we shall see later), the
operation Size-reduction (#) is subdivided into two main operations:
Diagonal-size-reduction (h);
bi == b — |piii—1]bi-1;
followed with
Other-size-reduction (h;);
For j =i —2downto ldod; = b —|m; ;]h;.

2. Gauss-reduction of the local bases. The i th local basis U; is formed with the two
vectors #;, v;, defined as the orthogonal projections ol b;, b; +1 on the orthogonal
of the subspace {by,ba,..., b1}, The LLL algorithm performs the PGAUsS
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algorithm [integer translations and exchanges] on local bases U, but there are
three differences with the PGAUSS algorithm previously described:

(¢) The output test is weaker and depends on a parameter 7 > 1: the classical
Gauss output test |v;| > |u;| is replaced by the oniput test |v;| > (1/)]u;].

(h) The operations that are performed during the PGAUSS algorithm on the
local basis U; are then reflected on the system (by, b;+1): if M is the matrix
built by the PGAUSS algorithm on {i#;,v;), then it is applied to the system
{bi, bi+1) in order to find the new system (b, bi 1)

{c) The PGAUSS algorithm is performed on the local basis U; step by step. The
index i of the local basis visited begins at i = 1, ends at / = p, and is
incremented (when the test in Step 2 is positive) or decremented (when the
test in Step 2 is negative and the index / does not equal 1) at each step. This
defines a random walk. The length K of the random walk is the number of
iterations, and the number of steps K~ where the test in step 2 is negative

satisfies
K<(p—1)+2K". (3.13)

The LLL algorithm considers the sequence £; formed with the lengths of the
vectors of the Gram orthogonalized basis B* and deals with the Siegel ratios ;s
between successive Gram orthogonalized vectors, namely

ry = e";‘, with & := |b}]. (3.14)
I

The steps of Gauss reduction aim at obtaining lower bounds on these ratios. In
this way, the interval [u, A] with

a:=min{f;; 1=<7i<p}, A=max{f;; 1=<i=<p}, (3.15}

tends to be narrowed as, all along the algorithm, the minimum ¢ is increasing and
the maximum A is decreasing. This interval [, A] plays an important réle because it
provides an approximation {or the first minimum A{L) of the lattice (i.e., the length
of a shortest nonzero vector of the lattice), namely

AL <AJP MO = a (3.16)

At the end of the algorithm, the basis B satisfies the following:* each local bases
is reduced in the r-Gauss meaning. It satisfies conditions that involve the subdiag-
onal matrix coeflicients #i; 4.1,; together with the sequence E namely the f-Lovdsz
conditions, foranyi,1 <i < p-—1,

4 All the parameters relative to the output basis F are denoted with a hat.
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~ 1 —~
|t g, = 5 2 (M E? + ?fﬂ) = E:Z (3.17)

which imply the s-Siegel conditions, forany i, =i = p—1,

2

, with 2=

2
and 5= —5 fort = 1.

(3.18)

12

| =

~ 1.t
Ima‘+1,il < 5, Foi= =
£

A basis fulfilling conditions (3.18) is called 5s-Siegel reduced .

Main Parameters of Interest

There are two kinds of parameters of interest for describing the behavior of the
algorithmy: the output parameters and the execution parameters.

Chutput Parameters

The geometry of the output basis is described with three main parameters — the
Hermite defect y(B), the length defect 6( B), or the orthogonality defect p(B). They
satisfy the following (worst-case) bounds that are functions of parameter s, namely

hi)? _ b, -
y(B):= (d—elt;lﬁl?f; < 5P O(B) 1= % < gP-1, (3.19)

TS bl ey
p(B) = el <8 :
This proves that the oulput satisfics good Euclidean properties. In particular, the
length of the first vector of Bisan approximation of the first minimum A (L) —up
to a factor that exponentially depends on dimension p.

Execution Parameters

The execution parameters are related to the execution of the algorithm itsell : the
length of the random walk (equal to the number of iterations K), the size of the
integer translations, the size of the rationals m; ; along the execution.

The product D of the determinants D; of beginning lattices L;:=
{b1,b2,....b;), defined as

p—1

J Bl
DJ,'Z:I—[E,', D:I—[Dj“—”l—[Hf,',

i=1 i=1 j=1i=1
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is never increasing all along the algorithm and is strictly decreasing, with a factor
of (1/1), for each step of the algorithm when the test in 2 is negative. In this case,
the exchange modifies the length of £; and £; 4. — without modifying their product,
equal to the determinant of the basis U;. The new £;, denoted by E; , is the old |,
which is at most (1/1)[u;} = (1/¢)¢;. Then the ratio between the new determinant
D; and the old one satisfies D;/D; < (1/1), while the other D; are not modified.
Then, the ratio between the final D and the initial D satisfies (D/D) < (1/)%",
where K denotes the number of indices of the random walk when the test in 2 is
negative (see Section “Description of the Algorithm”). With the following bounds
on the initial D and the final D, as a function of variables a4, 4, defined in (3.15),

D < 4PPD/2 D > qPr-/2

together with the expression of K as a function of K~ given in (3.13), the following
bound on X is derived,

A
K=<(p—-1+p(p—1Dlog e (3.20)

In the same vein, another kind of bound involves N := max }h;|* and the first
minimum A(L), (see [15]),

2
p N.Jp
K < —log, —5—.
=2 %
In the case when the lattice is integer (namely £ C Z"), this bound is slightly
better and becomes

M
Ks(pm1)+p(p—1)l——"-
gt

It involves Ig ¢ := log,t and the binary size M of B, defined as M ==
max £(|h;|2), where £(x) is the binary size of integer x.

All the previous bounds are proven upper bounds on the main parameters. It is
interesting to compare these bounds to experimental mean values obtained on a
variety of lattice bases that actoally occur in applications of lattice reduction,

Experiments for the LLL Algorithm

In [30], Nguyen and Stehlé have made a greal use of their efficient version of the
LLL algorithm [29] and conducted for the first time extensive experiments on the
two major types of useful lattice bases: the Ajtai bases, and the knapsack-shape
bases, which will be defined in the next section. Figures 3.3 and 3.4 show some of
the main experimental results, These experimental results are also described in the
survey written by D, Stehlé in these proceedings [36].
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Main parameters. oy ¢ o K
Warst-case Vs |et™ | g7 |22 (0 (Mp?)

{Proven upper bounds)

Random Ajtai bases V| alr =02 | g re= 12 @ (M p%)
(Experimental mean values)

Random knapsack—shape bases | [/ |a? 1 | P12 | rtr=072| (M p)
(Experimental mean values)

Fig. 3.3 Comparison between proven upper bounds and experimental mean values for the main
parameters of interest. Herc p is the dimension of the input (integer) basis and M is the binary size
of the input {integer) basis: M := @(log N), where N := max |b; [

Fig. 3.4 Left: experimental results for log,y. The experimental value of parameter
[1/(2p)) Eflog, v} is close to 0.03, so that @ is close to 1.04. Right: the output distribution of
“locat bases™

Output geometry. The geometry of the output local basis Uk seems to depend neither
on the class of lattice bases nor on index k of the local basis (along the diagonal of
P), except for very extreme values of k. We consider the complex number Zx that is
related to the output local basis Uy = (i, ¥y ) via the equality Zp == flig g41 +/ 7k
Because of the #-Lovdsz conditions on ﬁk, described in (3.17), the complex number
Zx belongs to the domain

Feo={zeC |gd=1/t, 19%@| =< 1/2},

and the geometry of the output local basis {7y, is characterized by a distribution,
which much “weights” the “corners” of F; defined by F; N {z;3z < 1/t} [see
Fig.3.4 (right)]. The (experimental} mean values of the output Siegel ratios 7, =
J(Zz) appear to be of the same form as the (proven) upper bounds, with a ratio o
(close to 1.04), which replaces the ratio sy close to 1.15 when #p is close to 1. As a
consequence, the (experimentaf) mean values of parameters y(B) and p(B} appear
to be of the same form as the (proven) upper bounds, with a ratio o (close to 1.04)
that replaces the ratio s¢ close to 1.15.
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For parameter 0{ B}, the situation is slightly different. Remark that the estimates
on parameter & are not only a consequence of the estimates on the Siegel ratios,
but they also depend on estimates that relate the first minimum and the determinant.
Most of the lattices are {probably) regular: this means that the average value of the
ratio between the first minimum A(£) and det(£)'/? is of polynomial order with
respect to dimension p. This regularity property should imply that the experimental
mean value of parameter 0 is of the same form as the (proven) upper bound, but
now with a ratio &'/2 (close to 1.02), which replaces the ratio s close to 1,15,

Open Question. Does this constant ¢ admit a mathematical definition, related for
instance lo the underlying dynamical system [see Sections “Returning to the Gauss
Algorithm and First Steps in the Probabilistic Analysis of the LLL Algorithm™?
Execution parameters. Regarding the number of iterations, the situation differs
according to the types of bases considered. For the Ajtai bases, the number of itera-
tions K exhibits experimentally a mean value of the same order as the proven upper
bound, whereas, in the case of the knapsack-shape bases, the namber of iterations
K has an experimental mean value of smaller order than the proven upper bound.

Open question. Is it true for the “actual” knapsack bases that come from crypto-
graphic applications? [See Section “Probabilistic Models: Continuous or Discrete”]

All the remainder of this survey is devoted to presenting a variety of methods
that could (should?) lead to explaining these experiments. One of our main ideas is
to use the Gauss algorithm as a central tool for this purpose. This is why we now
present a variant of the LLL algorithm, where the Gauss algorithm plays a more
apparent rble.

A Variation for the LLL Algorithm:
The Odd-Even Algorithm

The original LLL algorithm performs the Gauss Algorithm srep by step, but does not
perform the whole Gauss algorithm on focal bases, This is due (o the definition of
the random walk of the indices on the local bases (See Section “Description of the
Algorithm”). However, this is not the only strategy for reducing all the local bases.
There exists for instance a variant of the LLL algorithm, introduced by Villard [48],
which performs a succession of phases of two types, the odd ones and the even
ones. We adapt this variant and choose to perform the AGAUSS algorithm, because
we shall explain in Section “Returning to the Gauss Algorithm” that it has a better
“dynamical” structure.

During one even (respectively, odd) phase (see Figure 3.3), the whole AGAUSS
algorithm is performed on all local bases {/; with even (respectively, odd) indices.
Since local bases with odd (respectively, even) indices are “disjoint,” it is possible
to perform these Gauss algorithms in parallel. This is why Villard has introduced
this algorithm. Here, we will use this algorithm in Section “First Steps in the Proba-
bilistic Analysis of the LLL Algorithm”, when we shall explain the main principles
for a dynamical study of the LLL algorithm.
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0Odd-Even LLL (1) it > 1]

Input. A basis B of a lattice L of dimension p.
Output. A reduced basis Bof L.
Gram compules the basis B* and the matrix P.
While B is not reduced Go
0dd Phase (B):
Fori = 1t |n/2] do
Diagonal-size-reduction (by);
M= 1-AGAUSS (Uy 1)
(baim1, ba) 1= (i1, Doy Y M,
Fori = } lon do Other-size-reduction {(f);
Recompute B*, P,
Even Phase (B}
Fori = ltoL(n —1)/2] do
Diagonal-size-reduction (bz+1h
M= 1-AGAUsS (Uy);
(bai, baian ) 1= (bas Do Y My
Fori = 1ton do Other-size-reduction (h;};
Recompute B*,F;

Fig. 3.5 Description of the Odd-Even variant of the LLL algorithm, with its two phascs, the Odd
Phase and the Even Phase

Consider, for an odd index k, two successive bases Uy := (ug,vg) and Ug1o 1=
(4x 42, Vis2). Then, the Odd Phase of the Odd-Even LLL algorithm {completely)
reduces these two local bases (in the t-Gauss meaning) and computes two reduced
local bases denoted by (fix, V) and (fg 2, Vk+2), which satisfy in particular

vkl = .Iu'('”k! Vk), lﬁk+2| - ‘l(uk-i-Za Vk+2).

where parameters A, j¢ are defined in (3.11). During the Even phase, the LLL algo-
rithm considers (in parallel) all the local bases with an even index. Now, at the
beginning of the following Even Phase, the (input) basis Uy is formed (up to a
similarity) from the two previous output bases, as g1 = 'v‘};, Vit = VL g2,
where v is a real number of the interval [1/2,+1/2]. Then, the initial Siegel
ratio r;, of the Even Phase can be expressed with the output lengths of the Odd
Phase, as

Alitgy2, Vis2)

P41 =
ko plug, vie)

This explains the important rdle that is played by these parameters A, 1. We study
these parameters in Section “Analysis of Lattice Reduction in Two-Dimensions:
The Output Parameters”.
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What is a Random (Basis of a) Lattice?

We now describe the main probabilistic models, addressing the various applications
of lattice reduction. For each particular area, there are special types of input lattice
bases that are used and this leads to different probabilistic models dependent upon
the specific application area considered. Cryplology is a main application area, and
it is crucial to describe the major “cryptographic” lattices, but there also exist other
important applications.

There are vacious types of “interesting” lattice bases. Some of them are also
described in the suryey of Stehlé in this book [36].

Spherical Models

The most natural way is to choose independently p vectors in the n-dimensional
unit ball, under a distribution that is invariant by rotation. This is the spherical model
introduced for the first time in {15], then studied in [3,4] (See Section “Probabilistic
Analyses of the LLL Algorithm in the Spherical Model”). This model does not seem
to have surfaced in practical applications (except perhaps in integer linear program-
ming), but it constitutes a reference model, to which it is interesting to compare the
realistic models of use.

We consider distributions vg,y on R” that are invariant by rotation, and satisfy
Ve (0) = 0, which we call “simple spherical distributions.” For a simple spherical
distribution, the angular part 84,y = by /|by] is uniformly distributed on the unit
sphere §( := fx € R" : | x| = 1}. Moreover, the radial part |b,y|? and the angu-
lar part are independent. Then, a spherical distribution is completely determined by
the distribution of its radial part, denoled by pg).

Here, the bela and gamma distribution play an important réle. Let us recall that,
for strictly positive real numbers a,b & RT*, the beta distribution of parameters
{u,b) denoted by f{u,b) and the gamma distribution of parameter ¢ denoted by
v{¢) admit densities of the form

' +b) ¢ xe!

LUt o2 M@ ) = iy e ().

(3.21)

Bap(x) =

We now describe three natural instances of simple spherical distributions.

1. The first instance of a simple spherical distribulion is the uniform distribution in
the unit ball By, = {x € R” : {|x{| < 1}. In this case, the radial distribution
P(») equals the beta distribution f(n/2, 1}.

