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Abstract

In this paper, the problem of the control law design for interconnected identical
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systems ensuring the global stability and the global performance properties is under

consideration. Inspired by the decentralized control law design methodology using the

dissipativity input-output approach, the problem is reduced to the problem of satis-

fying two conditions: (i) the condition on the interconnection and (ii) the condition

on the local subsystem dynamics. Both problems are efficiently solved applying a

(quasi-) convex LMI optimization and standard H∞ synthesis. The proposed design

methodology is applied to the control law design of a synchronous PLL network.

Keywords Multi-Agent systems, decentralized control, H∞ control, dissipativity

input-output approach, LMI optimization, PLL network synchronization.

1 Introduction

The design problem of a large-scale system represented as an interconnection of identical

subsystems is under consideration. Each subsystem is a feedback interconnection of the plant

and the controller. The problem of system design is: given the plant and the interconnection

topology, find the subsystem controllers ensuring an appropriate global behavior of the overall

system, referred to as the global system performance.

This design problem turns out to be relevant in various fields of science and engineer

applications [1]. In this paper, as an example of application, we investigate the control

law design for an active clock distribution network, that is, interconnected Phase-Locked

Loops (PLLs) interconnected in an array. This device was proposed as an alternative to

the classical clock distribution trees in order to distribute the clock signal in a synchronous

multi-core microprocessor system with a better level of performance in terms of perturbation
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rejection, robustness and power consumption [2–5]. The active clock distribution network

design consists in computing the controller (filter) of the (feedback) PLL loop in order to

ensure a high level of global system performance. Indeed, the global synchronization of the

phase and frequency in a specified amount of time is crucial to ensure the correct operation

of the clock network. Issues of minimal global system bandwidth, maximal control signal

level, noise and perturbation rejection must be addressed as well. The two first requirements

enforce the convergence speed and limit the power consumption of the whole system, while

the two last ones are critical to distribute the clock properly in a noisy and often perturbed

chip environment.

In the Microelectronics field, the traditional design procedure of the PLL network system

usually consists of two steps: (i) local design of the PLL (filter) and (ii) global analysis

of the PLL network. During the first step, the network interconnection is neglected, that

is, the subsystems (PLLs) are assumed independent. The local subsystem design, usually

based on the classical frequency design methods, is then performed such that the local sub-

system behavior or local subsystem performance are satisfactory. The second step consists

in the performance analysis of the global system composed of the designed subsystems in-

terconnected with the given topology. Usually, to perform this step, some local and global

simulations are performed in order to test if the local performance ensured by the local

design is achieved for the overall system as well. If it is not the case, the difference between

the local performance and global one is then estimated i.e. the global performance is rather

evaluated in the relative than in the absolute way. This design procedure is a reminiscence

of some iterative, “trial and error” approaches to decentralized control [6].
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The same design procedure, i.e. the local subsystem design followed by the global system

analysis, can be applied to the design of other large-scale interconnected systems. However,

due to the mutual coupling, the multiple interconnections and feedbacks inside the network,

the traditional design method can fail. In general, it cannot ensure that the local perfor-

mance of the independent subsystem will not be significantly degraded when the subsystem

is connected to the global network. Moreover, even the global system stability is not en-

sured. Hence, the impact of the global network interconnections can be very important:

it is then necessary to design the control law under the constraint of global stability and

global performance.

Though the (heuristic) traditional design method does not ensure a priori appropriate

global system behavior, there are some motivations for its use. A first motivation is the

inherent complexity of the networked system design, due to the decentralization and the pos-

sibly important dimension. Since the network topology does not connect all the subsystems

with all the other ones and since for practical realization reasons, the controllers are decen-

tralized, the design problem is a particular case of the decentralized control design problem.

The structural (decentralized) constraint implies the complexity of the design problem and

the inefficiency of its resolution algorithms [7]. Second, since the overall system can have a

large number of subsystems, its direct global design using optimization can lead to a large

number of decision variables. In the traditional approach, the design is first performed for

a single local subsystem, that is an optimization problem with a significantly reduced num-

ber of decision variables. Moreover, since in the considered application the subsystems are

identical, they are all designed at once. Another motivation is the existence of the standard
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and well-known local subsystem design tools, which is also the case for fields different from

Microelectronics.

