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A New Efficient Threshold Ring Signature Scheme
based on Coding Theory

Carlos Aguilar, Pierre-Louis Cayrel, Philippe Gaborit and Fabien Laguillaumie

Abstract—Ring signatures were introduced by
Rivest, Shamir and Tauman in 2001 [32]. These sig-
natures allow a signer to anonymously authenticate a
message on behalf of a group of his choice. This concept
was then extended by Bresson, Stern and Szydlo into
t-out-of-N (threshold) ring signatures in 2002 [9]. We
propose in this article a generalization of Stern’s code
based identification (and signature) scheme [36] to
design a practical t-out-of-N threshold ring signature
scheme. The size of the resulting signatures is in O(N)
and does not depend on t, contrary to most of the
existing protocols. Our scheme is existentially unforge-
able under a chosen message attack in the random
oracle model assuming the hardness of the minimum
distance problem, is unconditionally source hiding, has
a very short public key and has an overall complexity
in O(N). This protocol is the first efficient code-based
ring signature scheme and the first code-based thresh-
old ring signature scheme. Moreover it has a better
complexity than number-theory based schemes which
have a complexity in O(Nt). This paper is an extended
version of [2] with complete proofs and definitions.

Keywords : Threshold ring signature, code-based
cryptography, Stern’s scheme, syndrome decoding.

I. Introduction

The constant need to electronically emulate real-life
applications with strong security properties leads to the
design of sophisticated identification schemes with spe-
cific properties. Ring signatures are such an identification
technique, where a signer anonymously authenticates a
message on behalf of a group of his own choice. The design
of such special purpose signatures almost always relies on
arithmetic in the ring ℤ/Nℤ or in groups of points of an
algebraic curve equipped or not with a pairing. From the
point of view of the efficiency of the computations involved
in the whole cryptographic process, error correcting codes
are a real alternative to such integral arithmetic.

1) Code-based cryptography: In 1978 when McEliece
published his seminal work where he proposed to use
the theory of error correcting codes for confidentiality
purposes, he designed one of the most efficient encryption
schemes, which still resists to cryptanalysts. His asymmet-
ric encryption algorithm may be sum up as follows: Alice
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applies an encoding mechanism to a message and add to
it a large number of errors, that can only be corrected
by Bob who has information about the secret decoding
mechanism. A long time after, Stern proposed in [36] a
zero-knowledge identification protocol based on a well-
known error-correcting codes problem usually referred as
the Syndrome Decoding Problem (SD in short).

The advantages of code-based cryptography are twofold.
First code-based cryptography constitutes an alternative
to classical number theory based cryptography, whose hard
problems (factorization, discrete logarithm, discrete loga-
rithm based on elliptic curve) would be broken through
P. Shor’s quantum factorization algorithm, in the case a
quantum computer would come to exist. Second, code-
based cryptosystems are faster than classical number
theory based cryptosystems ([7],[20]). Notice that cryp-
tosystems based on hard problems potentially resistant
to a quantum computer, like code-based cryptography,
lattice based cryptography or multivariate cryptography
have recently been gathered under the name post-quantum
cryptography, and a special conference dedicated to these
systems, PQCrypto, has been recently created. The main
drawbacks of code-based cryptosystems is historically a
large size of public key, meanwhile in recent years, propo-
sitions have been made, based on structured matrices
(quasi-cyclic or dyadic) to deal with this issue [20], [4],
[28]. In particular the double-circulant variation of the
Stern identification scheme [20] is believed to be very
hard to break, being based on the difficulty of decoding
a binary code up to the Gilbert-Varshamov bound, when
more scrutiny is needed for McEliece compact variations.

The Stern identification scheme (that we mainly con-
sider in this paper) can be used as a signature scheme
through the Fiat-Shamir heuristic [18]. From the two
original drawbacks of the scheme : the relatively large
size of key and the large length of signature (about 20
kiloBytes), only the large size of signature remains. This
scheme has very good features and despite its large size of
signature, it can potentially be used in many applications.

Overall code-based cryptography represents one of the
few credible alternative to classical cryptography, and one
attends to a rising interest in the cryptographic commu-
nity for these systems, in particular practical implementa-
tion of such code-based schemes on smart cards, embedded
devices or PC, have begun to be presented in conferences
likes CHES or CARDIS ([17], [11], [23], [7]).

2) Ring signature: The concept of ring signature, which
is the subject of this article, was introduced in 2001
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by Rivest, Shamir and Tauman [32] (called RST in the
following). Ring signatures are often considered as sim-
plified group signatures without group managers. If ring
signatures are related to this notion of group signatures in
[13], they are indeed quite different. On one hand, group
signatures have the additional feature that the anonymity
of a signer can be revoked (i.e. the signer can be traced)
by a designated group manager, on the other hand, ring
signatures allow greater flexibility: no centralized group
manager or coordination among the various users is re-
quired (indeed, users may be unaware of each other at
the time they generate their public keys). Moreover, the
anonymity of the signer is unconditionally guaranteed.
The original motivation was to allow secrets to be leaked
anonymously. For example, a high-ranking government
official can sign information with respect to the ring of all
similarly high-ranking officials, the information can then
be verified as coming from someone reputable without
exposing the actual signer.