2. A second instance is the uniform distribution on the unit sphere S, where the
radial distribution pg,) is the Dirac measure at x = 1,

3. A third instance occurs when all the # coordinates of the vector b, are indepen-
dent and distributed with the standard normal law A/(0, 1). In this case, the radial
distribution py,) has a density equal to 2y, /2(21).
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When the systemn B, ¢, is formed with p vectors (with p =< ), which are
picked up randomly from R”, independently, and with the same simple spherical
distribution v(,), we say that the system Bp ) is distributed under a “spherical
model.” Under this model, the system B, ¢y (for p < n) is almost surely linearly
independent.

Ajtai Bases

Consider an integer sequence ¢; p defined for 1 <7 < p, which satisfies the condi-
tions

tdi+1
okl LT AN when p — oo.

For any i,

Ui p
A sequence of Ajtai bases B := (Bj) relative to the sequence ¢ = (;,p) is
defined as follows: the basis B, is of dimension p and is formed by vectors b; p €

ZZ? of the form

i—1

. tjp dj, . .

bip =aipei+ ) dijpe; With aijp = rand (——’55 %) for j <i.
j=1

[Here, (e;) (with 1 < j < p) is the canonical basis of R”]. Remark that these
bases are already size-reduced, as the coefficient m; ; equals a; j,»/a, 5. However,
all the input Siegel ratios r;, defined in (3.14) and here equal (o a; 41, p/a;, p, tend to
0 when p tends o co. Then, such bases are not reduced “at all,” and this explains
why similar bases have been used by Ajtai in [2] to show the tightness of worst-case
bounds of [32].

Variations Around Knapsack Bases and Their Transposes

This last type gathers various shapes of bases, which are all formed by “bordered
identity matrices”; see Fig. 3.6,

I. The knapsack bases themselves are the rows of the p x (p + 1) matrices of
the form of Fig. 3.6a, where I, is the identity matrix of order p and the com-
ponents (¢, az,...dp) of vector A are sampled independently and uniformly
in [-N, N for some given bound N. Such bases often occur in cryptanalyses of
knapsack-based cryptosystems or in number theory (reconstructions of minimal
polynomials and detections of integer relations between real numbers),

2. The bases relative lo the transposes of matrices described in Fig. 3.6b arise in
searching for simultaneous Diophantine approximations (with ¢ € Z) or in
discrete geometry (with g = 1).
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y| 0 IFIHP ‘1| 0
(al2,) (.\‘|q1,,) (0P|q1f,) (.\'|],,_])
(@) ) () (d)

Fig. 3.6 Different kinds of lattice bases useful in applications. Type (a} Knapsack bases; Type
(b) bases wsed for factoring polynomials, for solving Diophantine equations; Type (¢) Bases for
NTRU; Type (d) bases related Lo random lattices

3. The NTRU cryptosysiem was first described in terms of polynomials over finite
fields, but the public-key can be scen [12] as the lattice basis given by the rows
of the matrix (2p x 2 p) described in Fig. 3.6¢c, where ¢ is a small power of 2
and Hp is a circulant matrix whose line coefficients are integers of the interval

1—4q/2,q/2]

Random Laitices

There is a natural notion of random lattice, introduced by Siegel [34] in 1945.
The space of (full-rank) lattices in R” modulo scale can be identified with the quo-
tient X, = SL,(R)Y/SL,(#). The group G, = SL,(R) possesses a unique (up to
scale) bi-invariant Haar measure, which projects to a finite measure on the space X,
This measure v, (which can be normalized 10 have {olal volume 1) is by definition
the unique probability on X,,, which is invariant under the action of G if 4 € X,
is measurable and g € (7, then v, (A) = v, {gA). This gives rise to a natural notion
of random lattices. We come back to this notion in the two-dimensional case in
Section “Relation with Eisenstein Series™.

Probabilistic Models: Continuous or Discrete

Except two models — the spherical model or the model of random lattices — that
are continious models, all the other ones (the Ajtai model or the various knapsack-
shape models) are discrete models. In these cases, it is natural to build probabilistic
models that preserve the “shape” of matrices and replace discrete coefficients by
continnous ones, This allows to use in the probabilistic studies all the continuous
tools of (real and complex) analysis.

1. A first instance is the Ajtai model relative to sequence @ := (g, ), for which the
continuous version of dimension p is as follows:

i—1 .
bip=anpei+ Y Xijpajpe;, Withx = rand(—1/2,1/2)
Jj=1
forall j <i = p.
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2. We may also replace the discrete model associated to knapsack bases of Fig. 3.6a
by the continuous model, where A is replaced by a real vector x uniformly chosen
in the ball [|x|leo =< 1 and I, is replaced by pfp, with a small positive constant
0 < p < 1. Generally speaking, choosing continucus randoin matrices indepen-
dently and uniformly in their “shape” class leads to a class of “knapsack-shape”
lattices,

Remark 1. 1t is very unlikely that such knapsack-shape lattices share all the same
properties as the knapsack lattices that come from the actual applications — for
instance, the existence of an unusually short vector (significantly shorter than
expected from Minkowski’s theorem).

Conversely, we can associate to any continuous model a discrete one: consider a
domain X C " with a “smooth” frontier, For any integer &V, we can “replace” a
(continuous) distribution in the domain X’ refative to some density f of class C! by
the distribution in the discrete domain

"

Xy =XN—,
N N

defined by the restriction fiy of /1o Xy. When N — oo, the distribution relative to
density fy tends to the distribution relative to f, due to the Gauss principle, which
relates the volume of a domain A C &' (with a smooth frontier 3.4) and the number
of points in the domain Ay = AN Ay,

1 i
Fcard(AN) = Vol(4A)+ O (]\?) Area(d.A).

‘We can apply this framework to any (simple) spherical model and also to the models
that are introduced for the two-dimensional case.

In the same vein, we can consider a discrete version of the notion of a random
lattice: consider the set L{n, N} of the n-dimensional integer lattices of determi-
nant . Any lattice of £(», N} can be transformed into a lattice of X, (defined in
4.4} by the homothecy Wy of ratio N =1/7 _Goldstein and Mayer [20] show that for
large N, the following is true: given any measurable subset A, € X, whose bound-
ary has zero tneasure with respect to v,, the proportion of lattices of L(n, N) whose
image by Wy lies in A, tends to v, (A) as N tends to infinity, In other words, the
image by ¥y of the uniform probability on £(n1, N) tends to the measure vy,

Thus, to generate lattices that arc random in a nalural sense, it sulfices o gener-
ate uniformly at random a lattice in £{n, N) for large N. This is particulatly easy
when N = g is prime. Indeed, when g is a large prime, the vast majority of lattices
in L{y1, q) are lattices spanned by rows of the matrices described in Fig. 3.6d, where
the components x; (with i € [1..2 — 1]} of the vector x are chosen independently
and uniformly in {0, ....¢ — 1}.
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Probabilistic Analyses of the LIL Algorithm
in the Spherical Model

In this section, the dimension of the ambient space is denoted by #, and the dimen-
sion of the lattice is denoted by p, and a basis of dimension p in R” is denoted by
Bp - The codimension g, equal by definition to n — p, plays a fundamental réle
here. We consider the case where 1 tends to oo while g :== g(n} is a {ixed function
of i {with g(n) < n). We are interested in the following questions:

1. Consider areals > 1. What is the probability 7, (4,5 that a random basis 5, )
was already s-reduced in the Siegel sense [i.e., satisfy the relations (3.18)]?

2. Consider a real ¢ > 1. What is the average number of iterations of the LLL{¢)
algorithm on a random basis B, () ?

3. What is the mean value of the firsl minimum ol the laltice generaled by arandom
basis 8, n?

This section answers these questions in the case when B, () is randomly chosen
under a spherical model, and shows that there are two main cases according to the
codimension g :=n — p.

Main Parameters of Interest

Let B, ;) be a linearly independent system of vectors of IR whose codimension
isg =n—p. Let B;’(" be the associated Gram-Schmidt erthogonalized system.
‘We are interested by comparing the lengths of two successive vectors of the orthog-
onalized system, and we introduce several parameters related to the Siegel reduction
of the system Bp ().

Definition 1. To a system By of p vectors in R", we associate the Gram—
Schmidt orthogonalized system B;,(n) and the sequence r; . of Siegel ratios,
defined as

bn—j+1,00)

sy forg+H1 < j<n—1,
gn—j,(n)

Litn) ==
together with hwo other parameters
My iy = min{ﬁ,("); g+1=<j<n—1} T, ) = min {j :1'3,(::) = .Mg,(,,)} .
The parameter M (y is the reduction level, and the parameter Ty () is the index
of worst local reduction.

Remark 2. The ratio 1, is closely related to the ratio r; defined in Section
“Description of the Algorithm” [see (3.14}]. There are two differences: the rdle of
the ambient dimension » is made apparent, and the indices / and j are related via
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r; = rp—j. The réle of this “time inversion” will be explained later. The variable
My (uy is the supremum of the set of those 1/5? for which the basis B, _g () is
s-reduced in the Siegel sense. In other words, 1/ M, ¢y denotes the infimum of val-
ues of 52 for which the basis By_g (ny is s-reduced in the Siegel sense. This variable

is related to our initial problem due to the equality
. 1
Tn—g.(n),s = ]P[Bn—g,(n)ls s—reduced] = P Mg,(n) = 57 >

and we wish to evaluate the limit distribution (if it exists} of Mg ¢y when it — oo,
The second variable 7, () denotes the smallest index j for which the Siegel condi-
tion relative to the index #n — j is the weakest. Then 7 ~ Iy () denotes the largest
index i for which the Siegel condition relative to index / is the weakest. This index
indicates where the limitation of the reduction comes from.

When the system B is chosen at random, the Siegel ratios, the reduction
level, and the index of worst jocal reduction are random variables, well-defined
whenever Bp ¢ is a linearly independent system. We wish to study the asymplotic
behavior of these random variables (with respect to the dimension n of the ambient
space) when the system B, ¢,y is distributed under a so-called (concentrated) spher-
ical model, where the radial distribution pg,y fulfills the following Concentration
Property C.

Concentration Property C. There exist a sequence {ay ), and constants dy, da,
a>0, Oy € (0, 1) such that, for every n and 8 € (0, 6y), the distribution function
Py satisfies

Pr) (a?l(l + B)) = P{n) (au(l -GN =1- dq e—nd;;ﬂ“ - (3.22)

In this case, it is possible to transfer resuits concerning the uniform distribu-
tion on S, |where the radial distribution is Dirac] to more general spherical
distributions, provided that the radial distribution be concentrated enough. This
Concentration Property C holds in the three main instances previously described
of simple spherical distributions.

We first recall some definitions of probability theory, and define some notations:

A sequence (X)) of real random variables converges in distribution towards the
real random variable X iff the distribution function F, of X, is pointwise con-
vergeni to the distribution function F of X on the set of continuity points of F.
A sequence (X,) of real random variables converges in probability to a constant a
if, for any e > 0, the sequence P|| Xy — a| > &] tends to 0. The two situations are
respectively denoted as

{d) proba.
Xy — X, Xy —d.
n n

We now state the main results of this section, and provide some hints for the proof.
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Theorem 1. {Akhavi et al. [4] 2005)

Let Bp () be a random basis with codimension g := n — p under a concentrated
spherical model. Let s > 1 be a real parameter, and suppose that the dimension n
of the ambient space tends to co.

L. ff g == n— p tends to infinity, then the probability w, () s that By () is already
s~recuced tends to 1.

ii. If g .= n — pis constant, then the probability 7, ()5 that By () is already s-
reduced converges to a constant in (0, 1) (depending on s and g). Furthermore,
the index of worst local reduction Ly (ny converges in distribution.

The Irruption of B and y Laws

When dealing with the Gram~Schmidt orthogonalization process, beta and gamma
distributions are encountered in an exi{ensive way, We begin to study the variables
Y; iy defined as

EZ
Vi — 5,()
e lbj,(n)lz

and we show that they admit beta distributions.

Proposition 2. (Akhavi et al. [4] 2005)

for j e 2..1],

1. Under any spherical model, the variables Ei(") are independent.
Moreover, the variable Y ; () follows the beta distribution f((n — j +1)/2, (f —
1/2) for j € [2.n], and the set {¥; o) br,onl™ (G.6) € [2.01] x [L.a)} is
Jormed with independent variables.

2. Under the random ball model Uy, the variable Ei(n) Jollows the beta distribution

Blln—j+1)/2,( +1)/2).

Proposition 2 is now used for showing that, under a concentrated spherical model,
the beta and gamma distributions will play a central r8le in the analysis of the main
paramelers of interest introduced in Definition 1.

Penote by (7;)i=1 a sequence of independent random variables where #; fol-
lows a Gamma distribution y(i/2} and consider, for k > 1, the following random
variables

R =0/ Mcv1, Mg =min{R;; j>k+1}, Ly =min{j > k+1; R; =Mz}

We will show in the sequel that they intervene as the limits of variables (of the same
name) defined in Definition |, There are different arguments in the proot of this fact.

{a) Remark first that, for the indices of the form n — § with i fixed, the variable
;j_f,(”) tends t‘o 1whenn — co. It is-lhcn.convenient to exten.d the tuple (1 ()
(only defined for j < n — 1} into an infinite sequence by setting ry (), '= 1 for

any k > n.
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(b) Second, the convergence
R 'l
R; 251, fk(m—l)%mo,@,
i

leads to consider the sequence {Ry — 1}z as an element of the space £g4, for
g > 2. We recall that

i/q

Lqi={x,||xllg < +oo}, with fxfy := | ) |x:l? , for x = (X;)iz1.

ix1

(c) Finally, classical results about independent gamma and beta distributed ran-
dom variables, together with the weak law of large numbers and previous
Proposition 2, prove that

Foreach j = 1, 12~ R; 3.23
oreach j > 1, rjgy —>R;. (3.23)

This suggests that the minimum M, () is reached by the L% ) corresponding

to smallest indices j and motivales the “lime inversion” done in Definition 1.

The Limit Process

It is then possible to prove that the processes Ry = (_f;k,(,,) — Diz1 converge
{(in distribution) to the process R ;= (Ry — 1} inside the space £; when the
dimension # of the ambient space tends to cc. As My ) and T ¢,y are continuous
functionals of the process Ry, they also converge in distribution, respectively, to
My and 7.