The main goal of this paper is to propose a new design method which is close to the

Microelectronics traditional design procedure but solves its major drawbacks i.e. the local

design of the subsystem does not guarantee the stability and the performance of the network.

A strong motivation of procedure close to the traditional one is to improve the acceptability

of the proposed design method. Furthermore, it has to be general enough to be applied to

other similar design problems of networked systems, in other application fields.

Let us first discuss the existing interconnected system design methods in Control Theory

with respect to our goals. A similar control problem was largely investigated in the field

of Multi-Agent system. A Multi-Agent system is a network of intelligent subsystems called

agents, where each agent exchanges some information with its neighbour ones, in order to

achieve some specified global network behaviour. The agent is the feedback of a to-be-

controlled plant and a controller.

The most fundamental result in the case of Linear Time Invariant (LTI) identical Multi-

Agent system is the necessary and sufficient stability conditions presented in [8]. By some

aspects, this result is a generalization of the Nyquist stability criterion to Multi-Agent

systems. Based on the Graph Theory, the authors transform the global stability condition of

the N interconnected identical Multi-Agents into local conditions of simultaneous stability

for the N independent different subsystems, see Theorem 3 in [8].

Based on this result, a large number of papers were published during the last years

for sometimes particular classes of interconnections (Laplacian, Adjacency, symmetric or
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normal matrices). The static feedback control of [9] or the dynamic observer based solution

presented in [10–12] and [13] are such examples. However, these results cannot be applied

to our application of PLL network design. First, for the control law discussed in [10–13] a

communication network which is able to transmit arbitrary information is assumed: plant

state vector for the static control case and observer based controller state vectors for the

dynamic control case. Furthermore, the computation of these controllers and observers is

not investigated. The reason is the intrinsic complexity of the simultaneous stabilization

problem for three and more subsystems, as discussed in [14]. This fact is confirmed by the

results presented in [15, 16] where the control law computation is based on Bilinear Matrix

Inequality (BMI) optimization which, in general, cannot be efficiently solved.

Another drawback of these results which is important for our application, is that the pro-

posed control law design methods do not address general performance specifications. The

focus is only on the consensus or coordination with a fixed convergence rate, inspired by

Theorem 3 in [8]. For example, the specification of the reference ramp tracking, necessary

for the PLL synchronization, cannot be considered. The minimization of the H∞ norm of a

global transfer function in [17] is an interesting perspective for considering some performance

specifications. However, the solution presented in [17] could be extremely conservative since

it is based on a quadratic Lyapunov function which is common to all the subsystems with

a block diagonal structure. A less conservative result is presented in [18], where, if the

interconnection satisfies a structural property, the global system could be equivalently de-

composed into independent subsystems. In this case, the design of controller ensuring the

global stability and an H∞ norm inequality on a global transfer function is investigated.
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This inequality ensures that the magnitude of the frequency response of the global trans-

fer function is below a frequency independent constraint. As in most of the applications,

the performance specifications of the PLL network have to be expressed as ”the magnitude

of the frequency response of the global transfer function is below a frequency dependent

constraint”. The introduction of performance inputs and outputs to the global system asso-

ciated to weighting functions [19] in order to deal with frequency dependent constraint could

destroy the system structural property so that the global system might not be decomposed.

In this case the approaches presented in [17,18] cannot be directly applied.

The second possible approach for the large-scale system design is the Decentralized Con-

trol design methods, see [20] and [21]. In these approaches, a system is represented as the

interconnection of subsystems. A local controller is designed for each subsystem such that

the global and sometimes local system objectives are ensured. These (local) controllers form

hence the decentralized controller.

Despite a large amount of works, the design of such controllers is still an open problem

for the general case [22–24]. Under some assumptions, it is proved to be NP-hard [7] and

boils down to a non convex BMI optimization problem [24,25]. A first approach to solve the

problem is to propose a direct but heuristic resolution of the BMI problem [24] or to over

constraint the problem to obtain a convex formulation. The last approach is adopted in the

paper [22] where a quadratic Lyapunov function is fixed to have a block diagonal matrix

structure. A second approach consists in a relaxation of the complex structural constraints

imposed by the network topology in order to obtain an efficient design algorithm as in [26].

The authors of [26] propose to solve the problem introducing the link between global system
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and local subsystem behaviours based on a subsystem dissipativity characterisation used in

the input-output approaches [27].