Bresson et al. [9] extended the ring signature scheme
into a threshold ring signature scheme using the concept
of partitioning and combining functions. Assume that t
users want to leak some secret information, so that any
verifier will be convinced that t users among a select group
held for its validity. The trivial construction consisting in
producing t ring signatures clearly does not prove that the
message has been signed by different signers. A threshold
ring signature scheme effectively proves that a minimum
number of users of a certain group must have actually
collaborated to produce the signature, while hiding the
precise membership of the subgroup (for example the ring
of public keys of all members of the President’s Cabinet).

3) Related Work: The seminal work of Bresson et al.
[9] suffers from a lack of efficiency since the size of the
signature grows with the number of users N and the
number of signers t. More precisely, the size of their t-out-
of-N signature is 2O(t)⌈log2N⌉ × (tl +Nl) where l is the
security parameter. A number of t inversions are necessary
to perform a signature and O(2tN log2N) computations
are needed in the easy direction.

Later, Liu et al. [26] proposed another threshold ring
signature based on Shamir’s secret sharing scheme. Their
scheme is separable (which means that the signers are
free to choose their own parameters), with a signature
length linear in N but a quadratic complexity for t ≈ N/2
(the cost of secret sharing scheme). The notion of mesh
signature, introduced by Boyen in [8] can also be used in
that case: the signature length is also linear in N but the
verification is in O(Nt) bilinear pairings computations.

A variation for ring signature was introduced in [38]
by Tsang, Wei, Chan, Au, Liu and Wong: the authors
introduced the notion of linkable ring signature by which a
signer can sign only once being anonymous, since a verifier
can link a second signature signed by the same signer.
Although this property may have interesting applications
(in particular for e-vote) it does not provide full anonymity
(in the sense that it cannot be repeated). Later their
scheme was extended to threshold ring signature with

a complexity in O(N), but again, only a linkable ring
signature which does not correspond to original required
feature of [32] and [9], namely a fully anonymous scheme.

A first attempt to design ring signatures within the error
correcting code setting was performed by Zheng, Li and
Chen [44], but their scheme is still inefficient. After the
short version of the present paper, Dallot and Vergnaud
proposed a code-based threshold ring signature scheme
[15], inspired by Bresson et al.’s construction with Cour-
tois, Finiasz and Sendrier’s signatures [14]. Both previous
schemes use [14], which makes them very difficult to use
in practice.

4) Contributions: In this paper, we present a general-
ization of Stern’s identification and signature scheme [36]
that we use to design new ring and threshold ring signature
schemes. Our scheme’s performance does not depend on
the number t of signers in the ring, the overall complexity
and length of signatures only depend linearly in the max-
imum number of signers N . Our protocol also guarantees
unconditional anonymity of the signers. Besides these
features and its efficiency, our protocol is also the first non
generic coding theory based ring signature (and threshold
ring signature) protocol and may constitute an interesting
alternative to number theory based protocols. Overall our
protocol has a very short public key size, a signature
length linear in N and the best known complexity in O(N)
when other number theory based threshold ring signature
schemes have a complexity in O(Nt).

5) Organization of the paper: The rest of this paper
is organized as follows. In Section II, we give a state of
the art of ring signatures and threshold ring signatures. In
Section III, we describe Stern’s identification and signature
scheme and give some background and notation. In Section
IV, we present our new generalization of Stern’s scheme in
a threshold ring signature context. In Section V, we study
the security of the proposed scheme. In Section VI we
consider a variation of the protocol with double circulant
matrices. In Section VII we discuss the signature cost and
length. Finally, we conclude in Section VIII.

II. Overview of Ring Signatures

A. Definition of a ring signature

Following the formalization of ring signatures proposed
in [32], we review in this section some basic definitions and
properties eligible to ring signature schemes.

Definition 1 (Ring Signature) Let � be an integer. A
ring signature scheme RS consists of the following four
algorithms:

∙ Setup: is a probabilistic algorithm which takes the
unary string 1� as input and outputs the public pa-
rameters P. The integer � is the security parameter
and will be an input of all algorithms.

∙ KeyGen: is a probabilistic algorithm which takes public
parameters as input and outputs a pair of secret and
public keys (sk, pk).
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∙ Sign: is a probabilistic algorithm which takes as input
public parameters, a set {pk1, . . . , pkN} of public keys,
a secret key ski for 1 ≤ i ≤ N , a message m, and
which outputs a ring signature � on m.

∙ Verify: is a deterministic algorithm which takes as
input public parameters, a set {pk1, . . . , pkN} of public
keys, a putative pair message/signature (m,�), and
outputs 1 if � is a valid signature on m with respect to
the set of public keys {pk1, . . . , pkN}, and 0 otherwise.

The crucial security property expected from a ring
signature scheme (besides its unforgeability) is the source
hiding, which is a very strong anonymity property. Indeed,
it means that an attacker, even with unbounded computa-
tion capabilities, is not able to determine which member of
the ring actually produced a given signature. This property
is required to be unconditionnaly fulfilled (i.e. in the infor-
mation theoretic sense), not only computationnaly. Precise
definition of the security requirements will be detailed in
the next section concerning threshold ring signatures.

From a practical point of view, most of the existing ring
signature schemes have a signature length linear in N , the
size of the ring. Among the many schemes appearing in the
literature, one can mention the work of Bendery, Katzyz
and Morselli in [3] where they present three ring signature
schemes which are provably secure in the standard model.
Recently, Shacham and Waters [34] proposed a ring signa-
ture scheme where the signature consists of 2N + 2 group
elements and requires 2N + 3 pairings to be verified.