Theorem 2. (Akhavi et al. [4} 2005) For any concentrated spherical distribution,
the following holds:

d
I. The convergence (r_i P D1 % (Ri — Dz holds in any space Lq, with

q > 2
() (d)
2. Forany fixed k, one has My gy —> My, Zi oy —> L.
N Il

3. For any sequence n — g(n} with g(n) < n and g(n) — oo, the convergence
prob

Mg(?l),(n) "—'“"5'—.> 1 holds.

n

This result solves our problem and proves Theorem 1. We now give some pre-
cisions on the limit processes +/ Ry, +/ My, and describe some properties of the
distribution Function Fy, of +/ Mg, which is of particular interest due to the equality

limy 00 Tp—k,(n),s = 1 — F(1/5).
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Proposition 3. (Akhavi et al. [4] 2005) The limit processes /Ry, /My admit
densities that satisfy the following:

1. Foreach k, the density gy of '\/7—3&: is

B kok 1Y x* g eor(x) , _ Ta)r(b)
wr(x)y =28 (2, ’ ) L7 x2yetars ° with B{a,b) := Taih
(3.24)

2. Foreach k, the random variables «/ My, My, have densities, which are positive
on (0, 1) and zero outside, The distribution functions Fy, Gy satisfy for x near 0,
and for each k,

r (5;‘—2) ) ~ x5, Grle) = Fi(v/5).

There exists T such that, for each k and for x ¢ [0,1] satisfying |x* — 1| <

(1/%), .
0<1— F(x) gexp[—(l—r—m) j|

— X2

3. Foreachk, the cardinality of the set {j = k +1; Ry = My} is almost surely
equal to 1.

In particular, for a full-dimensional lattice,

. 1 . 752
Imc}0 T i)y ~s—roo 1 — =, nl_lilgo Tn,(n),s = €XP {m ( 2 1) } whens — 1.

n— A N

Figure 3.7 shows some experiments in the case of a full-dimensional lattice
(¢ = 0). In this case, the density go of My is proven to be @{1/./X) when
x — 0 and tends rapidly to 0 when x — 1. Moreover, the same figure shows
that the worst reduction level for a full-dimensional lattice is almost always very
small: that means that the first index / where the test in step 2 of the LLL algorithm
(see Section “Description of the Algorithm”) is negative is very close to ».

These (probabilistic) methods do not provide any information about the speed
of convergence of m,._, () towards 1 when # and g tend to co. In the case of the
random ball model, Akhavi directly deals with the beta law of the variables £; and
observes that

p—1 1 71 1
=7y s = Z]P[EHI = *gr':| = ZP I:EEH = ¥:|

‘ Ky 2
f==1 i=1

Seal5n (D) ()
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Tig. 3.7 Left: simulation of the density of Adg with 10} experiments. Right: the histogram of
T, provided by 10! simulations. For any g, the sequence k + I, = k] seems to be rapidly
decreasing

where H is the entropy function defined as H(x) = —xlogx — {1 —x} log(l—x},
for x € [0, 1], which satisfics 0 < H(x) < log 2. This proves :

Proposition 4. (Akhavi [3] 2000) Under the random ball model, the probability
that a basis By (n) be reduced satisfies, for any i, forany p <n, foranys > 1,

1 \/’" 1 1"
[y oms < —— (V" (=] .
Tp,m)s = s (v2) (.S‘)

In particular, for any s> N2, the probability that Bey (ny be s-reduced tends
exponentially to 1, provided | — c is larger than 1/(21gs).

A First Probabilistic Analysis of the LLL Algorithm

In the case of the random ball model, Daudé and Valiée directly deal with the beta
law of the variables £; and obtain estimates for the average number of iterations K
and the first minimum A(£). They consider the case of the full-dimensional lattices,
namely the case when p = n. However, their proof can be extended to the case of a
basis Bp,(n) in the random ball medel with p < #.

Using properties of the beta function, they first obtain a simple estimate for the
distribution for the paramelter {;,

Pl <ul < (/)" !

and deduce that the random variable ¢ := min {; satisfics
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- 1
Pla < u} < ZIP[E,- <] < 2/mu PR {log (E)]

i=1

1 i
< —logn—f—Z].
n—p+1ij2

The result then follows from (3.16) and (3.20). It shows that, as previously, there are
two regimes according to the dimension p of the basis relative to the dimension n
of the ambient space.

Theorem 3. (Daudé and Vallée [15] 1994) Under the random ball model, the
number of iterations K of the LLL algorithm on B, ¢ has a mean value satisfying

plp=1) (1 1
E,mlKl<p—1+—2 | —]|=1 2].
pmlKl = p +n—p+1(iogt 5 logn +

Furthermore, the first minimum of the lattice generated by B () satisfies

11—P+1( 1 )1/("_,0'1"1)

BpaM(O) = T2 (5o

In the case when p = cn, with ¢ < 1,

cil 1 i
n K = Py 1 2 3
]Eul,(n)[ ] =1 ¢ (logt) {2 oghn + }

1 1
Ecn,(n)[/\,(ﬁ)] = eXp I:M log z;;] .

Conclusion of the Probabilistic Study
in the Spherical Model

In the spherical model, and when the ambient dimension # tends to oo, all the local
bases (except perhaps the “last” ones) are y-Siegel reduced. For the last ones, at
indices i := n — k, for fixed k, the distribution of the ratio r; admits a density
@r, which is given by Proposition 5.5. Both when x — 0 and when x — oo,
the density ¢ has a behavior of power type g (x) = @(x*1) for x — 0, and
ok (x) = @(x %2} for x — co. It is clear that the potential degree of reduction
of the local basis of index k is decreasing when & is decreasing. It will be interest-
ing in the sequel to consider local bases with an initial density of this power type.
However, the exponent of the density and the index of the local basis may be chosen
independent, and the exponent is no longer integer. This type of choice provides a
class of input local bases with different potential degree of reduction and leads to the
so-called model “with valuation,” which will be introduced in the two-dimensicnal
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case in Section “Probabilistic Models for Two-Dimensions” and studied in Sec-
tions “Analysis of Lattice Reduction in Two-Dimensions: The Output Parameters”
and “Analysis of the Execution Parameters of the Gauss Algorithm”.

Returning to the Gauss Algorithm

We return to the two-dimensional case, and describe a complex version for each of
the two versions of the Gauss algorithm. This leads to consider each algorithm as a
dynamical system, which can be seen as a (complex) extension of a (real) dynamical
system relative to a cenlered Euclidean afgorithm. We provide a precise description
of the linear fractional transformations (LFTs) used by each algorithm, We finally
describe the {two) classes of probabilistic models of interest,

The complex Framework

Many structural characteristics of lattices and bases are invariant under linear trans-
formations — similarity transformations in geometric terms — of the form § : u
Auwith A € C\ {0}

(q) A first instance is the execntion of the Gauss algorithm itsell: it should be
observed that translations performed by the Gauss algorithms depend only
on the quantity 7(v, 1) defined in (3.2), which equals 9i{v/u). Furthermore,
exchanges depend on |v/u), Then, if v; (or w;) is the sequence compuled by the
algorithm on the input (i, v), defined in (3.3) and (3.5), the sequence of vec-
tors computed on an input pair ) (¢, v) coincides with the sequence § (v;) (or
S),(w;)). This makes it possible to give a formulation of the Gauss algorithm
entirely in terms of complex numbers.

() A second instance is the characterization of minimal bases given in Proposi-
tion 2.1 that only depends on the ratio z = v/1.

(¢) A third instance are the main parameters of interest: the execution parameters
D, C.d defined in (3.7), (3.9), and (3.10) and the output parameters A, i, y
defined in (3.11yand (3.12). All these parameters admit also complex versions:
for X € {A, .y, D,C,d}, we denote by X(z) the value of X on basis (1, z).
Then, there are close refations between X{u, v} and X(z) for z = v/u:

X{u,v)

e for X e {d, 1}, X(@) = X(u,v), for X e {D,C,d,v}.
i

X(z) =

Tt is thus nataral to consider lattice bases taken up to equivalence under similarity,
and it is sufficient (o restrict allention (o Jattice bases of the form (1, z}. We denote
by L(z) the lattice £(1, z). In the complex framework, the geometric transformation
effected by each step of the algorithm consists of an inversion-symmetry § : z
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> 1/z, followed by a translation z — T~9z with T(z) = z + 1, and a possible sign
change J : 2+ —z.

The upper half plane H = {z € €, J(z) > 0} plays a central rdle for the
PGAUSS Algorithm, while the right half plane {z € C; %(z) = 0, (2} #£ 0}
plays a central r6le in the AGAUSS algorithm, Remark just that the right half plane
is the union H U JHL., where J : z > —z is the sign change and

Hy:={zeC; (@@ >0, R =0}, Ho:={zc C; I() >0, %z < 0}.

The Complex Versions for the GAUSS Algorithms

In this complex context, the PGAUSS algorithm brings z into the vertical strip B =
B U B_, with

1
B={zcH; Im(z}ifi}, By :=8BnH,, B_:=BnH._

reduces to the iteration of the mapping

o= (Y] (O] o

and stops as soon as z belongs to the domain F = F4 U F_, with
|
F=1qzel;, |d=1,|%]< 5} ., Fri=F0Hy, Fo.=FnNH_ (3.26)

Such a domain, represented in Fig. 3.8, is closely related to the classical funda-
mental domain F of the upper half plane H under the action of the group

PSLa(Z) i= {h: 7 h(2): h(z)=%, abe,d €Z, ad—be =1}

More precisely, the difference 7 \ F is contained in the frontier of F.

Consider the pair (8,0}, where the map U : B — B is defined in (3.25)
forz € B\ F and extended to F with U(z) = z for z € F. This pair (B,U)
defines a dynamical system,® and F can be seen as a “hole”; as the PGAUSS algo-
rithm terminates, there exists an index p > 0, which is the first index for which
UP(z) belongs to . Then, any complex number of B gives rise to a trajectory
7, U(z), U%(2),..., UP(z), which “falls” in the hole F, and stays inside JF as soon
as it attains F. Moreover, as JF is, up to its frontier, a flundamental domain of the

T We will see a formal definition of a dynamical system in Section “Analysis of the Execition
Parameters of the Gauss Algorithm”.
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oof B\ F

Fig. 3.8 The fundamental domains #, F and the strips B, B defined in Section “The Complex
Versions for the GAUSS Algorithms”

upper half plane I under the action of PSL,(Z), there exists a topological tessel-
lation of H with transforms of F of the form A(F) with 1 € PSL2(Z). We will
see later in Section “The LFTs Used by the AGAUSS Algorithm, The COREGAUSS
Algorithm® that the geometry of B\ F is compatible with this tessellation,

In the same vein (see Figure 3.8), the AGAUSS algorithm brings z into the vertical
slrip

1
B.= %ZE‘C; J(z) # 0, Ogﬂi(z)s»i =B UJB_,
reduces to the iteration of the mapping

Ui = (é) G _ [m G)D with &(2) = sign(%() — (M),

~ (3.27)
and stops as soon as z belongs to the domain F

~ ' 1
f:{zEC; lz] = 1, Ofﬂi(z)ﬁi}:f.;_u.]f_. (3.28)

Consider the pair (B U) where the map U B - Bis defined in (3.27) for
ZE B\f and extended to f with U(z) = zforz € . This pair (B U) also defines
a dynamical system, and F can also be seen as a “hole.”

e et ]
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Relation with the Centered Euclid Algorithm

It is clear (at least in an informal way) that each version of Gauss algorithm is an
exlension of the (centered) Euclid algorithm:

— For the PGAUSS algorithm, it is related to a Euclidean division of the form
v = gu—+ rwith |r} € [0, +u/2]

- For the AGAUSS algorithm, it is based on a Euclidean division of the form
v=gqu+¢erwithe:=x1,r e [0, +u/2]

1f, instead of pairs, that are the old pair (i, v) and the new pair (r, &), one con-
siders rationals, namely the old rational x = u/v or the new rational y = r/u, each
Euclidean division can be written with a map that expresses the new rational y as a
function of the old rationat x, as y = V(x) (in the first case) or y = V(x) (in the
second case). With 7 := [—1/2,+1/2}and T := [0, 1 /2], the maps V : T — T or
V 1T — T are defined as follows

V(x) = [H , forx#0, V() =0, (3.29)

1
X

Vix)=c¢ (-1—) (l - [l—j) , forx #£0, Vi) =o. 3.30)
x X X
[Here, £(x) ;= sign(x — [x]].

This leads to two (real) dynamical systems (Z, V) and (I V) whose graphs are
represented in Fig. 3.9. Remark that the tilded system is obtained by a folding of the
untilded one (or unfolded one), first along the x axis, then along the y axis, as it
is explained in [7]. The first system is called the F-EUCLID system (or algorithm),
while the second one is called the U-EUCLID system (or algorithm).

Of course, (here are close connections between U and —V, on the one hand, and
U and V, on the other hand: even if the complex systems (B, /) and (B U) are

Fig. 3.9 The two dynamical systems underlying the centered Euclidean algorithms
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defined on strips formed with complex numbers z that are not real (i.e., 3z # 0),
they can be extended to real inputs “by continuity”: This defines two new dynamical
systems (8, /) and (E, E), and the real systems {Z,—7V) and (Z, V) are just the
restriction of the extended complex systems to real inputs. Remark now that the
fundamental domains F, F- are no longer “holes” as any real irrational input stays
inside the real interval and never “falls” in them. On the contrary, the trajectories of
rational numbers end at 0, and finally each rational is mapped to i oc.

The LETs Used by the PGAUSS Algorithm

The complex numbers that intervene in the PGAUSS algorithm on the input zg =
v1/vo are related to the vectors (v;) defined in (3.3) via the relation z; = vij41/v;.
They are directly computed by the relation z; 41 1= U(z;), so that the old z;—; is
expressed with the new one z; as

Zi—] = jl[nlf}(zf), with fl[m](z) = P

This creates a continued fraction expansion for the initial complex zg, of the form

| .
0= i = h(zp), with  fi == by 0 pnyy © oo fipn ),

e

my —
Hlp—2p

which expresses the input z = zo as a function of the output7 = z,. More generally,
the ith complex number z; satisfies

0 — l'i‘,'(z;), with  fi; 1= ]1[,,,1] o h[mz] oL, h[m,-}-

Proposition 5. (Folklore) The set G of LFTs h @ z v> (az+ b)/(cz + d) defined
with the relation z = I(Z), which sends the output domain F into the input domain
B\ F, is characterized by the set Q of possible quadruples (u, b, ¢, d). A quadruple
(u,b,c,d)y € Z* with ad — be = 1 belongs to Q if and only if one of the three
conditions is fulfilled

I (e =1orc=3)and(|a| <c¢/2)
2.c=2,a=1,b>20,d=0
3 c=2,a==-1,b=20,d<0

There exists a bijection between Q and the set P = {(¢,d) € Z% ¢ = 1,
ged(e, d) = 1}. On the other hand, for each pair (¢, c) in the set

C = {a, ¢); % € [-1/2,41/2], ¢ = Liged(u. c) = 1}, (33D
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Fig. 3.10 Lefi: the “central” festoon Fy,p. Right: three festoons of the sirip B, relative to
0, 1), (1, 3), {(—1, 3} and the two half-festoons at (—1,2) and (1,2)

each LFT of G, which admits («, £) as cocfficients can be writlen as it = Jig; .y0T9,
with g € Z and hy, ¢y (2) = (az -+ bo)/(cz + do), with |bo| < |a/2|, |do| < |c/2].