Nevertheless, the approach presented in [26] is not suitable for our application. In [26],

the subsystems are not necessarily identical and thus the complexity of the design conditions

strongly depends on the number of subsystems. This potentially leads to large optimiza-

tion problems since, for every single subsystem, a set of Linear Matrix Inequality (LMI)

constraints has to be introduced. The application to the PLL network design can be con-

servative since this methods does not consider identical subsystems, in contrast with the

Multi-Agent approaches as in [8]. Furthermore, the proposed approach does not satisfy our

goal, that is, propose a procedure where the design of a local controller implies the stability

and the performance of the global system.

In this paper, we propose a design method for the control of interconnections of identical

subsystems. The proposed approach is to design the (local) controller of a subsystem in

order to achieve the stability and the specifications of performance for the interconnections

of identical subsystems (the global system). A first result reveals how to compute the local

controller such that the global system is stable, with the H∞ norm of a global transfer

function less than a given level η (section 2). The input-output behavior of the subsystem

is described by a general dissipative property [27], that is, the input signals and the output

signals satisfy an (integral) quadratic constraint. Such an approach is suitable to obtain

stability criteria for interconnected systems, using separation of graph arguments [27–30].

The nice feature is that the local controller can be designed by the standard H∞ method

with some additional LMI constraints due to the interconnection. Based on this first result,
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a second one reveals how to obtain a similar result with the H∞ norm inequality replaced

by a frequency dependent constraint on the frequency response magnitude of the global

transfer function (section 3). The nice feature is that this kind of constraints allows to

address typical design specifications. The proposed method is then applied to the design of

a PLL network (section 4). The nice feature is that we succeed in improving the traditional

design process by a priori ensuring the global stability and performance.

Notations The superscript “T” defines a real matrix transpose while the superscript “∗”

defines the complex conjugate transpose. IN denotes a square N ×N identity matrix while

0n×m is a n ×m zero matrix. The dimension of the identity or zero matrix is omitted (I

and 0) if it is clear from the context. The diagonal aggregation of two matrices A and B is

denoted by diag(A,B). The Kronecker product between two matrices A and B denoted by

⊗ is defined as:

A⊗B = [aijB]

With G =

 G11 G12

G21 G22

 , G?K denotes G?K = G11+G12K (I −G22K)−1G21 with ? the

Redheffer (star) product. Similarly, K ?G denotes K ?G = G22 +G21K (I −G11K)−1G12.

For a stable LTI system G, ‖G‖∞ denotes the H∞ norm of G. For a matrix P , σ̄ (P ) denotes

the maximal singular value of the matrix P . L2 is the space of Rn square integrable valued

functions defined on R, where the norm is defined by ‖f‖2 = (
∫
‖f(t)‖2dt)1/2.
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Figure 1: Considered global LTI large-scale system

2 Large-scale control

2.1 Problem formulation

The Linear Time Invariant (LTI) large-scale system with identical subsystems is defined as

the interconnection M of Ns identical subsystems Ts with ns inputs and ms outputs, that

is :

p = (INs ⊗ Ts) (q) q

z

 = M


 p

w




(1)

where

• M =

 M11 M12

M21 M22

 is a (finite dimensional) stable LTI system;

• Ts = G ? K where the (finite dimensional) LTI systems G and K are referred to as

the local plant and the local controller;
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• w (t) ∈ Rnw is the system input, z (t) ∈ Rnz the system output and q (t) ∈ RnsNs ,

p (t) ∈ RmsNs are internal signals.

In the sequel, this system, denoted (INs ⊗ Ts) ? M and represented Fig. 1, is referred to as

the global system and Ts = G?K as the local system. Both systems are assumed to be well

posed and causal.

Note that an active clock distribution network can be represented as a Linear Time

Invariant (LTI) large-scale system with identical subsystems where the local subsystem Ts

represents a Phase-Locked Loops, K the PLL filter and M the interconnection of the PLLs.

Remark 1. The proposed general large-scale system model (1) can describe the network of

the interconnected Multi-Agents. In this particular case, the agent dynamic is represented

by Ts and their interconnection by a Laplacian (or an Adjacancy) matrix M (see [8,31]). In

contrast with, in the sequel, the proposed approach does not assume any particular structure

of the interconnection.