A breakthrough on the size of ring signature was ob-
tained in [16] in which the authors proposed the first (and
unique up to now) constant-size scheme based on accumu-
lator functions and the Fiat-Shamir zero-knowledge iden-
tification scheme. However, the signature derived from the
Fiat-Shamir scheme has a size of at least 160 kbits, and the
security proof is conducted in the random oracle model.
Another construction proposed by Chandran, Groth and
Sahai ([12]) has a size in O(

√
N).

Recently in [44], Zheng, Li and Chen presented a code-
based ring signature scheme with a signature length of
144+126N bits, but this scheme is based on the signature
from [14] which remains very slow in comparison with
other schemes.

Eventually a generalization of ring signature schemes in
mesh signatures was proposed by Boyen in [8].

B. Threshold ring signature: definition and security model

In [9], Bresson, Stern and Szydlo introduced the notion
of threshold ring signature as an extension of the original
concept of ring signature from Rivest et al. [32]. We
formally define in this section the notion of threshold ring
signature scheme together with the security requirements.

Definition 2 (Threshold Ring Signature) Let �, t
and N be three integers. A (t,N)-threshold ring signature
scheme TRS consists of the following four algorithms:

∙ Setup: is a probabilistic algorithm which takes the
unary string 1� as input and outputs the public pa-
rameters P.

∙ KeyGen: is a probabilistic algorithm which takes public
parameters as input and outputs a pair of secret and
public keys (sk, pk).

∙ Sign: is a probabilistic interactive protocol be-
tween t users, involving public parameters, a set
{pk1, . . . , pkN} of public keys, a set of t secret keys
{ski1 , . . . , skit}, a message m, and which outputs a
(t,N)-threshold ring signature � on m.

∙ Verify: is a deterministic algorithm which takes as
input public parameters, a threshold value t, a set
{pk1, . . . , pkN} of public keys, a putative pair mes-
sage/signature (m,�), and outputs 1 if � is a valid
signature on m with respect to the set of public keys
{pk1, . . . , pkN}, and 0 otherwise.

The scheme TRS must be correct, which means that
for all (�,N, t) ∈ ℕ3, for all m ∈ {0, 1}∗, for all P ←
TRS.Setup(1�), TRS.Verify(P, t, {pk1, . . . , pkN}, (m,�)) =
1 as long as (ski, pki) ← TRS.KeyGen(P) ∀ 1 ≤ i ≤ N ,
and � ← TRS.Sign(P, {pk1, . . . , pkN}, {ski1 , . . . , skit},m)
with {ski1 , . . . , skit} ⊂ {sk1, . . . , skN}.

Let us now discuss the security criteria which must be
fulfilled by a threshold ring signature scheme.

1) Unforgeability: The conventional notion of security
for signatures was introduced by Goldwasser, Micali and
Rivest in [21]. A signature scheme is said to be secure
if it is indeed existentially unforgeable under a chosen
message attack. We formally describe by the following
game between an existential forger ℱ and its challenger C,
the similar notion of security for a threshold ring signature
scheme.

Definition 3 A threshold ring signature scheme is said to
be existentially unforgeable under a chosen message attack
if no PPT adversary ℱ has a non-negligible advantage in
the following game.

1) The challenger C chooses a security parameter �
and executes P ← TRS.Setup(1�) and (ski, pki) ←
TRS.KeyGen(P) for 1 ≤ i ≤ N . It gives all pki’s to
the forger ℱ and keeps the corresponding secret keys
to itself.

2) The forger ℱ can issue the following queries:

a) a signing query for some message
m; the challenger C executes � ←
TRS.Sign(P, {pk1, . . . , pkN}, {ski1 , . . . , skit},m)
and hands � to ℱ ;

b) a corrupt query for some pki ∈ {pk1, . . . , pkN}:
C gives ℱ the corresponding secret key ski.

3) ℱ outputs a (t,N)-threshold ring signature �̃★ for a
new message m★.

The adversary ℱ succeeds if
TRS.Verify

(
P, t, {pk1, . . . , pkN}, (m★, �★)

)
= 1, m★

has not been asked by ℱ in a signing query in step 1 of
the game and the number of corrupt queries is strictly
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less than t. An attacker ℱ is said to (�, qs, qc, ")-break
the unforgeability of the TRS scheme if he succeeds in the
game within running time � and with probability " after
having made qs signing queries and qc corrupt queries.

2) Anonymity of signers: The essential notion of secu-
rity for ring signatures is an anonymity property, called
source hiding. Roughly speaking, a (t,N)-threshold signa-
ture scheme is source hiding (or has perfect anonymity) if
a signature on a message m produced by a set of signers
S0 of a given ring R looks exactly the same as a signature
on the message m produced by another set S1 of signers
of the ring R. More formally, this notion is extended to
the threshold setting in the following definition.