Definition 2. {Festoons] If G4 ) denotes the set of LFTs of G, which admit (a,c)
as coefficients, the domain

Fao= U A =hea|lJrF (3.32)

heGy .o GEL

gathers all the iransforms of W{JF) which belong to B\ F for which h{ioc) = a/c.
Itis called the festoon of a /c.

Remark that, in the case when ¢ = 2, there are two half-festoons at 1/2 and
—1/2 (See Fig. 3.10).

The LFTs Used by the AGAUSS Algorithm. The COREGAUSS
Algorithm

In the same vein, the complex numbers that intervene in the AGAUSS algorithm on
the input zg = w; /wy are related to the vectors {w;) defined in (3.5) via the relation
7z = wig1/w;i. They are computed by the relation z;4; = U (z;), so that the old
Zj—1 is expressed with the new one z; as

1
m+ ez

Zi—-1 = h(m;,s,-)(zi): with h{m,s) (@:=
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— ST SF-

Fig. 3.11 Lefr: the six domains which constitute the domain B.. \ Dy Right: the disk D is not
compatible with the geometry of transforms of the fundamental domains F

This creates a continued fraction expansion for the initial complex zg, of the form

] o . =
7 = 3l = I{zp) with Bi=lhgy e y0hitm, 630 Mg .ep)
my1 + >
ma +

in p I ‘GP.ZP
More generally, the i th complex number z; satisfies
i = 7;1(7!) with EJ! = h(nu,sl) o h(mz,sz) 0.. -h(m,',a,')- {3.33)

We now explain the particular role that is played by the disk D of diameter 7 =
[0, 1/2]. Figure 3.11 shows that the domain B \ D decomposes as the union of six
transforms of the fundamental domain 7, namely

B\D=|Jh@®, with K:i={I,8,STJ,ST,8T%1,8T%J8}. (3.34)
hekl

This shows that the disk D itself 1s also a union of transforms of the fundamental
domain F. Remark that the situation is different for the PGAUSS algorithm, as the
frontier of D lies “in the middle” of transforms of the fundamental domain F (see
Fig.3.11).

As Fig. 3,12 shows it, there are lwo main parts in the execution of the AGAUSS
Algorithm, according to the position of the current complex z; with respect to the
disk D of diameter [0, 1/2] whose alternative equation is

s
i
|
I
|
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COREGAUSS(z) FINALGAUSS(2)
Input. A complex number in D. Input, A complex number in B\ D,
Output. A complex number in B \ D. Output. A complex number in F
Wnile zeDdoz:=U(2): While z € Fdoz:=U(;
AGAUSS(2)

Input. A complex number in B\ 7.
Gutput. A complex number in F

COREGAUSS (z);
FINALGAUSS (z);

Fig. 3.12 The decomposition of the AGAUSS Algorithm into two parts: its core part (the
COREGAUSS Algorithm) and its final part (the FINALGAUSS Algorithm)

SRICE!

While z; belongs to D, the quotient (m;, £;) satisfies {m;, £;} > (2, +1) (wrt the
lexicographic order), and the algorithm vses at each step the set

H o= {lpms: (me) = (2,+1)}
so that D can be written as

D= | hB\D) with M=) HE (3.35)

heHT k=1

The part of the AGAUSS algorithm performed when z; belongs to D is called the
COREGAUSS algorithm. The total set of LFTs used by the COREGAUSS algorithm
is then the set Ht = Ugs VHE *. As soon as z; does not any longer belong to 7, there
are two cases. If z; belongs o 7, then the algorithmends. If z; belongs to B\ (FUD),
there remains at most two iterations {due to (3.34) and Fig. 3.11), that constitutes
the FINALGAUSS algorithm, which uses the set X ol LFTs, called the final set of
LFTs and described in (3.34). Finally, we have proven the decomposition of the
AGAUSS Algorithm, as is described in Fig. 3.12, and summarized in the following
proposition:

Proposition 6. (Daudé et al. [14] (1994), Flajolet and Vallée [16, 17] (1990-1999))
The set G formed by the LFTs that map the fundamental domain Finto the set B \ F
decomposes as G = (H* - K)\ {1}, where

H* = ZH", H={hpney (me) = 2, +D},

k>0
K:=1{1,88TJ,ST,ST*],ST*JS}.
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Here, if D denotes the disk of diameter [0, 1 /2), then H' is the set formed by the
LFTs that map B \ D into D and K is the final set formed by the LFTs that map F
into B \ D. Furthermore, there is a characterization of ‘HY due to Hurwitz, which
involves the golden ratio ¢ = (1 + 5/ 2:

;a()-“zig, (@, byc,d) € T b,d > 1,ac > 0,
le] d 1 c 1
lad — bcl;lla]<4b<§ E<E nE

Comparing the COREGAUSS Algorithm and the F-EUCLID
Algorithm

The COREGAUSS algorithm has a nice structure as it uses ateach step the same set
H. This sel is exactly the set of LFTs that are used by the F-EUCLID Algorithm,
closely related to the dynamical system defined in (3.30). Then, the COREGAUSS
algorithm is just a lifting of this F-EUcLID Algorithm, while the final steps of
the AGAUSS algorithm use different LFT’s, and are not similar to a lifting of
a Euclidean Algorithm. This is why the COREGAUSS algorithm is interesting
to study: we will see in Section “Analysis of the Execution Parameters of the
Gauss Algorithm” why it can be seen as an exact generalization of the F-EUCLID
algorithm.

For instance, il R denotes the number of iterations of the COREG AUSS algorithm,
the domain [R > k 4 1] gathers the complex numbers z for which ¢/ 7% (g) are in D.
Such a domain admils a nice characterization, as a union of disjoint disks, namely

[Rzk+1= ] nD), (3.36)
heHk

which is represented in Figure 3.13. The disk (D) for it € Ht is the disk whose
diameter is the interval [2(0), #(1/2)] = h (). Tnside the F-EUCLID dynamical
system, the interval h(T) (relativetoa LFT h € H*)is called a fundamental interval
(or a cylinder) of depth k: it gathers alf the real numbers of the interval 7 that have
the same continued fraction expansion of depth k. This is why the disk /(D) is
called a fundamental disk.

This figure shows in a striking way the efficicncy of the algorithin, and asks nat-
ural questions: Is it possible to estimate the probability of the event [R =k 1]7
Is it true that it is geometrically decreasing? With which ratio? We return to
these questions in Section “Analysis of the Execution Parameters of the Gauss
Algorithm”.
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Fig. 3.13 The domains [R = k} alternatively in black and white. The figure snggests that
reduction of almost-collinear bases is Hkely to require a large number of iterations

Worst-Case Analysis of the Gauss Algorithm

Before beginning our probabilistic studies, we recall the worst-case behavior of
execution parameters and give a proof in the complex framework.

Theorem 4. (Vallée [38] 1991) Consider the AGAUSS Algorithm, with an input
(1, v) of length max(fu[, lv|) at most equal to N. Then, the maximum number of iter-
ations Py, and the maximum value Cy of any additive cost C of moderate growth®
are @(log N), while the maximal value By of the bit-complexity B is ©(log® N).
More precisely, the maximal value Py of the number of iterations P satisfies

1
PN ~Noroo — = log N,

Proof. We here use the complex framework of the AGAUSS algorithm, and the
study of the maximum number of iterations is the complex version of Vallée's result,
initially performed in the vectorial framework [38].

Number of iterations. It is sufficient to study the number R of iterations of the
COREGAUSS Algorithm as it is refated to the total number of iterations P via the
inequality P < R + 2. The inclusion

N 1 1 2k—1
[R=k+1]C %Z: ¥ ()] < 5 (m) % (3.37)

5 This means that the elementary cost ¢ satisfies (g) = O(log ¢} (see Section “Main Parameters
of Interest™).
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will lead to the result: as any nonreal complex z = v/u relative to an integer pair
(i, v) has an imaginary part at least equal to 1/|u|*, then z belongs to the domain
[R < k) as soon as |u]? < 2(1 + NG)

We now prove Relation (3.37): Indeed, we know from (3.36) that the domain
[R = k+ 1] is the union of transforms /1 (D) for h € H¥*, where D and H are defined
in Proposition 6. The largest such disk /(D) is obtained when all the quotients (m, £)
are the smallest ones, that is, when all (m1, &) = (2, +1). In this case, the coefficients
{c,d) of I are the terms Ag, Agy; of the sequence defined by

Ag =0, A =1, and Apyy = 24x + Ag—y fork = 1,

which satisfy A; > (1 + +/2)*~2. Then, the largest such disk has a radius at most
equal to {1/2)(1 4 +/2)1 72k,

Additive costs. As we restrict ourselves to costs ¢ ol moderate growth, it is sufficient
to study the cost C relative to the step cost c(g) := logg.

Consider the sequence of vectors we = u,wy = V,...,wg1 computed by the
AGAUSS algorithm on the input (i, v) with M := £(]u|*). We consider the last step
as a special case, and we use for it the (trivial) upper bound [mgy | < |u}?; for
the other steps, we consider the associated complex numbers z; defined by z;—, =
hi (zi) [where the LFT /; has a digit ¢; at least equal to 2} and the complex Z := z¢
before the last iteration that belongs to B\ F. Then the expression z = zo = /(%)
involves the LFT A := h1y0h4 .. .ok, which corresponds to the algorithm except its
last step. As any complex z = v/u relative to an integer pair (¢, v) has an imaginary
part at least equal to 1/]u{?, one has

1 y y .
e = [3h(E) = (3@ - @) =

r [Ty = Hm =

i=1 f"—qu

This proves that the cost C (i, v) relative to ¢(g) = log g satisfies C (i, v) = O(M).
Bit-complexity. 'The result is obtained, thanks to (3.8). m

Probabilistic Models for Two-Dimensions

We now return to our initial motivation, and begin our probabilistic studies. As we
focus on the invariance of algorithm executions under similarity transformations, we
assume that the two random variables |u| and z = v/u are independent and consider
densities F on pairs of vectors (u, v), which only depend on the ratio z = v/u, of
the form F(u,v) = f(v/u). Moreover, it is sufficient to consider pairs (i, v) with a
first vector x of the form u = (N, 0). Finally, we define in a generic way the discrete
model 2y as

2y = {Z:—; y:(N,O),v:(L!,[J), (a,b,N)eZ3, ZEX},
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and there are three main cases, according to the algorithm of interest, namely &' =
B\ F for PGauss, &' = B\ F for AGAUSS, or & = D for COREGAUSS.

In each case, the complex z = v/u belongs to @} ]NA and is of the form (¢ /N)+
i(b/N}. Our discrete probabilistic models are delined as the restrictions to £2x of a
continuous model defined on Y. More precisely, we choose a density / on X, and
consider its restriction on 2. Normalized by the cardinality [£2x|, this gives rise
to a density fy on §25, which we extend on X as follows: fy(x) := fy(w) as
soon as x belongs to the square of center @ € 2y and edge 1/N. We obfain, in
such a way, a family of functions fy defined on A'. When the integer N tends to
oo, this discrete model “tends” to the continuous model relative to the density f {as
we already explained in Section “Probabilistic Models: Continuous or Discrete™).

It is somelimes more convenient to view these densities as functions defined on
R?, and we will denote by the same symbol the function f viewed as a function of
two real variables x, y. It is clear that the r8les of two variables x, y are not of the
same importance. In our asymptotic framework, where the size M becomes large,
the variable y = J(z) plays the crucial rdle, while the variable x = N(z) plays
an auxiliary r6le. This is why the two main models that are now presented involve
densities f(x, v}, which depend only on y.

The Model with *Valuation™

In Section “Probabilistic Analyses of the LLL Algorithm in the Spherical Model”,
it is shown that each input local basis U,_x in the spherical model with ambient
dimension n admits (for 1 — oo} a distribution with a density ¢ defined in (3.24).
We are then led (o consider the two-dimensional bases (i, v), which follow the so-
called model of valuation r (with r > —1), for which

det(x, v
Ldalenl ] = o0, when y -0,
max(jef, v[)2

[

We note that, when the valuation r tends to —1, this model tends to the “one-
dimensional model,” where ir and v are collinear. In this case, the Gauss Algorithm
“tends” 1o the Euclidean Algorithm, and it is important to precisely describe the
transition. This model “wilh valuation” was already presented in [39] in a slightly
different context, but not actually studied there.

The model with valuation defines a scale of densities for which the weight of
skew bases may vary, When r tends to —1, almost all the input bases are formed of
vectors which form a very small angle, and with a high probability, they represent
hard instances for reducing the lattice,

In the complex framework, a density f on the set § ¢ C\ R is of valuation r
(with r > —1) if it is of the form

@ =|3@|] - g, where g(z) £ 0 for3(z) =0. (3.38)
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Such a density is called of type (r, g). We often deal with the standard density of
valuation r, denoted by f;,

i
A(r)

£ = —|3@F,  with AQ) = ffﬁ Y 639
F

Of course, when r = 0, we recover the uniform distribution on B \ F with
A(0) = (1/12)(27 + 3+/3). When r > —1, then A(r) is @[(r + 1)7!]. More
precisely

1
A(r) ~ ——, r— —1.
") r-

The (continuous) model relative to a density f is denoted with an index of the
form { f}, and when the valuation is the standard density of valuation r, the model
is denoted with an index of the form (#). The discrele models are denoted by two
indices, the integer size M/ and the index that describes the function £, as previously.

The Ajtai Model in Two-Dimensions

This model {described in the general case in Section “Ajtai Bases™) corresponds to
bases (u, v) for which the determinant det{y, v} satisfics

| det(ie, )|

W = Yo for some Yo E]O, ]],

In the complex framework, this leads to densities f(z) on B\ J {or on the tilde
corresponding domain) of the form f(z) = Dirac(ye) for some ygy €]0, 1]. When
vg tends to 0, then the model also tends to the “one-dimensional model” (where &
and v are collinear) and the Gauss Algorithm also “tends” to the Euclidean Algo-
rithm. As in the model “with valuation,” it is important to precisely describe this
transition and compare to the result of Goldstein and Mayer [20].