Problem 1 (Decentralized control problem). Given η > 0, the interconnection M and the

local plant G, find the local controller K such that the global system (INs ⊗ Ts) ?M is stable

and

‖(INs ⊗ Ts) ? M‖∞ < η. (2)

Remark 2. The proposed decentralized control problem recovers well-known Multi-Agent

problems such as consensus, synchronization, coordination, reference tracking, etc. [8, 9,

11, 12, 31, 32]. In this case, the minimization of the H∞-norm (2) can be interpreted as

the global agent network performance goal: minimization of the synchronisation, tracking
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or coordination error [17, 33]. The example of the Multi-Agent synchronization will be

illustrated in Section 4; the other problems can be addressed in a similar way.

2.2 Proposed solution to the decentralized control problem

The proposed solution is based on the description of systems using a concept of dissipativity.

Definition 1 (Dissipativity). A causal operator H with the input q and the output p is

strictly {X, Y, Z}−dissipative, where X = XT , Y and Z = ZT are real matrices with X Y

Y T Z

 full rank if there exists a real ε > 0 such that for any q ∈ L2

∫ τ

0

 q (t)

p (t)


T  X Y

Y T Z


 q (t)

p (t)

 dt ≤ −ε
∫ τ

0

q (t)
T
q (t) dt (3)

if the inequalities (3) is satisfied with ε = 0 the operator is said to be {X, Y, Z}− dissipative.

If the operator H is stable and LTI then equation (3) leads to the following frequency

domain condition [34]: for almost ∀ω ∈ R+ and a real ε > 0 I

H (jω)


∗  X Y

Y T Z


 I

H (jω)

 ≤ −εI. (4)

The next theorem presents a sufficient condition for (2) based on the dissipativity prop-

erties of the interconnection M and the local system Ts.

Theorem 1 (Global Performance). Given η > 0, a stable interconnection M and a local

plant G and the real matrices X = XT ∈ Rms×ms ≥ 0, Y ∈ Rms×ns , Z = ZT ∈ Rns×ns , if

there exists
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(i) a positive definite matrix P ∈ RNs×Ns such that M is {diag (P ⊗X,−η2I) , diag (P ⊗ Y, 0),

diag (P ⊗ Z, I)}−dissipative;

(ii) a local controller K such that Ts = G ? K is strictly
{
−Z,−Y T ,−X

}
dissipative

then the local controller K ensures that the large scale system (INs ⊗ Ts) ? M is stable and

‖(INs ⊗ Ts) ? M‖∞ ≤ η. (5)

Discussion Condition (i) and condition (ii) of Theorem 1 can be tested using convex

optimization involving Linear Matrix Inequality constraints. To this purpose, let us in-

troduce the matrices A, B, C, D which define a minimal state-space representation of

M(s) = C (sI −A)−1B + D with A ∈ Rn×n. The matrix P is such that the condition (i)

holds if and only if there exists a positive definite matrix P̂ ∈ Rn×n such that



I 0

A B

0 I

C D



T



0 P̂

P̂ 0

0

0

P ⊗X 0 P ⊗ Y 0

0 −η2I 0 0

P ⊗ Y T 0 P ⊗ Z 0

0 0 0 I





I 0

A B

0 I

C D


≤ 0. (6)

which is a Linear Matrix Inequality constraint. This inequality is directly obtained by

applying the Kalman-Yakubovich-Popov (KYP) lemma [35]. For the sake of clearness and

without loss of generality, in the sequel, the interconnection M is considered static, that is

a gain matrix. Thanks to (6), the presented results can be straightforwardly extended to

the case of dynamical M .
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Furthermore, previously published results reveal that find a controller K such that condi-

tion (ii) of Theorem 1 is satisfied can be tested using convex optimization involving Linear

Matrix Inequality constraints (see e.g. [36] or [26]). Moreover, when X > 0, using the

following loop shifting transformation:

T̂ = (−X)
1
2
(
Ts +X−1Y

) (
Z − Y TX−1Y

)− 1
2 (7)

the computation of the controller K such that Ts = G ? K is strictly
{
−Z,−Y T ,−X

}
−

dissipative is equivalent to the computation of K such that the
∥∥∥T̂∥∥∥

∞
< 1 which is a

standard H∞ control problem [19]. Such a loop shifting transformation is well-posed since,

by applying the Schur Lemma [37], X > 0 and (4) imply that Z − Y TX−1Y > 0.

Theorem 1 is now specialized to the stability problem.