Definition 4 (Source hiding) Let t and N be two in-
tegers. A (t,N)-threshold ring signature scheme TRS is
said to be unconditionnaly source hiding if there exists
a probabilistic polynomial time algorithm Fake taking as
inputs some public parameters, a set {pk1, . . . , pkN} of
public keys, a set of t secret keys {ski1 , . . . , skit} and a
message m, which outputs a a bit string such that

TRS.Sign(P, {pk1, . . . , pkN}, {ski1 , . . . , skit},m) =
Fake(P, {pk1, . . . , pkN}, {skj1 , . . . , skjt},m)
with #{ski1 , . . . , skit} ∩ {skj1 , . . . , skjt} < t, for all

m ∈ {0, 1}∗, for all P ← TRS.Setup(1�) and (ski, pki) ←
TRS.KeyGen(P) ∀ 1 ≤ i ≤ N .

C. Fiat-Shamir Heuristic

Fiat and Shamir proposed in [18] a general paradigm for
designing a secure signature scheme from a secure identifi-
cation scheme. The idea is to start from a secure 3-round
public coin identification scheme (with a commitment �
from the prover, a random challenge � from the verifier
and the response  from the prover), and then to turn
into a digital signature scheme with the help of a random
oracle ℋ. Indeed, to sign a message m, the signer (who
knows the secret) produces a valid transcript (�, �, ) of
the interactive identification protocol where � = ℋ(�,m).
Its efficiency and ease of design make the Fiat-Shamir
protocol very popular. As indicated by Pointcheval and
Stern in [31], an honest-verifier zero-knowledge protocol
leads to a secure signature scheme in the random oracle
model. This framework will be used to obtain our ring sig-
nature scheme from our generalized Stern’s identification
protocol.

III. Notations and background on coding theory
and Stern’s identification protocol

A. Permutation notation

We first introduce two notions of block permutation that
we will use in our protocol. Consider n and N two integers.

Definition 5 A constant n-block permutation Σ on N
blocks is a permutation by block which permutes together
N blocks of length n block by block. Each block is treated as
a unique position as for usual permutations.

A more general type of permutation is the n-block
permutation Σ on N blocks

Definition 6 A n-block permutation Σ on N blocks is a
permutation which satisfies that the permutation of a block
of length n among N blocks is exactly included in a block
of length n.

A constant n-block permutation is a particular n-block
permutation in which the blocks are permuted as such. For
instance the permutation (6, 5, 4, 3, 2, 1) is a 2-block per-
mutation on 3 blocks and the permutation (3, 4, 5, 6, 1, 2)
is a constant 2-block permutation on 3 blocks since the
order on each block ((1, 2), (3, 4) and (5, 6)) is preserved
in the block permutation.

The notion of product permutation is then straight-
forward. Let us define �, a family of N permutations
(�1, . . . , �N ) of {1, . . . , n} on n positions and Σ a constant
n-block permutation on N blocks defined on {1, . . . , N}.
We consider a vector v of size nN of the form :

v = (v1, v2, . . . , vn, vn+1, . . . , vn+n, v2n+1, . . . , vnN ),

we denote V1 the first n coordinates of v and V2 the
n following coordinates and so on, to obtain: v =
(V1, V2, ..., VN ). We can then define a n-block permutation
on N blocks, Π = Σ ∘ � as

Π(v) = Σ ∘ �(v) =

(�1(VΣ(1)), . . . , �N (VΣ(N))) = Σ(�1(V1), ⋅ ⋅ ⋅ , �N (VN )).

B. Difficult problems in coding theory

Let us recall that a linear binary code C of length n
and dimension k, is a vector subspace of dimension k of
Fn2 . The weight of an element x of Fn2 is the number of non
zero coordinates of x. The minimum distance of a linear
code is the minimum weight of any non-zero vector of the
code. One define the scalar product between x and y from
Fn2 as x.y =

∑n
i=1 xiyi. A generator matrix G of a code is

a generator basis of a code, the dual of a code C is defined
by C⊥ = {y ∈ Fn2 ∣x.y = 0,∀x ∈ C}. Usually a generator
matrix of the dual of a code C is denoted by H. Remark
that x ∈ C ⇐⇒ Hxt = 0. For x ∈ Fn2 , the value Hxt is
called the syndrome of x for H.

The usual hard problem considered in coding theory is
the following syndrome decoding (SD) problem, proven to
be NP-complete in [5] in 1978.

Problem: (SD) Syndrome decoding of a random code
Instance: A (n − k) × n random matrix H over F2, a

non null target vector y ∈ F(n−k)
2 and an integer ! > 0.

Question: Is there x ∈ Fn2 of weight ≤ !, such that
Hxt = yt ?

This problem was used by Stern to design his iden-
tification protocol [36], but in fact a few years later a
variation on this problem called the minimum distance
(MD) problem was also proven to be NP-complete in [39]:

Problem: (MD) Minimum Distance
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Instance: A binary (n−k)×n matrix H and an integer
! > 0.

Question: Is there a non zero x ∈ Fn2 of weight ≤ !,
such that Hxt = 0 ?

It was remarked in [20] that this problem could also
be used with Stern’s scheme, the proof works exactly the
same. Notice that the practical difficulty of both SD and
MD problems are the same: the difficulty of finding a
word of small weight in a random code. The associated
intractable assumptions associated to these problems are
denoted by SD assumption and MD assumption, see
[37] for a precise formal definition of the SD assumption
related to the SD problem.