Analysis of Lattice Reduction in Two-Dimensions: The Output
Parameters

This section describes the probabilistic behavior of output parameters: we [irst
analyze the output densities, then we focus on the geometry of our three main
parameters defined in (3.11) and (3.12). We shall use the PGAUSS Algorithm lor
studying the output parameters.
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Output Densities

For studying the evolution of distribuiions (on complex numbers), we are led to
study the LFTs /& used in the Gauss algorithm [Section “Returning to the Gauss
Algorithm™], whose set is G for the PGAUSS Algorithm {Section “The LFTs Used
by the PGaUss Algorithm”]. We consider the two-variables function 4 that cor-
responds to the complex mapping 7z > h(z). More precisely, we consider the
function /i, which is conjugated to (h, 1) : (u,v) = (I(u), h(v)) with respect to
map &, namely 1 = &~ o (h, k) o @, where mappings @, ™! are linear mappings
C2? — C? defined as

z+3Z z+2)

S,y =(=x+iyv,z=x—1y), Qﬁ“(z,i): (mim’ 5

As @ and @~ are linear mappings, the Jacobian J /i of the mapping /i satisfies
Thix,y) = K@ - N @ = K (3.40)

as /1 has real coefficients. Let us consider any measurable set A C F, and study the
final density f on A, It is brought by all the antecedents A{A) for i € ¢, which
form digjoints subsets of B\ F. Then,

[ renwas =Y [[  renany.
A Kreg Y E(A)

Using the expression of the Jacobian (3.40), and inferchanging integral and sum
lead to the equality

J| 7epee= [[ | S worsenw | s
A A

heg
Finally, we have proven:

Theorem 5. (Vallée and Vera [435, 471 2007) The output density ? of each of the
three algorithms satisfies the following:

i. The output density [ of the PGAUSS Algorithm on the fundamental domain F
is expressed as a function of the input density f on B\ F as

7@ =Y"@P foh,

heg

where G is the set of LFTs used by the PGAUSS algorithm described in Proposi-
tion 5.




B. Vallée and A, Vera.

ii. The output density )‘ of the AGAUSS Algorithm on the fundamental domain F
is expressed as a function of the input density f on B kY Fas

F@& =YW@ foh@,

heg

where G is the set of LFTs used by the AGAUSS algorithm defined in Proposi-
fion 6, N -

iti. The output density | of the COREGAUSS Algorithm on the domain B\ D can
be expressed as a function of the input density | on’D as

F@ =Y WP feh

heH™

where H is the set of LFTs used by each step of the COREGAUSS algorithm
defined in Proposition 6. and Ht 1= Uy VHE.

Relation with Eisenstein Series

We now analyze an important particular case, where the initial density is the stan-
dard density of valuation r defined in (3.39). As each clement of G gives rise to a
unique pair (¢, d) with ¢ = 1, ged(c, d} = 1 [see Section “The LFTs Used by the
PGAuUss Algorithm”] for which

1 1 r
K@= hEF) = s 3.41
el ErwT fr o (X, 7) A(r) G aE (341)
5"
the oulput density on F is f, &9 = A( 3 Z m. (3.42)

{c.d)=1
c=1

It is natural to compare this density with the density relative to the measure rel-
ative to “random lattices” defined in Section “Random Lattices”. In the particular
case of two-dimensions, the fundamental domain for the action of PSL»(Z) on I
equals F up to its frontier. Moreover, the measure of density f(z) = J(z)™*
invariant under the aclion of PSL3(Z): indeed, for any LFT # with deth = 1,
one has [S(h (2] = |3(2)| - |#'(2)], so that

1 ]
—dxd f[ W ()|?———— dxd =f —= dxdy.
ffmy v= [[ Wl sga e =[] 5a e

Then, the probability vy defined in Section “Random Lattices™ is exactly the
measure on F of density




3 Probabilistic Analyses of Lattice Reduction Algorithms
31 ! T
nxy) = —-= as [/ — dxdy = —. {(3.43)
Ty FY 3

If we make apparent this density 5 inside the expression of ;‘": provided in (3.42),
we obtain:

Theorem 6. (Vallée and Vera [45,47] 2007) When the initial density on B\ F is
the standard density of valuation r, denoted by f, and defined in (3.39), the output
density of the PGAUSS algorithm on F involves the Eisenstein series Eg of weight
8 = 2 + r: With respect to the Haar measure vy on F, whose density n is defined in

{3.43), the output density f, is expressed as

-~ b4
Sr(x, yydxdy = ———Foyqr(x, ) nlx, y) dxdy,

3A(r)
yS
where  Fi(x,y) = e
5 y (C%::l ICZ"‘ dlzs
ex>1

is closely related to the classical Eisenstein series E, of weight s, defined as

Bue)im s Y =19 (R, + ).

(c,d)eE2 |CZ + dl
{e.d}#(0,0)

When r — —1, classical results about Eisenstein series prove that

n
Es(¥,9) ~so1 o sothat  lim ——Fyo,(x,y) = 1.

2(s 1) r—>—13A{r)

Then, when r tends to —1, the output distribution velative to an input distribution,
which is standard and of valuation r, tends o the distribution v, relative to random

lattices.

The series E; are Mass forms (see for instance the book [8]): they play an impor-
tant role in the theory of modular forms, because E; is an eigenfunction for the
Laplacian, relative to the eigenvalue s(1 — s). The irruption of Eisenstein series in
the lattice reduction framework is unexpected, and at the moment, it is not clear
how to use the (other) classical well-known properties of the Eisenstein series E;
for studying the output densities,

Geometry of the Output Paramelers

The main output parameters are defined in (3.11,3.12). For X e {A, u,y}, we
denote by X (z) the value of X on basis (1, z), and there are close relations between
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X(u,v) and X(z) forz = v/u:

Auvy = lul A, pv)=lulop@,  y@v) =y@.

Moreover, the complex versions of parameters A, b, ¥ can be expressed with the
input—output pair (z,7).

Proposition 7. I[fz = x -+ iy is an initial complex number of B\ F leading to a
final complex7 = X + iy of F, then the three main output parameters defined in
(3.11) and (3.12) admit the following expressions:

det 1(z) = y, Az(z)z-j,—;, 2@ =yy,  r@=

Sty -

The following inclusions hold:
V3 2
My =1} C S‘Z?_——Iz, z=uC[Sz 5*4;:2]. 344
A2 =1] [() 3 (@) = 4 (@ 7 (3.44)

If z leads toZ by using the LET h € G with z = h(Z) = (&7 + b)/(cZ + d), then

2
Az) = |ez—al, V(z)zlc—z—,(i= :u(Z)ﬁI Y

cz—al

Proof. If the initial pair (v, vg) is wrilten as in (3.4) as

(w) ! (Vﬁl), with M1 = (‘Z Z) and z = h(@) = at b
Z

Yo Vp cz+d’

then the total length decrease satisfies

ol ol 1w (3.45)
o2 levpsr +dvpl2 |2+ d)? ’ '

[we have used the fact that det M = 1.] This proves that A%(2) equals |1/ (2)} as
soon as z = /1(Z). Now, for z = /1(Z), the relations
y - y
y =, J) el ——ww?
|cz+d? lez —a|

easily lead to the result. m
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Domains Relative to the Output Parameters

‘We now consider the following well-known domains defined in Fig. 3.14. The Ford
disk Fo(a, ¢, p) is a disk of center (a/c, p/(2¢?)) and radius p/{2¢?): it is tangent
to y = 0 at point (¢/c,0). The Farey disk Fa(x, ¢, t) is a disk of center (u/c,0)
and radius ¢ /c. Finally, the angular sector Se(u, ¢, 1) is delimited by two lines that
intersect at ¢ /¢, and form with the line ¥ = 0 angles equal to + arcsin(cu).

These domains intervene for defining the three main domains of interest,

Theorem 7. (Laville and Vallée [24] (1990), Vallée and Vera [45] (2007)) The
domains relative to the main output parameters, defined as

Fip={eB\F yl@=<ph A):={zeB\F i@ =1},

M) :={ze B\F; upul@ <u,

are described with Ford disks Folu, ¢, p), Farey disks Fal(a, c, 1), and angular sec-
tors Se(a, ¢, u). More precisely, if F(a ¢y denotes the Festoon relative to pair (a, ¢}
defined in (3.32) and if the set C is defined as in (3.31), one has:

ry= |J Fola,c,p)NFae, AW = | Fala,e,r) N Fap,
{a,e)eC (a,c)eC

My = U Sela,c.u) N Feae-
(a,c)eC

Iy

Fala,c,f) 1= {(x! ¥y oy>0, (x - E)2 + ¥ < (é)l}

Se(a, ¢, u) {( ) 0,y ' “H for {eir < 1

elu, o) == J{x,y); y>0 yp<——ix—~— or |¢lr
V=2 ¢

sefa,e, i) = {(x.y}; » >0} for |clu = 1

O s avesinden)
.3{'" \
i .".. /
L i il
" P 41
v ‘ '

Fig. 3.14 The three main domains of interest: the Ford disks Fo(a,c, p), the Farey disks
Falu, ¢, 1), and the angular sectors Sefq, ¢, u)
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Each of these descriptions of A, I', M can be transformed in a description that no
more involves the festoons. It involves, for instance, a subfanziiy of Farey disks (for
A), or a sub{amily of angular sectors (for M) [see Fig, 3.15].

Consider the set P := {(c,d); c¢,d = 1,(c,d) = 1}, already used in Sec-
tion “The LFTs Used by the PGAuSS Algorithm”, and its subset P(¢) defined
as

P() = {(c,d); c,d=1l,ct <=l,dt <1,(c+dy=>1,(c,d)=1}

Consider a pair (¢, d) ¢ P(t). There exists a unique pair (a, b) for which the ratio-
nals a/c and b/d belong to [—1/2, +1/2] and satisfly ad — bc = 1. We then
associate to the pair (c, d) the intersection of the vertical strip {(x,y); {¢/c) <
x < (b/d)} with B\ F, and we denote it by S(c, 4}. Remark that the definition of
P(t) implies that the only rationals of the strip S{c, d) with a denominator at most
{1/tyarcafcand b/d.

Domain A(z). For any ¢ > 0 and any pair {c, d) € P(t), there exists a characteriza-
tion of the intersection of the domain A(r) with the vertical strip S{c, ), provided
in [24], which does not depend any longer on the festoons, namely

A)NS(ed) = Fala,c.t) UFa(b,d, 1) UFa(a+ b,c +d,1).  (3.46)

Here, the pair (¢,b) is the pair associated to (c,d), the domains
Fafa,c,t), Fa(b,d,t) are the intersections of Farey disks Fa(a,c, 1), Fa(b,d,t)
with the strip S{c, d). The domain in (3.46) is exactly the union of the two disks
Fa(a,c, ) and Fa(b, d, 1) if and only if the condition (¢ + d2 + cd )1* > 1 holds,
but the Farey disk relative to the median (¢ +£#)/(c +d ) plays a role otherwise. The
proportion of pairs (¢, d) € P(t) for which the condition (¢® + d? + cd}t? = 1
holds tends to 2 — (27)/(3+/3) & 0.7908 when 1 - 0.

Then, the following inclusions hold (where the “left” union is a disjoint union)

|J Fa@encawc |J Falco (3.47)
{a.c)ec {a.c)ec
e<1/(2¢) e=2/(+/30)

Domain M(u). For any # > 0 and any pair (¢,d) € P(u), there exists a char-
acterization of the intersection of the domain M (1) with the vertical strip S{e, d),
provided in {47], which does not depend any longer on the festoons, namely

M) N S{e,d) = sela,c,u) NSelb.d, u)yNselh —a,d —c,u). (3.48)

Here, the pair (a, b) is the pair associated to (¢, d), the domains Sef{a,c,u),
Se(h, d,u) are the intersections of Se(a, ¢,u), Se(b, 4, 1} with the suip S(c, d).
The domain in (3.48) is exacily the triangle Se(a, ¢, ) N Se(h, d,w) if and only if
one of the two conditions (¢ + d? — cd)u? < (3/4) or cd u? < (1/2) holds, but
this is a “irue” quadrilateral otherwise. The proportion of pairs (c,d) € P(u) for
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which the condition {(¢? + d? — ed i < (3/4) or cd u? < (1/2)] holds tends to

(1/2) + (w/3/12) ~ 0.9534 when it — 0.

Distribution Functions of Output Paramelers:
Case of Densities with Valuations

Computing the measure of disks and angular sectors with respect to a standard den-
sity of valuation r leads (o the estimates of the main output distributions. We first
present the main constants that will intervene in our results.

Constants of the Analysis
The measure of a disk of radius p centered on the real axis equals 24, (r) p7F2,
The measure of a disk of radius p tangent to the real axis equals 41(r) (2p)" T2
Such measures involve constants A;(r), Aa(r), which are expressed with the §
law, already defined in (3.21) as

JT I +3/2)
A T +3)

PR (R Te

A == U240 T/2+2)

(3.49)
For a triangle with basis ¢ on the real axis and height /i, this measure equals
Az(#) @ AT, and involves the constant

1 1
APY r+2DF+ 1)

As(r) = (3.50)

For (e, #) that belongs to the triangle 7 = {or, f); 0 < e, i < L, + B > 1},
we consider the continuous analogs of the conligurations previously described:
Disks. We consider the figure oblained with three disks Dy, Dg, Dy g when these
disks satisfy the following: For any 4,7 € {a, 8, + B3, the center xz is on the
real axis, the distance between x5 and x, equals 1/(8n) and the radius of Dy equals
1/8. We can suppose xq < Xgip < xg. Then, the configuration D{w, B} is defined
by the intersection of the union Ug Ds with the vertical strip {xy, Xg). The constant
Aa(r) is defined as the integral

Aq(r)y = :‘1”%“)_,/]1 dadf (f—/j)(a,,a) ¥ dxdy) ) (3.51)
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Sectors. In the same vein, we consider the figure obtained with three seclors
Su, Sg, Sp—o when these sectors salisfy the following:” for any § € {w, f, B —a},
the sector Sy is delimited by two half lines, the real axis (with a positive orlenta-
tion) and another half-line, that intersect at the point x5 of the real axis. For any
8,1 € {a, B, B — o}, the distance between x5 and x, equals 1/(8%). We can sup-
pose Xp_y < Xg < Xg; in this case, the angle of the sector 3 equals arcsin 4 for
8 € {B —a,o) and equals = — arcsind for § = B. The configuration S{x, §) is
defined by (he intersection of the inlersection Ny Sy with the vertical strip {xq, x5).
The constant As(r) is defined as the integral

As(r) = ﬁ%ffr[dadﬁ (fj;(mﬁ) y" dxdy) . (3.52)

Theorem 8. (Vallée and Vera [45,47] 2007) When the initial density on B\ F is the
standard density of valuation r, the distribution of the three main output parameters
involves the constants A; (r) defined in (3.49), (3.50), (3.51), and (3.52) and satisfies
the following:

1. For parameter y, there is an exact formula for any valuation v and any p < 1,

2r +3) _

r+2 . <1
&(2,4_4) p f(‘;"f P=

Poyly(2) < ol = Ar(r) -

2. For parameter A, there are precise estimates for any fixed valuation r > —1,
whent — 0,

tr+ 10

BN TT) Aoy P for r >0,

Pyl = 1]

Poy[A(@ < 1] A2(0) -] logt| for 1 =0,

pay b
{0 Z(z)

1
Py[a@) < t] ~i—0 RO Ag(ry 22 for r <
Moreoves, for any fixed valuation r > —1 and any t > 0, the following inequality
holds s
11 {43
Py <t] 2 ——— | — 22, 3.53
(r)[(z)ﬁ]_A(’_)’_Jrl(z) (3.53)

3. For parameter [, there is a precise estimate for any fixed valuation r > =1,
when 1 — 0,

" The description is given in the case when f > .
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1
P < U]~y —— Ag(r) T
{r){)'-""(z)_ ] u—0 é'(Z) 5()
Movreover, for any fixed valuation r > —1 and any u > 0, the following
inequalities hold.