Corollary 1 (Global Stability). Given η > 0, a stable interconnection M , a plant G, and

real matrices X = XT ∈ Rms×ms ≥ 0, Y ∈ Rms×ns , Z = ZT ∈ Rns×ns , if there exists

(i) a positive definite matrix P ∈ RNs×Ns such that M11 is {P ⊗X , P⊗Y , P ⊗ Z}−dissipative;

(ii) a local controller K such that Ts = G ? K is strictly
{
−Z,−Y T ,−X

}
−dissipative

then the local controller K ensures that the large scale system (INs ⊗ Ts) ? M is stable.

Remark 3. For different choices of the matrices X, Y and Z, Corollary 1 recovers some exist-

ing results. Note that {0, I, 0}−dissipativity corresponds to passivity, while {I, 0, I}−dissipativity

corresponds to (small) L2-gain. In this sense and when the non-linear counterparts of Ts and

M11 are considered, Corollary 1 is an generalization of respectively the passivity theorem
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and the small gain one. The theorems were applied for ensuring the stability of Multi-Agent

systems in e.g. [38–40] and [41] respectively. As our approach is not restricted to passivity

or L2-gain, the matrices X, Y and Z introduce extra degrees of freedom in order to reduce

the conservatism. In the next subsection, a choice of these matrices is investigated.

2.3 Proof of Corollary 1 and Theorem 1

We first prove Corollary 1, which focuses on the stability, in order to afterwards prove

Theorem 1 which focuses on the H∞ norm performance defined by (5).

Proof of Corollary 1 (stability). Note that due to the stability of M , the stability of

(INs ⊗ Ts) ? M = M22 +M21 (INs ⊗ Ts) (I −M11 (INs ⊗ Ts))
−1M12 (8)

is equivalent to the stability of (INs ⊗ Ts) (I −M11 (INs ⊗ Ts))
−1, that is the feedback con-

nection of (INs ⊗ Ts) and M11. The proof is based on the application of the separation of

graph theorem presented in [27, Theorem 1] (see also [42]) which is presented here in a

slightly different way.

Theorem 2. The negative feedback of a linear
{
−R,−ST ,−Q

}
−dissipative operator L and

a static interconnection H is stable if the following matrix is positive definite, i.e.:

Q̂ = SH +HTST −HTRH −Q > 0 (9)

Condition (i) of Corollary 1 states that the interconnectionM11 is {P ⊗X,P ⊗ Y, P ⊗ Z}−

dissipative. First let us prove that if condition (ii) of Corollary 1 holds (Ts is strictly{
−Z,−Y T ,−X

}
-dissipative) then for any positive definite matrix P , INs ⊗ Ts is strictly
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{
−P ⊗ Z,−P ⊗ Y T ,−P ⊗X

}
-dissipative. Therefore the stability is deduced by applying The-

orem 2 due to the fact that condition (i) of Corollary 1 implies condition (9) of Theorem 2

with H = −M11, L = IN ⊗ Ts and Q = P ⊗X, S = P ⊗ Y , R = P ⊗ Z.

Condition (ii) (the strict
{
−Z,−Y T ,−X

}
-dissipativity of Ts) ensures that (INs ⊗ Ts) is

strictly
{
−INs ⊗ Z,−INs ⊗ Y T ,−INs ⊗X

}
-dissipative, i.e. for almost all ω ∈ R and a real

ε1 > 0  Ins

Ts (jω)


∗  −Z −Y T

−Y −X


 Ins

Ts (jω)

 ≤ −ε1Ins

⇔

 INs ⊗ Ts (jω)

INs ⊗ Ins


∗  INs ⊗X INs ⊗ Y

INs ⊗ Y T INs ⊗ Z


 INs ⊗ Ts (jω)

INs ⊗ Ins

 ≥ ε1INs ⊗ Ins

(10)

By post- and pre-multiplying the previous inequality by an invertible full rank matrix D⊗Ins

with D ∈ RNs×Ns and its transpose, by noting that

(INs ⊗ Ts(jω))× (D ⊗ Ins) = (D ⊗ Ims)× (INs ⊗ Ts(jω))

and by using the properties of the Kronecker product [43], one obtains for almost all ω ∈ R INs ⊗ Ts (jω)

INs ⊗ Ins


∗ 

(
DTD ⊗ Ims

)
(INs ⊗X)