C. Stern’s Identification Protocol

This scheme was developed in 1993 (see [36]). It provides
a zero-knowledge identification protocol, not based on
number theory problems. Let ℎ be a hash function. Given a
public random matrix H of size (n− k)×n over F2. Each
user L receives a secret key sL of n bits and of weight
!. A user’s public identifier is the secret key’s syndrome
iL = HstL. It is calculated once in the lifetime of H. It
can thus be used by several future identifications. Let us
suppose that L wants to prove to V that he is indeed the
person corresponding to the public identifier iL. L has his
own private key sL such that the public identifier satisfies
iL = HstL. The two protagonists run the protocol depicted
in Fig. 1.

1) Commitment Step: L randomly chooses y ∈ Fn2
and a permutation � of {1, 2, . . . , n}. Then L
sends to V the commitments c1, c2 and c3 such
that :

c1 = ℎ(�∣Hyt); c2 = ℎ(�(y)); c3 = ℎ(�(y⊕ s))

where ℎ(a∣b) denotes a hash value of the con-
catenation of the sequences a and b.

2) Challenge Step: V sends b ∈ {0, 1, 2} to L.
3) Answer Step:

∙ if b = 0 : L reveals y and �.
∙ if b = 1 : L reveals (y ⊕ s) and �.
∙ if b = 2 : L reveals �(y) and �(s).

4) Verification Step:

∙ if b = 0 : V verifies that c1, c2 have been
honestly calculated.

∙ if b = 1 : V verifies that c1, c3 have been
honestly calculated.

∙ if b = 2 : V verifies that c2, c3 have been
honestly calculated, and that the weight of
�(s) is !.

5) Iterate the steps 1,2,3,4 until the expected
security level is reached.

Fig. 1. Stern’s protocol

Remark: During the fourth step, when b equals 1, it can
be noticed that HytL derives directly from H(y⊕sL)t since

we have:

Hyt = H(y ⊕ sL)t ⊕ iL = H(y ⊕ sL)t ⊕HstL .

It is proven in [36] that this scheme is a zero-knowledge
Fiat-Shamir like scheme with a probability of cheating in
2/3 (rather than in 1/2 for Fiat-Shamir).
Remark: In [20] the authors propose a variation on the
scheme by taking the secret key to be a small word of
the code associated to H. This results is exactly the same
protocol except that, as the secret key is a codeword,
the public key (i.e. the secret key’s syndrome) is not the
matrix H together with the syndrome but only the matrix
H. The protocol remains zero-knowledge with the same
feature. The problem of finding a small weight codeword in
a code has the same type of complexity that the syndrome
decoding problem (and is also NP-complete). The only
drawback of this point of view is that it relates the secret
key with the matrix H but in our case we will be able to
take advantage of that.

IV. Our Threshold Ring Signature Scheme

In this section, we describe a new efficient threshold
ring identification scheme based on coding theory. This
scheme is a generalization of Stern’s scheme. Furthermore,
by applying the Fiat-Shamir heuristic [18] to our threshold
ring identification scheme, we immediately get a t-out-of-
N threshold ring signature scheme with signature’s size in
O(N).

A. A Code-Based Construction of Threshold Ring Signa-
ture

Consider a ring of N members (P1, ⋅ ⋅ ⋅ , PN ) and among
them t users who want to prove that they have been
cooperating to produce a ring signature. Each user Pi
computes a public matrix Hi of (n− k)× n bits. A user’s
public key consists of the public matrix Hi and an integer
w (common to all public keys). The associated secret key
is si a word of weight w of the code Ci associated to the
dual of Hi.

The general idea of our protocol is that each of the t
signers performs by himself an instance of Stern’s scheme
using matrix Hi and a null syndrome as parameters (as
in the scheme’s variation proposed in [20]). The results
are collected by a leader L among the signers in order
to form, with the addition of the simulation of the N − t
non-signers, a new interactive protocol with the verifier V .
The master public matrix H is created as the direct sum of
the ring members’ public matrices. Eventually, the prover
P , formed by the set of t signers among N (see Fig 2),
proves (by a slightly modified Stern’s scheme - one adds a
condition on the form of the permutation) to the verifier V
that he knows a codeword s of weight t! with a particular
structure: s has a null syndrome for H and a special form
on its N blocks of length n: each block of length n has
weight 0 or !. In fact this particular type of word can only
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be obtained by a cooperation process between t members
of the ring. Eventually the complexity is hence the cost
of N times the cost of a Stern identification for a single
prover (the multiplication factor obtained on the length of
the matrix H used in the protocol) and this for any value
of t.

Fig. 2. Threshold ring signature scheme in the case where the t
signers are P1, ⋅ ⋅ ⋅ , Pt and the leader L = P1, for a group of N
members.

Besides the combination of two Stern protocols (one
done individually by each signer Pi with the leader, and
one slightly modified done by the leader with the verifier),
our scheme relies on the three following main ideas:

1) The master public key H is obtained as the direct
sum of all the public matrices Hi of each of the N
users.

2) Indistinguishability among the members of the ring
is obtained first, by taking a common syndrome value
for all the members of the ring: the null syndrome,
and second, by taking secret keys si with the same
weight ! (public value) associated to public matrices
Hi.

3) Permutation constraint: a constraint is added in
Stern’s scheme on the type of permutation used:
instead of using a permutation of size Nn we use a
n-block permutation on N blocks, which guarantees
that the prover knows a word with a special struc-
ture, which can only be obtained by the interaction
of t signers.

The overall scheme is described by the following algo-
rithms.

1) TRS.Setup: Given a security parameter �, TRS.Setup
outputs a length n, a dimension k, an integer (the weight)
! and the threshold value t.