\/37 r+1
Aa(r) (-2—) P2 < Py [p(z) < 0] < Aa(r) w2 (3.54)

Proaf. [Sketch] If ¢ denotes the Euler quotient function, there are exactly ¢{c)
coprime pairs (¢, ¢} with a/c €] — 1/2, +1/2]. Then, the identity

p{c) _ {(s—1) _
Z PR AN for My > 2,

c>1
explains the occurrence of the function ¢ (s — 1) /¢ () in our estimates. Consider two
examples:

(¢) For p < 1, the domain I"(p) is made with disjoint Ford disks of radius p/(2¢?).
An easy application of previous principles leads to the result.

{(h) For A(r), these same principles together with relation (3.47) entail the following
inequalities

+2 @lc) 1 42 plc)
o Z or+2 = mP(r)[l(z) <=t Z g
c<1/(21) e<2/(~/31)

and there are several cases when ¢ — 0 according to the sign of r. For r > 0,
the Dirichlet series involved are convergent. For r < (), we consider the series

ele)  {s+r+1D

ort2ts T ts+r+2)°

ex>1)
(which has a pdle at s = —r), and classical estimates entail an estimate for
p(c) I N7 ple) 1
~Noon T , (forr < 0), and s N oo — log N
r+2 . -2
CZEN c (@ Tl CZSA, : 10

For domain M (1), the study of quadrilaterals can be performed in a similar way.
Furthermore, the height of each quadrilateral of M () is @(1?), and the sum of
the bases « equal L. Then P(y[p(z) < u] = @(u* *?). Furthermore, using the
inclusions of (3.44) leads to the inequality. &




B, Vallée and A. Vera.

Interpretation of the Results

We provide a first interpretation of the main results described in Theorem 8.

1. Forany yg > 1, the probability of the event {¥ > yo] is

f@2r+3) 1
CQ2r+4) ypt?

~ i
Py = yol = P [V(Z =< E} = A1(#)

This defines a function of the variable yg — ¥, (vo}, whose derivative is a power
function of variable yo, of the form @ (5" ~). This derivative is closely related

10 the output density f; of Theorem 6 via the equality

+1/2
Vi{yo) ?:f , F(x, yo) dx.

Now, when » — —1, the function ¥/ (y) has a limit, which is exactly the den-
sity n, defined in (3.43), which is asscciated to the Haar measure vy defined in
Sections “Random Lattices and Relation with Eisenstein Series”.

. The regime of the distribution function of parameter A changes when the sign

of valuation » changes. There are two parts in the domain A(f): the lower part,
which is the horizontal strip [0 < §(2) < (2/+/3)t%], and the upper part defined
as the intersection of A(r) with the horizontal strip [(2/ 32 < 3(2) < 1). For
nepative values of r, the measure of the lower part is dominant, while for positive
values of r, it is the upper part that has a dominant measure. For r = 0, there is
a phase transition between (he two regimes: this occurs in particular in the usual
case of a uniform density.

. In contrast, the distribution function of parameter g has always the same regime.

In particular, for negative values of valuation r, the distribution functions of the
two parameters, A and i, are of the same form.

. The bounds (3.53, 3.54) prove that for any u, ¢ € [0, 1], the probabilities PP[A(z) <

1], P{u(z) < u] tend to 1, when the valuation r tends to — 1. This shows that the
limit distributions of A and u are associated to the Dirac measure at 0.

. Itis also possible to conduct these studies in the discrete model defined in Sec-

tion “Probabilistic Models for Two-Dimensions”. {t is not done here, but this type
of analysis will be performed in the following section.

Open question. Is it possible to describe the distribution funclion ol parameter y
for p > 17 Figure 3.15 [top} shows that its regime changes at p = 1. This will be
important for obtaining a precise estimate of the mean value E¢y[y] as a function of
 and comparing this value to experiments reported in Section “A Variation for the
LLL Algorithm: The Odd-Even Algorithm”.

The corners of the fundamental domain. With Theorem 8, it is possible to com-
pute the probability that an oulput basis lies in the corners of the fundamental
domain, and to observe its evolution as a function of valuation r. This is a first
step for a sharp understanding of Fig. 3.4 [right].
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Fig. 3.15 Above: the domain I'(p) 1= {z; y{(@ < p}. On the lefi, p = 1 (in white). On
the right, the domain Fp ) N Fo(0,1,p) forp = 1,py = Z/ﬁ, m = ({+ pp)/2. - In the
middle: the domain A{f) N By, with A(r) := {z; A(z) = 1} and the domain M () N By with
M) 1= {z; 1(z) =< u} foru =1 = 0.193.~ Below: the same domains for v =1 = 0.12




B. Vallée and A. Vera,

Proposition 8. Wien the initial density on B\F is the standard densiry of valuation
v, the probability for an output basis to lie on the corners of the fundamental domain
is equal to

{(2r -+ 3)

t@2r + 4y

where A1(r) is defined in Section “Distribution Functions of Output Paramefers;
Case of Densities swith Valuations”. There are three main cases of interest for
1 — C(r}), namely

C(ryi=1— A1 () -

._}_.?’_.:.Aﬁr_t_@l . LT 3
[r 1].H,[1 O]'2n+3~/§§(4)’[1 oo].\[e .

Distribution Functions of Output Parameters:
Case of Fixed Determinant

Computing the measure of disks and angular sectors with respect to the mea-
sure concentrated on the line y = yp leads to the estimates of the main output
distributions. We here focus on the parameter y.

The intersection of the disk Fo{a, ¢, p) with the line y = yq is nonempty as soon
as yo is less than p/c?. The intersection I'(p) N [y = yol is just “brought” by the
Ford disks for which the integer ¢ is less than xo = +/p/yo. Then, for p < 1, the
Ford disks Fo(a, ¢, p) are disjoint and

|
Plolr@ <ol = 2pSe () with Se(wo) = - 3 Sﬁ(c‘f_) ¢ (;_0) ,

C=X0

and g(t) = /1 — 12. For any function g smooth enough, one has

1 1
lim Sg(x) = == f gl{t)de,
=00 (@ Jo
This proves that when y tends to 0, the probability Ppyqj{y(z) < p] tends to (3 /) p.
We recover the result of [20] in the two-dimensional case.
A Related Result which also Deals with Farey Disks

For analyzing integer factoring algorithms, Vallée was led in 1988 to study the set
ol “small quadratic residues” defined as

B=B(WNhhy:={xe[l.N]; x*modN e [i,}]}, for W —h=8N%¥3,
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and its distribution in [1..N]. She described in {43,44] a polynomial—time algorithm,
called the Two-Thirds Algorithin, which draws elements from B in a quasi-uniform
way.® This was (for her) a main tool for obtaining a provable complexity bound for
integer facloring algorithms based on congruences of squares. Fifteen years later,
Coron in [13], then Gentry in {19], discovered that such an algorithm also plays
a central rdle in cryptography, more precisely in security proofs (see the survey
of Genlry [18] in these proceedings). Furthermore, Gentry in [19] modificd Vallée’s
algorithm and obtained an algorithm that draws elements from B in an exact uniform
way. This constitutes a main step in the security proof of Rabin partial-domain-hash
signatures.

The main idea of Vallée, which has been later adapted and made more precise
by Gentry, is to perform a local study of the set B. In this way, she refines ideas of
the work done in {46)]. This last work was one of the first works that relates general
small modular equations to lattices, and was further generalized ten years later by
Coppersmith [11]. Consider an integer xg, for which the rational 2x, /N isclose to a
rational ¢ /¢ with a small denominator ¢. Then, the set of elements of 13 near xy can
be easily described with the help ol the lattice L (xy) generated by the pair of vectors
(2x0, 1), (N, 0). More precisely, the following two conditions are equivalent:

1. x = xg + u belongsto B
2. There exists w such that the point (w, 1) belongs to L{x,) and lics between two
parabolas with respective equations

w+u2+x3 =h, w—}-uz—}-x% = f.

This equivalence is easy to obtain (just expand x2 as (xg +u)? = x2 +2xou+u?)
and gives rise to an elficient drawing algorithm ol B near xg, provided that the lattice
L{xp) has a sufficiently short vector in comparison to the gap i’ —/ between the two
parabolas. Vallée proved that this happens when the complex zo = 2x¢/N + i/N
relative to the input basis of L(x,) belongs to a Farey disk Fa(a, ¢, 1), with = (h'—
/N = 4N~Y3, In 1988, the role played by Farey disks {or Farey intervals) was
surprising, but now, from previous studies performed in Section “Domains Relative
to the Output Parameters”, we know that these objects are central in such a resuli.

Analysis of the Execution Parameters of the Gauss Algorithm

We finally focus on parameters that describe the execution of the algorithm: we are
mainly interested in the bit-complexity, but we also study additive costs that may be
of independent interest. We here use an approach based on tools that come both from
dynamical system theory and analysis of algorithms. We shall deal here with the

¥ We use the term gquasi-uniform to mean that the probabitity that x &€ B is drawn in between
¢,/i8| and &,/18|, for constants independent on x and N .
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COREGAUSS algorithm, using the decomposition provided in Section “Returning
to the Gauss Algorithm” Proposition 6.

Dynamical Systems

A dynamical system is a pair formed by a set X and a mapping W : X — X
for which there exists a (finite or denumerable) set Q@ (whose elements are called
digits) and a topological partition { X, }qeq of the set X in subsets X4 such that the
restriction of W to each element X, of the partition is of class C? and invertible.
Here, we deal with the so-called complete dynamical systems, where the restriction
of Wlx, : Xg — X is surjective. A special role is played by the set H of branches
of the inverse function W ™! of W thal are also naturally numbered by the index set
Q: we denote by fi(g) the inverse of the restriction W|x,. so that X is exactly the
image Mgy (X). The set H* is the set of the inverse branches of the iterate W its
elements are of the form /1g,) 0 figg,) o+ + -0 J1(g,) and are called the inverse branches
of depth k. The set 7{* := Ukngk is the semi-group generated by H.

Given an initial point x in X, the sequence W(x) = (x, Wx, W2x,...) of
iterates of x under the action of W forms the trajectory of the initial point x. We say
that the system has a hole Y if any point of X eventually falls in Y. forany x, there
exists p € N such that WF(x) e ¥.

We will study here two dynamical systems, respectively, related to the F-EUCLID
algorithm and to the COREGAUSS algorithm, previously defined (in an informal
way) in Section “Returning to the Gauss Algorithm”.

Case of the F-EucLID Algorithm. Here, X is the interval T = [0,1/2]. The map
W is the map V defined in Section “Relation with the Centered Buclid Algorithm™,
The set Q of digits is the set of pairs ¢ = (m,¢€) with the condition (m,&) >
(2, +1) (with respect to the lexicographic order). The inverse branch hime) 18 @
LFT, defined as /iy (@) = 1/(m -+ €2). The topological partition is defined by
Xm,e) = h (m,&) D.

Case of the COREGAUSS Algorithm. Here, X is the vertical strip B.The map W is
equal to the identity on B\ D and coincides with the map U defined in Section “The
Complex Versions for the GAUSS Algorithms” otherwise. The set @ of digits is
the set of pairs ¢ = {m, &) with the condition (m,¢) > {2, +1) (with respect to
the lexicographic order). The inverse branch /gy ¢ is a LET defined as By 0){(2) =
1/(m + £z). The lopological partition is defined by X ne) = I £ (B) and drawn
in Fig. 16. The system has a bole, namely B\ D.

Transfer Operators

The main study in dynamical systems concerns itsell with the interplay between
properties of the transformation W and properties of trajectories under iteration
of the transformation. The behavior of typical trajectories of dynamical systems
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Fig. 3.16 The topological partitions of the COREGAUSS dynamical system. The intersection of
this pastition with the real axis gives rise to the topological partition of the F-EUCLID dynamical
system

is more easily explained by examining the flow of densitics. The lime evolu-
tion governed by the map W modifies the density, and the successive densities
Jo, fis far. ooy fu, ... describe the global evolution of the system at discrete times
t=0,t=1,t=2,...

Consider the (elementary) operator X (4], relative to an inverse branch i1 € H,
which acts on functions / : X — R, depends on some parameter s, and is formally
defined as

XemlFIx) = J(x)* - f o h(x), where J(h) is the Jacobian of branch k.
(3.55)

The operator X 51 expresses the part of the new density fi, which is brought
when the algorithm uses the branch /1, and the operator that takes into account all
the inverse branches of the set M, defined as

Hy = )Xo, (3.56)
heH
is called the transfer operator. For s = 1, the operator Hy = H is the density

transformer, {or the Perron—Frobenius operator) which expresses the new density
/1 as a function of the old density fy via the relation f; = H[/]. The operators
defined in (3.56) are called transfer operators. For s = 1, they coincide with density
transformers, and for other values of 5, they can be viewed as extensions of density
transformers. They play a central role in studies of dynamical systems.

We will explain how transfer operators are a convenient tool for studying the
evolution of the densities, in the twao systems of inferest.
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Case of the F-EUCLID system. This system is defined on an interval, and the
Jacobian J(f1)(x) is just equal to |/’ (x)|. Moreover, because of the precise expres-
sion of the set M, one has, forany x € T = [0,1/2],

1 B
Wi /1) = Z (m + sx) - (m + s,\') ' @37

(€)= (2,1)

The main properties of the F-EUCLID algorithm are closely related to spectral

properties of the transfer operator Hy when it acts on a convenient functional space.
We return to this fact in Section “Functional Analysis”.
Case of the COREGAUSS algorithm, We have seen in Section “Output Densities”
that the Jacobian of the transformation (x, y) = A(x, ¥y} = (Rh(x + iy}, Shix +
iy)) equals |#'(x + iy)|?. It would be natural to consider an (elementary) transfer
operator ¥ pp1, of the form

Yo mlf1@ = 11 @ - f o hi(z).