(
DTD ⊗ Ims

)
(INs ⊗ Y )(

DTD ⊗ Ins

) (
INs ⊗ Y T

) (
DTD ⊗ Ins

)
(INs ⊗ Z)


 INs ⊗ Ts (jω)

INs ⊗ Ins

 ≥ ε1DTD⊗Ins

which for P = DTD > 0 is equivalent to for almost all ω ∈ R a real ε1 > 0 INs ⊗ Ts (jω)

Ins×Ns


∗  P ⊗X P ⊗ Y

P ⊗ Y T P ⊗ Z


 INs ⊗ Ts (jω)

Ins×Ns

 ≥ ε1P ⊗ Ins ≥ ε2Ins×Ns (11)

with new real ε2 > 0 such that ε2 ≤ ε1σ̄ (P ⊗ Ins) = ε1σ̄ (P ). The last inequality implies

that INs ⊗ Ts is strictly
{
−P ⊗ Z,−P ⊗ Y T ,−P ⊗X

}
-dissipative which concludes the proof.
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Proof of Theorem 1 (performance). Note that condition (i) and condition (ii) of

Theorem 1 imply condition (i) and condition (ii) of Corollary 1, which ensures stability.

Let us now prove the inequality (5), that is the inequality on the H∞ norm. By definition,

{diag (P ⊗X,−η2I) , diag (P ⊗ Y, 0), diag (P ⊗ Z, I)}− dissipativity of M is equivalent to

the following quadratic condition ∀w, ∀τ > 0:

∫ τ

0

 p (t)

w (t)


T


I

M


T



P ⊗X 0 P ⊗ Y 0

0 −η2I 0 0

P ⊗ Y T 0 P ⊗ Z 0

0 0 0 I




I

M


 p (t)

w (t)

 dt ≤ 0

From equation (1) (definition of the global system), one obtains:

∫ τ

0

 z (t)

w (t)


T  I 0

0 −η2I


 z (t)

w (t)

 dt

≤ −
∫ τ

0

 p (t)

q (t)


T  P ⊗X P ⊗ Y

P ⊗ Y T P ⊗ Z


 p (t)

q (t)

 dt
(12)

∀τ > 0, ∀w and p, q, z defined by (1).

The left hand part of (12) expresses the relation between the input w and the output z

of the global system (1) while its right hand part is an integral quadratic constraints on the

internal signals q and p, that is, the input/output of INs ⊗ Ts (see Fig.1). Since condition

(11) ensures strict
{
−P ⊗ Z,−P ⊗ Y T ,−P ⊗X

}
-dissipativity of INs ⊗ Ts, for some ε > 0 and
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∀P = P T > 0, with p = INs ⊗ Ts(q), we have:

∫ τ

0

 p (t)

q (t)


T  −P ⊗X −P ⊗ Y

−P ⊗ Y T −P ⊗ Z


 p (t)

q (t)

 dt ≤ −ε∫ τ

0

q (t)T q (t) dt ≤ 0 (13)

From condition (13) and condition (12), one obtains

∫ τ

0

 z (t)

w (t)


T  I 0

0 −η2I


 z (t)

w (t)

 dt ≤ 0

∀τ > 0, ∀w and z defined by (1).

Applying Fourier transform, the last equation becomes

∫ +∞

−∞

 z (jω)

w (jω)


∗  I 0

0 −η2I


 z (jω)

w (jω)

 dω ≤ 0

Leaving out the integral and noting that z = (INs ⊗ Ts) ? M(w) the following condition

on external input output signals in frequency domain is obtained: for almost ∀ω ∈ R+ (INs ⊗ Ts) ? M (jω)

I (t)


∗  I 0

0 −η2I


 (INs ⊗ Ts) ? M (jω)

I (t)

 ≤ 0

which is equivalent to ‖(INs ⊗ Ts) ? M‖∞ ≤ η, i.e. the inequality (5).

2.4 How to choose X, Y , Z?

In order to apply Theorem 1 and Corollary 1, it is necessary to choose the matrices X,

Y and Z. For the sake of clarity, we focus on static interconnections, that is M is a real

matrix, with ns = 1, ms = 1, i.e. X, Y , Z are scalars, referred to as in the sequel x, y and
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z, and Ts SISO. The case of a dynamical LTI interconnections M can be investigated in a

similar way. However, the choice of the matrices in the Multi Input Multi Output (MIMO)

case is the perspective of a future work.