2) TRS.KeyGen: Given the public parameters
{�, n, k, !, t}, TRS.KeyGen outputs a pair of keys
where the public key consists of a (n − k) × n parity
check matrix H and the secret key of a single codeword
of weight ! from the code C with parity check matrix H.

3) TRS.Sign: The signing algorithm will be composed
of the following sub-procedures

- Lead: this phase consists in agreeing on a leader.
- Make-RPK: a group public key is defined as the direct

sum of the N public keys pki = Hi, for 1 ≤ i ≤ N .
The matrix H is then a N(n− k)×Nn matrix such
that H = ⊕Ni=1Hi.

- NIZKPK: this phase consists in the combination of t
zero-knowledge proofs of the knowledge of the secret
keys. The paradigm of Fiat-Shamir is applied to
this global proof to obtain a (t,N)-threshold ring
signature � on m.

4) TRS.Verify: Given the public parameters, the thresh-
old value, N public keys {pki}1≤i≤N and a putative pair
message/signature (m,�), this phase consists in recovering
the group public-key and checking the validity of the Fiat-
Shamir signature on m.

B. TRS.Setup

With 1� as input, where � is the security parameter,
the Setup algorithm is run to obtain the values of the
parameters n, k, t, w. The integers n and n − k are the
matrix parameters, ! is the weight of the secret key si and
t is the number of signers (the threshold). This algorithm
also creates a public database pk1 , . . . , pkN , (which are
indeed matrices Hi).. Note that the parameters n, k and !
are set once for all, and that any new user knowing these
public parameters can join the ring. The parameter t has
to be defined at the beginning of the protocol.

The matrices Hi are constructed in the following way:
choose si a random vector of weight !, generate k − 1
random vectors and consider the code Ci obtained by
these k words (the operation can be reiterated until the
dimension is exactly k). The matrix Hi is then a (n−k)×n
generator matrix of the dual code of Ci. Remark that this
construction leads to a rather large public matrix Hi, we
will consider in Section VI, an interesting variation of the
construction.

C. Make-RPK

Each user owns a (n− k)× n-matrix Hi (public) and a
n-vector si (secret) of small weight ! (public) such that
His

t
i = 0. The problem of finding a codeword s of weight !

is a MD problem as defined earlier. The t signers choose a
leader L among them which sends a set of public matrices
H1, . . . ,HN .
Remark: In order to simplify the description of the
protocol (and to avoid double indexes), we consider in
the following that the t signers correspond to the first t
matrices Hi (1 ≤ i ≤ t) (although more generally their
order can be considered random in {1, .., N} since the
order depends of the order of the N matrices sent by the
leader).

The RPK (Ring Public Key) is then constructed as
follows:
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H =

⎛⎜⎜⎜⎜⎜⎜⎝

H1 0 0 ⋅ ⋅ ⋅ 0
0 H2 0 ⋅ ⋅ ⋅ 0
...

...
. . .

...
...

...
...

...
. . .

...
0 0 0 ⋅ ⋅ ⋅ HN

⎞⎟⎟⎟⎟⎟⎟⎠ .

D. TRS.Sign and TRS.Verify

We now describe the core of our identification protocol
in Fig. 3. The TRS.Sign and TRS.Verify are obtained by
applying the Fiat-Shamir paradigm on this protocol.

The leader L collects the commitments given from the
t− 1 other signers (L is also a signer), simulates the N − t
non-signers and chooses a random constant n-block per-
mutation Σ on N blocks. From all these commitments L
creates the master commitments C1, C2 and C3 which are
sent to the verifier V , who answers by giving a challenge
b in {0, 1, 2}. Then L sends the challenge to each of the
other t − 1 signers and collects their answers to create a
global answer for V . Upon reception of the global answer,
V verifies that it is correct by checking the commitments
as in the regular Stern’s scheme.

Recall that in the description of the protocol, in order
to avoid disturbing double indexes, we consider that the t
signers correspond to the first t matrices Hi.

In the figure 3, ℎ(a1∣ ⋅ ⋅ ⋅ ∣aj) denotes the hash of the
concatenation of the sequence formed by a1, ⋅ ⋅ ⋅ , aj .

V. Security

A. Security of Our Scheme

We first prove that our scheme is HVZK with a proba-
bility of cheating of 2/3. We begin by a simple lemma.

Lemma 1 Finding a vector v of length nN such that the
global weight of v is t!, the weight of v for each of the
N blocks of length n is 0 or ! and such that v has a null
syndrome for H, is hard under the MD assumption.

Proof: The particular structure of H (direct sum
of the Hi of same length n) implies that finding such
a n-block vector of length nN is exactly equivalent to
finding a solution for the local hard problem of finding
si of weight ! such that His

t
i = 0, which is not possible

under our assumption. □

Theorem 2 Our scheme is an honest verifier proof of
knowledge, with a probability of cheating 2/3, that the group
of signers P knows a vector v of length nN such that the
global weight of v is t!, the weight of v for each of the
N blocks of length n is 0 or ! and such that v has a
null syndrome for H. The scheme is secure under the MD
assumption in the random oracle model.