In this case, the sum of such operators, taken over all the LITs that intervene in
one siep of the COREGAUSS algorithm, and viewed at s = 2, describes the new
density that is brought at each point z € B \ D during this step, when the density on
Dis f.

However, such an operator does not possess “good” properties, because the map
z +> |I’(2)] is not analytic. It is more convenient to introduce another elementary
operator X, 4}, which acts on functions F of two variables, and is defined as

Xyl Flz. 1) = 22" - 1)+ F(h(2), h(w)),

where /1 is the analytic extension of || to a complex neighborhood of 7:=0,1/2).
Such an operator acts on analytic functions, and the equalities, which relate F(z, 1)
and its diagonal f defined by f(2) := F(z,2),

X, mlFl@ D) = Yol 1@, XoplFix,x) = X mlr1(x) (3.58)

prove that the elementary operators X () are extensions of the operators Xy, ] that
are well-adapted to our purpose. Furthermore, they are also well-adapted to deal
with densities with valuation. Indeed, when applied to a density f of valuation r,
of the form f{(z) = F(z,2), where F(z,u) = |z — u|" L(z, u) involves an analytic
function L, which is nonzero on the diagonal z = u, one has

sz[h}“ ](Z Z) - lvl X2s+r h][ ](Z Z)

Finally, for the COREGAUSS Algorithm, we shall deal with the operator H,
defined as Hy = 3~ o5y X, 1, Which, in this case, admits a nice expression
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1 g 1 y 1 1
H [Fl{z,1) = - F , .
H,[F)G. ) Z (m -+ sz) (m + Eu) (m +ez m+ su)
(m,£)=(2,1)
(3.59)

Because of (3.58), this is an extension of the operator Hy, defined in {3.57}, which
satisfies the equality

H[Fi(x, x)} = H[f](x), when f is the diagonal map of F.

The operators X, [5], underlined or not, satisfy a crucial relation of composition
due to multiplicative properties of the derivative of g o 1. We easily remark that

Xom o Xolg] = Xslgonl. X © X ] = X [0k

We recall that the set H¥ = Uk>aHk is the set of the transformations describing
the whole executions of our two algorithms of interest. Then, the transfer oper-
ator relative to H™¥, denoted by Gy (for the EUCLID Algorithm) or G, (for the
COREGAUSS Algorithm), satisfies

Gi=Hs;o(/-H)' o G, =Ho(/-H)™", (3.60)

o)
and the assertion (3) of Theorem 6 can be re-wrilten as

Theorem 9. [Dynamical version of Theorem 6]. Consider the COREGAUSS algo-
rithm, with its input density [ on D and its output density ]? on B \ D, viewed
as functions of two complex variables 2,7, namely f(x,y) = F(z.2), )? (x,y) =
F(z,2). -

Then, one has F = G,[F}, where the operator G, is the “total” density trans-
Jormer of the COREGAUSS algorithm, which is related to the density transformer
H, via the equality G, = H, o (I - H,)™. When the input density F is of type
(r, L), then the equality F(2,7) = y" G, 1L} holds.

Consider the COREGAUSS algorithm with an initial density, standard of valua-
tion r. Such a densily is defined on the input disk T and involves constant Ag(r)
[related with constant A2(r) defined in (3.49)] under the form

' 1 T(r+ /2

yne i3 (3.61)

Remark that Ag(r) ~ 1/(r + 1} when r — —1. Then, the Hurwitz characterization
provided in Proposition 6 gives rise 1o a nice expression for the ountput density £ in
the case of a standard input density of valuation , namely

~ 1 1 ¥
Fr{2,3) = ————— —_—
©) = I mter T n L T aEe

c.d=1
de<c<dp?




B. Vallée and A. Vera,

Execution Parameters in the Complex Framework

We are now interested in the study of the fellowing costs:

1. Any additive cost Cy.y, defined in (3.9), relative to a cost ¢ of moderate growth.
There are two particular cases of interest: the number of iterations P, relative to
¢ = 1, and the length (2 of the confinued fraction, relative to the case when ¢ is

the binary length £,
Plry)

Qv = Z e ]).

f=k
2. The bit-complexity B defined in Section “Main Paramelers of Interest”. It is
explained (see 3.8) that the cost B decomposes as

B(u,v) = Q@u, ) £(Ju|*) + D, v) + @ (2w, v)), {3.62)

where  is the length of the continued fraction, already studied in (1), and cost
D is defined by
Pluy,y)
D) =2 3 tllai)ls| "

i=1

Vi—-1

It is then sufficient to study costs ¢ and D.

All these costs are invariant by similarity, that is, X (Au, Av} = X(u,v) for X €
{Q,D, Pyand A € C*. If, with a small abuse of notation, we let X(z) 1= X(1,2),
we are led to study the main costs of interest in the complex framework. We first
provide precise expressions for all these costs in the complex framework.

An additive cost Cicy, defined more precisely in (3.9), is related Lo an elementary
cost ¢ defined on quotients ¢. Such a cost can be defined on 7{ via the equality
e(h) = ¢(q) for i = hyy), and is extended to the total sel of LFTs in a linear way:
forh = hyohgo. . .ohp, wedefine c(h) as c(h) := c(hi)+c(iz2)+. .. +c(hy). This
gives rise to another definition lor the wmp]ux version of cost defined by C{z) =
C(1,2). Ifan input z € D leads to ap output? € B \ D by using the LFT /1 € G with
z = h{Z), then C(z) equals c(h).

In the same vein as in (3.45), the ith length decrease can be expressed with the
derivative of the LFT g; = i7" (with f; defined in (3.33)) as

P _ ] () , )
ot = g e @il sohat2lg (|} = —lelei @)l = ~lglerz -l
i

where a;, ¢; are coefficients of the LFT /1;. Finally, the complex versions of cost D is

P@) Pz}

D@ =Y g lglhi—y G- = =2 L0qi]) gleimiz—ar1f.  (3.63)

f=1 i=]
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The main idea of the dynamical analysis methodology is to use the transfer oper-
ators (introduced for studying dynamical systems) in the analysis of algorithms;
for this aim, we modify the operators X, ;) defined in Section “Transler Opera-
tors” in such a way that they become “generating operators™ that play the same role
as generating functions in anatytic combinatorics. In fact, these operators generate
themselves... generating functions of the main costs of interest.

Generating Operators for Additive Costs C and Cost D

We now explain how to modify transfer operator in the (wo main cases: additive
cost C and cost D.

Case of additive costs, It is natural to add a new parameter w inside the transfer
operator X 1) for “marking” the cost: we consider the two-parameters operator

X—s,w,(c),[h] defined as

Xo s o)1) [F 1z, 1) = explwe(h)] (2 i;(t:)’ < F{h(z), h(u)).

Of course, when w = 0 or ¢ = 0, we recover the operator X, ). When the cost ¢
is additive, that is, c{g o &) = ¢(g) + c(h)}, the composition relation

Kool © Koo @2,lg1 ™ Koswde), lgoh]
entails, an extension of (3.60) as
-1
Gy =By —Hg )™ (3.64)

where the operators G, |, oy, H, () are defined in the same vein as in (3.56). In
particular,

1 § 1 §
H , olFlzu = Z explwe(m, &) (m+£z) (m+£u) (3.65)

(n,8)>=(2,1)

1 1
F ( , ) . {3.606)
m--¢ez m-+en

The operator G ,, .y generates the moment generating function of the cost Cig),
as we will see now, The moment generating function E( sy (exp[wC.]) is defined as

B¢y (explwCin]) := 2 explwe(in)] - P nIC = c(h)]
heH+

= Z exp[we ()] ./];{g\ )i(x,y) dxdy.
! D

hent
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Using a change of variables and the expression of the Jacobian leads to

E¢ sy (expiwCi)]) = z explwe ()] ffg\p | (DI f(h(2), h(Z)) dxdy

hewrt

= f fu Gy ol 2, D) dxdy.
#D

Now, when the density F is of type {r, L), using relation (3.41) leads to

E¢ sy (explwCeol) = fﬁ Y Gapolle D 60D
B\D

The expectation IE; £y{Ce)] is just oblained by taking the derivative with respect
to w (at w = 0). This is why we introduce the functional W, which takes the
derivative with respect to w, at w = 0. It then “weights” the operator X 1) with the
cost c{/1), as

d
W)X i) = %Xﬁ,w,((;),[h]lw=0 = () Xy, [n]-

When extended via linearity, it defines the generating operator of cost C as

G, ¢ = WlG,] = Wy [H, 0 (/ —H)™']. (3.68)

This provides an alternative expression for the expectation ol any additive cost:

E()[C) = ffm G, ¢[F)(e.?) dxdy — fﬁ ¥ Goyr L1 3) dxdy,
B\D BD
(3.69)

the last equality holding for a density F of type (r, L).

Case of Cost D, Remark that, in (3.63), the quantity lg |2} (z:}| |27 (z)|* is just the
derivative of (1/log2)|h;(z)}* with respect to 5. This is why we introduce another
functional A, in the same vein as previously, where the functional W relative to
the cost was introduced. To an operator X, |5}, we associate an operator AX; i
defined as 5

AXsany = @é}&,[h]-
The functional A weights the operator X; [5; with the weight —1g|/’|.

Now, with the help of these two functionals W 1= W(g) and A, we can build the
generating operator for I, The decomposition of the set H as HT 1= H* - H-H*
gives rise to the parallel decomposition of the operators (in the reverse orden). If we
weight the second factor with the help of W := W), we obtain the operator

(I ~H) o W[H]e (7 —H)™' = W[ ~H)™],
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which is the “generating operator” of the cost Q{z). If, in addition of weighting the
second factor with the help of W, we take the derivative A of the third one, then we
obtain the operator

G, p:={~H) 'oeW[H]oa[(I -H) ],
G,p={U~H) T oW[H]Jo(l-H) o A[H]o(J -H)™", (3.70)

which is the “generating operator” of the cost D(%), as the equalities hold,

Eipn[D] = // D(2) F{z,7) dxdy,
D
| . GanlFleDdrd = ffﬁ Y GaropllIe D0, (Y

the last equality holding for a density F of type (r, L}.

Case of costs C, B in the Euclid Algorithm. These functionals W, A are also cen-
tral in the analysis of the bit-complexity of the Euclid Algorithm [5,27]. One deals in
this case with the Dirichlet series relative to cost X, for X ¢ {Id, Cy.y, B}, defined as

X(u,v)
FX(S) = Z 7L
(u,l')EZ2
/€T gedla, =1

These series admit alternative expressions that involve the quasi-inverse {7 —
H,)™! of the plain operator Hy, together with functionals W) and A. Finally, the
following equalities

Fa() = G0}, Fols) = Gocl)O),  Fals) = —Gro[1]0). (3.72)

hold, and involve the non-underlined® versions Gy, Gy, Gy, p of the generating
operators G, G, ¢, G, p defined in (3.68, 3.70).

Functional Analysis

We need precise information on the quasi-inverse (/ —H,)™!, which is omnipresent
in the expressions of our probabilistic studies (see 3.67, 3.69, 3), as the quasi-inverse
({ —H,)™! was already omnipresent in the probabilistic analyses of the F-EUCLID
Algorithm.

¥ These operators are defined in the smme vein as underlined versions, replacing each occurrence
of the underlined operator H, by the plain operator H,.
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ILis first needed 1o find convenient functional spaces where the operators Hy, H
and its variants H; , () will possess good spectral properties. Consider the open disk
V of diameter [—-1/2, 1] and the functional spaces A (V), Beo (V) of all functions f
(of one variable) or I (of two variables) that are holomorphic and continuous on the
frontier; A.o(V) is the space of functions f holomorphic in the domain V and con-
tinuous on the closure ¥, while Boo{V) is the space of functions F holomorphic in
the domain V' x V and continuous on the closure ¥ x V. Endowed with the sup-norm,
these are Banach spaces; for 3(s) > (1/2), the transfer operator Hy acts on Aec{)),
the transfer operator I acts on Bso (V). and these are compact operators. Further-
more, when weighted by a cost of moderate growth [i.e., c(fiyg)) = O{logq)], for
w close enough to 0, and 9ts > (1/2), the operator H, . .y also acts on Boo(V}, and
is also compact.

In the case of the F-EUCLID Algorithm, the spectral properties of the transter
operator defined in (3.57) play a central r0le in the analysis of the algorithm. For
real s, the transfer operator Hy has a unique dominant eigenvalue A (s), which is real
and separated {rom the remainder of the spectrum by a spectral gap. For s = 1,
the dominant eigenvalue of the density transformer H satisfies A(1) = 1, and the
dominant eigenfunction ¥ (x) (which is then invariant under the action of H) admits
a closed form that involves the golden ratio ¢ = (1 + +/5)/2,

N o, 1 )
1”("’)‘rogqﬁ(qwx p—x)

This is the analog {for the F-EUCLID algorithm) of the celebrated Gauss density
associated with the standard Buelid algorithm and equal to (1/log2)1/(1 + x).
Moreover, the quasi-inverse {7 — H,)™! has a pole at s = 1, and satislies

1

SC1RE W(Z)é_f(x) dx, (3.73)

(1 — HS)_1 {f](z) ~5—>1

where the constant 2(£) is the entropy of the F-EUCLID dynamical system, and
satisfies

2
b4
hE) = V(D] = =z 3.41831. 374
&) = WDl = i (3.74)
The operator H; , .y also possesses nice spectral properties (see {40], [9]): for a

complex number s close enough to the real axis, with fis > (1/2), it has a unique
dominant eigenvalue, denoted by A (s, w), which is separated from the remainder
of the spectrum by a spectral gap. This implics the following: for any fixed 5 close
enough to the real axis, the quasi-inverse w — (f — H,’,l,,(c.))_l has a dominant
pole located at w = wy(s) defined by the implicit equation A (s, wiey ()} = 1.
More precisely, when w = 0, one recovers the plain operator H, which has the
same dominant eigenvalue A(y) as the operater H;. For s = 1, it has a dominant
eigenvalue A{1) = 1 with a dominant eigenfunction ¥, which is an extension of
the invariant density ¥ of the F-EUCLID Algorithm, and satisfics ¥ (x, x) = ¥ (x).
An exact expression for yr is provided in [40], B
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2_
(j)+1;+10g¢

1
I
logqbu (0g¢+z ¢ —

Wiz, n) =

Z) forz # w, and ¥ (z,z) = ¥(2).
(3.75)

Near s = 1, the quasi-inverse satisfies

(] _Hs)_l[F](Z, ll) ~5—>1 1;(5)

(3.76)

We consider, in the sequel of this section, the COREGAUSS algorithm with an
initial density, standard of valuation r. Such a density is defined as y"/4o{r), with
Ap(r) defined in (3.6 1). In this case, there are nice expressions lor the moment gen-
erating functions Eg,y[exp(wC)], for the expectations Ey[C], Bqy[D], described
in {3.67,3.69,3), where we let L = 1.