The main idea of the choice of x, y and z is to satisfy the condition (i) of Corollary 1 and

Theorem 1 and to relax condition (ii) as much as possible. Indeed, it allows to obtain the

least restrictive constraint
∥∥∥T̂∥∥∥

∞
< 1 (see (7)) in order to compute the local controller by

solving a standard H∞ problem. We first discuss the choice of x, y and z for the application

of Corollary 1 and then for the application of Theorem 1.

Conditions of Corollary 1 (Stability)

Condition (ii) of Corollary 1 enforces the transfer function Ts to be strictly {−z,−y,−x}−dissipative,

that is:  Ts(jω)

1


∗  x y

y z


 Ts(jω)

1

 > 0 (14)

⇐⇒ (Ts(jω)− c)∗(Ts(jω)− c) < r2 (15)

with c = − y
x

and r =
√

y2

x2
− z

x
. The last inequality means that the Nyquist plot of the

transfer function Ts is inside the circle with center c and radius r. Fig.2 presents the Nyquist

plot of Ts in the case of a typical PLL design (blue line), with the circle plotted in full red

line. To relax the constraint (15) for a given center c, the radius r has to be maximized.

Note that the radius r can be increased by increasing the positive − z
x
. Similarly, condition

(i) of Corollary 1 which enforces the matrix M11 to be {xP, , yP , zP}−dissipative with
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𝑧

𝑥
 

Figure 2: Typical Nyquist plot of a transfer function Ts

P > 0, can be expressed as:

(
M11 +

y

z
I
)T

P
(
M11 +

y

z
I
)
≤
(
y2

x2
− z

x

)
P (16)

Increasing − z
x

strengthens the constraint (16). Thus constraint (15) and constraint (16)

cannot be simultaneously relaxed. The following optimization problem should therefore be

solved: “find x, y, z such that the condition (16) is satisfied and that it maximizes the circle

radius r for a given center c”.

To solve this problem, without lost of generality, one redundant variable can be eliminated

by setting for example z = 1 1. By introducing in condition (16) the variables r and c, the

1This is equivalent to dividing both inequalities (14) and (16) by z > 0 and performing the change of

variables: x̃ = x
z ≤ 0, ỹ = y

z .
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optimization problem can be formulated as:

min
χ,P

χ = 1
r2

such that
P > 0

MT
11PM11 ≤

1

r2︸︷︷︸
χ

(cM11 − I)T P (cM11 − I)

(17)

For a given c, the minimization problem of χ (and thus the maximization of r) with the

decision variables P ∈ RNs×Ns and χ ∈ R+, is a generalized eigenvalue problem involving

Linear Matrix Inequality constraints, that is a standard (quasi convex) LMI optimization

problem [37]. If c is a decision variable, the optimization problem (17) is no longer a

generalized eigenvalue minimization problem. However, based on the spectrum of the matrix

M11, c can be chosen in order to ensure the feasibility of condition (16): with λM11
i is the

i-th eigenvalue of M11

|c| =
∣∣∣z
x

∣∣∣ ≤ 1

2max
i

(∣∣Re (λM11
i

)∣∣) . (18)

Then, using a linear search on c in the interval defined by (18), the best c and r can be found

in the sense of relaxing the Ts transfer function circle constraint (15) and thus the condition

(ii) of Corollary 1. Finally, {x, y, z = 1} is obtained from {r, c} by a simple transformation.

Let us now generalize this result to the global performance case.
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2.5 Theorem 1 conditions (Performance)

As in the previous subsection, condition (i) of Theorem 1 is equivalently expressed in terms

of the center c and the radius r: there exists P = P T > 0 such that


I

M


T



−P 0 cP 0

0 −η2I 0 0

cP 0 (r2 − c2)P 0

0 0 0 I




I

M

 ≤ 0 (19)

Condition (19) can be factorized as:


I

M


T



I 0 −cI 0

0 I 0 0

0 0 I 0

0 0 0 I



T


−P 0 0 0

0 −η2I 0 0

0 0 r2P 0

0 0 0 I





I 0 −cI 0

0 I 0 0

0 0 I 0

0 0 0 I




I

M

 ≤ 0
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With the change of variables P̂ = r2P and β = η2r2, the following optimization problem is

obtained:

min
χ,P̂

χ = 1
r2

such that

P̂ > 0

ΦT



0 0 0 0

0 0 0 0

0 0 P̂ 0

0 0 0 I


Φ ≤ 1

r2︸︷︷︸
χ

ΦT



P̂ 0 0 0

0 βI 0 0

0 0 0 0

0 0 0 0


Φ

(20)

where Φ =



I 0 −cI 0

0 I 0 0

0 0 I 0

0 0 0 I




I

M

.