Proof: We need to prove the usual three properties
of completeness, soundness and zero-knowledge. The
property of completeness is straightforward since for

1) Commitment Step:
∙ Each of the signers chooses yi ∈ Fn2 randomly and

a random permutation �i of {1, 2, . . . , n} and sends
to L the commitments c1,i, c2,i and c3,i such that :

c1,i = ℎ(�i∣Hiy
t
i); c2,i = ℎ(�i(yi));

c3,i = ℎ(�i(yi ⊕ si))

∙ L sets the secret si of the N − t missing users at
0 and computes the N − t corresponding commit-
ments by choosing random yi and �i (t+ 1 ≤ i ≤
N).

∙ L chooses a random constant n-block permutation
Σ on N blocks {1, ⋅ ⋅ ⋅ , N} in order to obtain the
master commitments:

C1 = ℎ(Σ∣c1,1∣ . . . ∣c1,N ), C2 = ℎ(Σ(c2,1, . . . , c2,N )),

C3 = ℎ(Σ(c3,1, . . . , c3,N )).

∙ L sends C1, C2 and C3 to V .
2) Challenge Step: V sends a challenge b ∈ {0, 1, 2} to

L which sends b to the t signers.
3) Answer Step: Let Pi be one of the t signers. The

first part of the step is between each signer and L.
- Three possibilities :

∙ if b = 0 : Pi reveals yi and �i.
∙ if b = 1 : Pi reveals (yi ⊕ si) (denoted by (y ⊕
s)i) and �i.

∙ if b = 2 : Pi reveals �i(yi) (denoted by (�(y))i)
and �i(si) (denoted by (�(s))i).

- L simulates the N − t others Stern’s protocol with
si = 0 and t+1 ≤ i ≤ N and sets s = (s1, . . . , sN ).

- L computes the answer for V (and sends it) :

∙ if b = 0 : L constructs y = (y1, ⋅ ⋅ ⋅ , yN ) and
Π = Σ ∘ � (for � = (�1, ⋅ ⋅ ⋅ , �N )) and reveals
y and Π.

∙ if b = 1 : L constructs y⊕s = ((y⊕s)1, ⋅ ⋅ ⋅ , (y⊕
s)N ) and reveals y ⊕ s and Π = Σ ∘ �.

∙ if b = 2 : L constructs and reveals Π(y) and
Π(s).

4) Verification Step:

∙ if b = 0 : V verifies that Π(s) is a n-block per-
mutation and that C1, C2 have been honestly
calculated.

∙ if b = 1 : V verifies that Π(s) is a n-block per-
mutation and that C1, C3 have been honestly
calculated.

∙ if b = 2 : V verifies that C2, C3 have been
honestly calculated, and that the weight of
Π(s) is t! and that Π(s) is formed of N blocks
of length n and of weight ! or 0.

5) Iterate the steps 1,2,3,4 until the expected security
level is reached.

Fig. 3. Generalized Stern’s protocol
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instance for b = 0, the knowledge of y and Π permits
to recover Σ, �i and the yi so that it is possible for
the verifier to recover all the ci and hence the master
commitment C1, the same for C2. The cases b = 1 and
b = 2 works the same. The proof for the soundness
and zero-knowledge follow the original proof of Stern in
[37] for the problem defined in the previous lemma, by
remarking that the structure of our generalized protocol
is copied on the original structure of the protocol with Σ
in Fig.3 as � in Fig.1, and with the fact that one checks
in the answers b = 0 and b = 1 in the protocol that the
permutation Π is an n-block permutation on N blocks. □

This result naturally leads to the following theorem:

Corollary 3 The resulting threshold ring signature
scheme obtained from the application of the Fiat-Shamir
heuristic on our generalized Stern’s protocol is existentially
unforgeable under a chosen message attack in the random
oracle model assuming the hardness of the MD problem.

Remark: It is also not possible to have information leaked
between signers during the protocol since each signer only
gives information to L (for instance) as in a regular Stern’s
scheme which is zero-knowledge.

Now we consider the anonymity provided to the signers
by our protocol. Formally we obtain:

Theorem 4 Our threshold ring signature scheme is un-
conditionally source hiding.

Our protocol generalizes Gaborit and Girault’s flavour
of Stern’s protocol [20] in the sense that the small weight
secret codeword in their protocol is “expanded” into a
vector where blocks of secret non-zero vectors (the secret
key of user i) correspond to 1 in the small secret (at the ith
position), whereas the blocks of zeros correspond to 0 in
the small secret. The source hiding essentially comes from
the fact that this Gaborit and Girault’s variant of Stern’s
original protocol perfectly hides the position of 1s and 0s
in the secret. Then, any subset of t users can produce a
given ring signature with equal probability.

Proof:

The distributions of the signatures produced by any
subset of t users are actually the same. The Fake al-
gorithm to exhibit is just the Sign algorithm used with
any set of t secret keys. Using adequat random coins, a
given signature can be produced by any set of t users.
Indeed, each commitment produced by a signer involving
its secret corresponds to a one-time pad of the secret,
which means that the distribution of this commitment is
perfectly indistinguishable from a random one, as well as a
distribution coming from any other secret. Therefore, the
whole protocol perfectlys hide the signers. The probability
for an attacker to guess one of the original signers is
no more than t/n, a random guess (and the probability
that the attacker recover the whole group is no more

that 1/
(
n
t

)
). Finally this discussion does not rely on any

computational assumption.
□

B. Practical Security of Stern’s Scheme from [36]

The security of Stern’s Scheme relies on three properties
of random linear codes:

1) Random linear codes satisfy a Gilbert-Varshamov
type lower bound [27],

2) For large n almost all linear codes lie over the
Gilbert-Varshamov bound [30],

3) Solving the syndrome decoding problem for random
codes is NP-complete [5].