Probabilistic Analysis of the F-EUCLID Algorithm

We wish {o compare the behavior of the two algorithms, the COREGAUSS Algo-
rithm and the F-Eucrid Algorithm, and we first recall here the main facts about
the probabilistic behavior of the F-EUCLID Algorithm.

Theorem 10. (Akhavi and Vallée [5] (1998), Vallée [37,41] (2003-2007}) On the
set wy formed with input pairs (u,v) for which ufv € T and |v] < N, the mean
number of iterations P, the mean value of a cost C of moderate growth, the mean
value of the bit-complexity B satisfy, when M —> oo,

2 log2

2
TN B[] 1g2 N.

log2
g N, Exf[Coorl~ B2 o] 1g N, Ene[B]~ 22

Ev[P]~ h(E) 5]

Here, h(£E) denotes the ennropy of the F-EUCLID dynamical system, described in
(3.74), and Elc] denotes the mean value of the step-cost ¢ with respect to the
invariant density . This is a constant of Khinchin’s type, of the form

Ele] = Y f W (x) dx.
heH

In particular, when ¢ is the binary length £, there is a nice formula for BJ£], namely

o kg2 L g

2 2.02197.

I[F] ¥z, u), with [[F] ::ﬁ F{x,x)dx.
T
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Proof (Sketch). One deals with the Dirichlet series Fy (5) relative to cost X, defined
in (3.72). Using the spectral relation {3.73) together with Tauberian Theorems leads
{o the asymptotic study of the coelficients of the series and provides the result, m

Moreover, there exist also more precise distributional resulis [6, 27] which
show that all these costs P, Cye), together with a regularized version of B, admit
asymptotic Gaussian laws for M — oo,

What can be expected about the probabilistic behavior of the COREGAUSS
Algorithm? On the one hand, there is a strong formal similarity between the
two algorithins, as the COREGAUSS Algorithm can be viewed as a lifting of the
F-EucLID Algorithm. On the other hand, important differences appear when we
consider algorithms: the F-EUCLID algorithm never terminates, except on rational
inpuls that fall in the hole {0}, while the COREGAUSS Algorithm always terminates,
except for irrational real inputs. However, it is clear that these differences disappear
when we restrict to rational inputs, real or complex ones. In this case, both algo-
rithms terminate, and it is quite interesting to determine if there exists a precise
iransition between these two (discrete) algorithms,

Distribution of Additive Costs

We wish to prove that &k > Py[Cy = k] has a geometrical decreasing, with a
precise estimate for the ratio. For this purpose, we use the moment generating func-
tion B {exp[wCe]) of the cost C), for which we have provided an alternative
expression in (3.67), We first study any additive cost, then we locus on the number
of iterations.

General additive cost. The asymptotic behavior of the probability Pgy[Ciey = k]
(for k — 00) is obtained by extracting the coellicient of exp[kw] in the moment
generating function. Then the asymptotic behavior of P()[C(ry = kJ is related to
singularities of I, {(exp[wC]). This series has a péle at @+ where w =
w(ey(s) is defined by the spectral equation Ay (s, w) = | that involves the dominant
eigenvalue A()(s, w) of the operator H; . (., which is described in (3.65). Then,
with classical methods of analytic combinatorics, we obtain:

Theorem 11, (Daudé et al. [14] (1994), Vallée and Vera [45] (2007)) Consider the
COREGAUSS algorithm, when its inputs are distributed inside the disk D with the
confinuous standard density of valuation r. Then, any additive cost Cy;) defined
in (3.9), associated to a step-cost ¢ of moderate growth asymptotically, follows a
geometric law.

The ratio of this law, equal to exp[—w(ey(r +2)}, is related to the solution w)(s)
of the spectral velation Ay (s, w) = 1, which involves the dominan: eigenvaiue
of the transfer operator H, . (o) 1 satisfies, for any cost ¢ of moderate growth,
wiey(r +2) = @(r + 1) when r — —1. More precisely, one has

P [Cey = k] ~ koot (1) expl—kwey (r + 2)], Jork — oc, (397

where a(r) is a strictly positive constant that depends on cost ¢ and valuation r.

§
i
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Number of iterations. In the particular case of a constant step-cost ¢ = 1, the cost
Cie) is just the number R of iterations and the operator H, |, .4y reduces to e" -
H_. Tn this case, there exists a nice alternative expression for the mean number of
iterations of the COREGAUSS algorithm which uses the characterization of Hurwitz
(recalled in Proposition 6.2). Furthermore, the probability of the event [R = & + 1]
can be expressed in an easier way using (3.36), as

Ao(!) ffm)y drdy = A(,( 3 /f y HE,, [1(2) dxdy,

where Ag(r) is defined in (3.61). This leads to the following result:

Theorem 12, (Daudé et al. [14] (1994), Vallée [40] (1996)) Consider the CORE-
GAUSS algorithm, when its inputs arve distributed inside the disk D with the
continuous standard density of valuation r. Then, the expectation of the number
R of iterations admits the following expression:

PR = k+1] =

2r+4 1

B[R] = tar 14 G

cl=1
dp<c<dp?

Furthermore, for any fixed valuation r > —1, the number R of iferations asymptot-
ically follows a geometric law

Piy[R = k + 1] ~gosoo () A2 + 1),

where () is the dominant eigenvalue of the transfer operator H, and a(r) is a
strictly positive constant that depends on the valuation r.

It seems that there does not exist any close expression for the dominant eigenvalue
A{s). However, this dominant eigenvalue is polynomial-time computable, as it is
proven by Lhote [26]. In [17], numerical values are computed in the case of the
uniform density, that is, for A(2) and Eq;[R],

B[R] =~ 1.08922, A(2) == 0.0773853773.
For r — —1, the dominant eigenvalue A(2+r) tendsto A(}) = land A(24r)—1 ~
A(1){(1 + r). This explains the evolution of the behavior of the Gauss Algorithm
when the data become more and more concentrated near the real axis.

Mean Bit-Complexity

We are now interested in the study of the bit-complexity B,'” and we focus on a
standard density of valuation r. We starl with the relation between B, and costs C, D

10%e siudy the central part of the bit-complexity, and do not consider the initialization process,
where the Gram matrix is computed; see Section *Main Parameters of Interest”.
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recalled in Section “Execution Parameters in the Complex Framework”, together
with the expressions of the mean values of parameters C, D obtained in (3.69, 3),
We state three main results: the first one describes the evelution in the continuous
model when the valuation r tends to —1; the second one describes the evolution of
the discrete model when the integer size M tends to co, the valuation being fixed;
finally, the third one describes the evolution of the discrete model when the valuation
r lends to —1 and the integer size M tends to oo,

Theorem 13. (Vallée and Vera [435, 471, 2007} Consider the COREGAUSS Algo-
vithm, where its inputs arve distributed inside the inpur disk D with the standard
density of valuation v > —1. Then, the mean value E(r)|C] of any additive cost
C of moderate growth, and the mean value E[D] of cost D are well-defined and
satisfy whenr — —1,

1 Ej 11 K[
r+1hE) Ey[D] ~ T ¥ )2 10g2 KE)

E[C] ~

When r tends to —1, the output density, associated with an initial density of

) 1
valuation v, fends to ~——-

6] —r, where Vr is the invariant density for H, described in
1(EY y— -
{3.75).

Remark that the constants that appear here are closely related to those which
appear in the analysis of the Euclid algorithm (Theorem 10). More precisely, the
asymptotics are almost the same when we replace 1/(r 4- 1) (in Theorem 13) by
log N (in Theorein 10). Later, Theorem 15 will make precise this observation.

Proof. For any valuation r, the variables C, D are integrable on the disk D: this is
due to the fact that, for X e {Id, C, D}, the integrals taken over the horizontal strip
Hy = DNz |8z] < (1/N)} satisty, with M = log N,

1 . Mex)
Xdedy = —— O+ (r + DM},
do ] sy = s 0k v
where the exponent e{ X' ) depends on cost X; onehas e{Id} = 0,e(C) = 1,¢{D) =
2. This proves that cost X is integrable on D. Furthermore, when r — —1, relations
(3.76, 3.73) prove the following behaviors:

. 1 1
Gy Fl~ T 1RE [Fly,

; L SRR N R
g2+r’cf"’[[}NmMT)Q HEW. GoypplF] o+ D3 I [F]¥,

where the integral /[F] is defincd in (3.76) and y is described in (3.75). The first
equality, logether with the definition of A¢(r} and the fact that Ag(r) ~ (» + 1)7!
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for r — —1, implies the equality

j] L W (z,7)dxdy = h(E).
Bop Y

Using a nice relation between I [¥] and h(£) finally leads 1o the resull. m

It is now possible to transfer this analysis to the discrete model defined in Sec-
tion “Probabilistic Models for Two-Dimensions”, with the Gauss principle recalled
in Section “Probabilistic Models: Continuous or Discrete”.

Theorem 14. (Vallée and Vera [45, 47], 2007) Consider the COREGAUSS Algo-
rithm, where its integer inputs (1,v) of length M = max{{(|u|?, {(|v|*} are
distributed inside the input disk D with the standard density of valuation r > —1.
Then, the mean value B pny[X] of cost X — where X is any additive cost C of
moderate growth, or cost D — tends to the mean value By [X] of cost X, when
M — oo. More precisely,

Me(X}
BganlX] = B[ X] + g O (max{l, ¢ + MY,
where the exponent e{X) depends on cost X and satisfies e(C) = 1,e(D) = 2.
The mean value B, ary[B] of the bit-complexity B satisfies, for any fixed r > —1,
when M - co,

EanlB] ~ Ep[0]- M.

In particular, the mean bit-complexity is linear with respect to M.

Finally, the last result describes the transition between the COREGAUSS algorithm
and the F-EUCLID Algorithm, obtained when the valuation r tends to —1, and the
integer size M tends to = oo:

Theorem 15. (Vallée and Vera [45, 47], 2007) Consider the COREGAUSS Algo-
rithm, where its integer inputs (u,v) of length M = max{€(|u|?, L(v|*} are
distributed inside the input disk D with the standard density of valuation v > —1.
When the integer size M tends to oo and the valuation r tends to —1, with
(r + DM = 2(1), the mean value Eq an[X] of cost X, where X can be any
additive cost C of moderate growth, or cost D, satisfies

M{r + 1))e0H 1
B0 [X] = By [X] {1 +0 (( ¢ j;rh)u)l H [1 —N'“(r+1)i|’

where the exponent e(X) depends on cost X and satisfies e(C) = 1,2(D) = 2.
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Then, if we let (r + DM =: M — oo (with 0 < a < 1), then the mean values

satisfy

Efel | 1— Efe 1 _
]E(r.M)[C] ~ —‘h(g)Ml ) ]E(r,M)[D} ~ HE@)—@ I
Elt] o
IE(,-’M)EB] ~ @M2 s

Ifnow (r + DM is ®(1), then
EeanlCl= O3,  EeanlD]=60M?),  Egm[B] = OM?).

Open question. Provide a precise description of the phase transition for the behavior
of the bit-complexity between the Gauss algorithm for a valuation » — —1 and the
Euclid algorithm: determine the constant hidden in the ¢ term as a function of

(r + M.

First Steps in the Probabilistic Analysis
of the LLL Algorithm

We return now to the LLL algorithm and explain how the previous approaches can
be applied for analyzing the algorithm,

Evolution of Densities of the Local Bases

The LLL algorithm aims at reducing all the local bases Uy {defined in Sec-
tion “Description of the Algorithm™} in the Gauss meaning. For obtaining the output
density at the end of the algorithm, it is interesting o describe the evolution of
the distribution of the local bases along the execution ol the algorithm. The variant
ODDEVEN described in Section “A Variation for the LLL Algorithm: The Odd-Even
Algorithm” is well-adapted to this purpose.

In the first Odd Phase, the LLL algorithm [irst deals with local bases with odd
indices. Consider two successive bases Uy, and Uy a2, respectively, endowed with
some initial densities F and Fy . Denote by zx and zx o the complex numbers
associated with focal bases (g, vi} and (ugs2, ve4.2) via relation (3.1). Then, the
LLL algorithm reduces these two local bases (in the Gauss meaning) and computes
two reduced local bases denoted by (iix, V) and (dg 42, Vk42), which satisfy'! in
particular

B2 = uel - (), [kral = logsal - Maeaa).

' The notation * refers to the Gram—Schmidt process as in Sections “The Lattice Reduction
Algorithm in the Twa-Dimensional Case and The LLL Algorithm”,
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Then, Theorem 8 provides insights on the distribution of pt{zx), A(zg+2). As, in
our model, the random variables |up} and z; (respectively, |itgyof and 7z o) are
independent (see Section “Probabilistic Models for Two-Dimensions™}, we obtain a
precise information on the distribution of the norms [V ], {tix+2|.

In the first Even Phase, the LLL algorithm considers the local bases with an even
index. Now, the basis Uy4; is formed (up to a similarity) from the two previous
output bases, as

U1 = [Vl Vi1 = V[Vl + i),

where v can be assumed io follow a {quasi- Juniform law on [-1/2, +1/2]. More-
over, at least at the beginning of the algorithm, the two variables [V ], 2| are
independent. All this allows to obtain precise information on the new input density
Fi4, of the local basis Uy4;. We then hope to “follow” the evolution of densities
of local bases along the whole execution of the LLL algorithm.

Open question: Is this approach robust enough to “follow™ the evolution of densi-
ties of local bases along the whole execution of the LLL algorithm? Of course, in
the “middie” of the algorithm, the two variables vy, Tig 42 are no longer independent.
Are they independent enough, so that we can apply the previouns methed? Is it true
that the variables v at the beginning of the phase are almost uniformly distributed
on [—-1/2,41/2]7 Here, some experiments will be of great use.

The Dynamical System Underlying the ODD-EVEN-LLL
Algorithm

We consider two dynamical systems, the Odd dynamical system (relative to the
0dd phases) and the Even dynamical system (relative to the Even phases}. The Cdd
(respectively, Even) dynamical system performs (in parallel) the same operations as
the AGauss dynamical system, on each complex number z; of odd (respectively,
even) indices. Between the end of one phase and the beginning of the following
phase, computations in the vein of Section “Evolution of Densities of the Local
Bases™ take place.

The dynamics of each system, Odd or Even, is easily deduced from the dynamics
of the AGAUSS system. In particular, there is an Even Hole and an Odd Hole, which
can be described as a function of the hole of the AGAUSS system. But the main
difficulty for analyzing the ODD-EVEN Algorithm will come from the difference
on the geometry of the two holes — the Odd one and the Even one. This is a work in
progress!
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