In practice Stern proposed in [36] to use rate 1/2 codes
and ! just below the Gilbert-Varshamov bound associated
to the code. For such code the exponential cost of the best
known attack [10] (or the more recent [6] can be lower

bounded by an approximation in O(n)
(n
!)

(n−k
! )

, which gives

a code with today security (280) of n = 634 and rate 1/2
and ! = 69.

VI. An Interesting Variation of the Scheme
Based on Double-Circulant Matrices

In Section IV we described a way to create the public
matrices Hi, this method as in the original Stern’s paper,
leads to a large size of the public keys Hi in n2/2 bits.
It was recently proposed in [20], to use double-circulant
random matrices rather than pure random matrix for such
matrices. A double circulant matrix is a matrix of the form
Hi = (I∣C) for C a random n/2×n/2 cyclic matrix and I
the identity matrix. Following this idea one can construct
the matrices Hi as follows: consider si = (a∣b) where a and
b are random vectors of length n/2 and weight ≈ !/2, then
consider the matrix (A∣B) obtained for A and B square
(n/2 × n/2) matrices obtained by the n/2 cyclic shifts of
a and b (each row of A is a shift of the previous row,
beginning with first row a or b).

Now consider the code Gi generated by the matrix
(A∣B), the matrix Hi can then be taken as Hi = (I∣C)
such that Hi is a dual matrix of Gi and C is cyclic since
A and B are cyclic, and hence can be described with only
its first row. It is explained in [20] that this construction
does not decrease the difficulty of the decoding but clearly
decrease dramatically the size of the description of Hi: n/2
bits against n2/2.

It is then possible to define a new problem:

Problem: (MD-DC) Minimum Distance of Double
circulant Codes:

Instance: A binary n/2×n double circulant matrix H
and an integer ! > 0.

Question: Is there a non zero x ∈ Fn2 of weight ≤ !,
such that Hxt = 0 ?

It is not known whether this problem is NP-complete or
not (although the problem of decoding quasi-cyclic code
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in general, has been proven NP-complete in [4]), but the
problem is probably as hard as the MD problem, and on
practical point of view (see [20] for details) the practical
security is almost the same for best known attack that
the MD problem. Practically the author of [20] propose
n = 347.

Now all the proof of security we considered in this paper
can also be adapted to the MD-DC problem, since for the
generalized Stern protocol we introduced we can take any
kind of Hi with the same type of problem: knowing a small
weight vector associated to Hi (in fact only the problem
assumption changes).

VII. Length and Complexity

In this section we examine the complexity of our proto-
col and compare it to other protocols.

A. The case t = 1

This case corresponds to the case of classical ring sig-
nature schemes. Our proposal is then not so attractive in
term of signature length since we are in O(N), or more
precisely 20 kiloBytes×N (where 20 kiloBytes is the cost
of one Stern signature). On the other hand, since Stern’s
protocol is fast in terms of speed, our protocol is faster
that all others protocols for small values of N (N = 2 or
3) which may have some applications. In particular, the
case N = 2 corresponds to a designated verifier signature
scheme [24].

B. The general case

Signature length.
It is straightforward to see that the signature length

of our protocol is in O(N), more precisely around 20
kiloBytes ×N, for 20 kiloBytes the length of one signature
by the Fiat-Shamir paradigm applied to the Stern scheme
(a security of 2−80 is obtained by 140 repetitions of the
protocol). For instance consider a particular example with
N = 100 and t = 50, we obtain a 2 MegaBytes signature
length, which is quite large, but still tractable. Of course
other number theory based protocols like [8] or [26] have
shorter signature lengths (in 8 kiloBytes or 25 kiloBytes)
but are slower.

Public key size.
If we use the double-circulant construction described in

Section VI, we obtain, a public key size in 347N which has
a factor 2 or 3 better than [26] and of same order than [8].

Complexity of the protocol.
The cost of the protocol is N times the cost of one

Stern signature protocol hence in O(N), (more precisely in
140n2N operations) and this for any t. When all other fully
anonymous threshold ring signature protocol have a com-
plexity in O(tN) operations (multiplications or modular
exponentiations in large integer rings, or pairings). Hence
on that particular point our algorithm is faster than other
protocols.

VIII. Conclusion

In this paper we presented a new (fully anonymous) t-
out-of-N threshold ring signature scheme based on coding
theory. Our protocol is a very natural generalization of
the Stern identification scheme and our proof is based on
the original proof of Stern. We showed that the notion of
weight of vector particularly went well in the context of
ring signature since the notion of ad hoc group corresponds
well to the notion of direct sum of generator matrices
and is compatible with the notion of sum of vectors
of small weight. Eventually we obtain a unconditionally
source hiding protocol. Our protocol is the first non-
generic protocol based on coding theory and (as usual
for code based protocol) is very fast compared to other
number theory based protocols

Moreover the protocol we described can also be easily
generalized to the case of general access scenario. Eventu-
ally the fact that our construction is not based on number
theory but on coding theory may represent an interesting
alternative. We hope this work will enhance the potential
of coding theory in public key cryptography.
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