The optimization problem (20) with a given center c and ratio β is a generalized eigenvalue

problem involving Linear Matrix Inequality constraints.

Remark 4. The parameter β = η2/χ is a tuning parameter for the condition (20). For a

given β, the minimization of χ using (20) maximizes the radius r of the circle and thus

relaxes the constraint (15). Furthermore, the upper bound η on the H∞-norm of the global

performance transfer function i.e. ‖(INs ⊗ Ts) ? M‖∞ is minimized. If the optimization

problem (20) has no solution or the computed radius r = 1/
√
χ is too tight constraint on
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(15), β should be increased to relax the condition of the optimization problem (20). The

initial value of β = r2η2 can be computed for the control law K which only ensures the global

stability, i.e. the conditions of Corollary 1 for x, y, z found by solving the optimization

problem (17).

Remark 5. The result of the optimization problem (20) is both 1) a property of {x, y, z}-

dissipativity to be ensured by the controller K i.e. condition (ii) of Theorem 1 and 2)

an upper bound on the global transfer function H∞-norm i.e. the performance objective.

This upper bound is actually found before the computation of the control law. It a priori

ensures a bound on the achieved global performance level if the controller ensures the local

dissipativity constraint i.e. condition (ii) of Theorem 1.

3 Local control for global performance

When applying Theorem 1 or Corollary 1, if condition (i) is satisfied and in order to solve

Problem 1, it is necessary to findK such that Ts = G?K is strictly
{
−Z,−Y T ,−X

}
−dissipative.

As explained in the discussion page 13, this problem reduces to compute K such that∥∥∥T̂∥∥∥
∞
< 1 where T̂ is defined by (7), which is a standard H∞ problem.

As discussed in the previous sections, in the Microelectronics design of PLL networks, as

Ts represents a PLL, the design of K such that Ts = G ? K satisfies some specifications,

corresponds to the local design step. A strong interest of Theorem 1 or Corollary 1 is to

reveal how to design the controller K of the local system Ts = G ? K in order to a priori

ensure the stability of the global system (INs ⊗ Ts) ? M . Theorem 1 also guarantees the
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global system performance defined by (2) and thus present a solution to Problem 1. The

question is to investigate how to apply this result in order to directly enforce typical design

specifications on the global system at the local design step.

A popular approach to specify the performance of a (closed-loop) system is to define

frequency dependent upper bound on the magnitude of the frequency response of several

(closed-loop) Single Input, Single Output (SISO) transfer functions, see e.g. [19,44,45]. The

computation of the controller such that the performance is satisfied can be expressed as an

optimization problem involving an inequality on the weighted H∞ norm of the closed loop

system. Such a performance specification is particularly interesting in Microelectronics [46–

49]. As a consequence, the computation of the filter K of a PLL can be expressed as a

standard H∞ control problem: compute K such that

‖WlpoGlp ? KWlpi‖∞ < 1 (21)

where Glp ?K is a matrix of transfer functions which includes the closed-loop transfer func-

tions associated to the performance and where Wlpo = diagi(w
i
lpo) and Wlpi = diagj(w

j
lpi)

are diagonal matrices of weighting functions. The inequality (21) ensures that the magni-

tude of the frequency response of the transfer function between the input j and the output

i is below 1

|wi
lpo(jω)||w

j
lpi(jω)|

for all frequency ω.

In the following theorem, we reveal how to enforce, with a good choice of Glp, a given

frequency dependent upper bound on the magnitude of the frequency response of the global

system transfer function i.e. on | (INs ⊗ Ts(jω)) ? M |, by computing a controller K such

that (21). To do so, a new global weighting function W = (INw ⊗ Ts) ? MW will be used.
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Please notice that this transfer function is chosen as the global system (1) to be in the form

of interconnection of Nw subsystems Ts and static matrix MW . The reason of such choice

will be discussed after theorem. For the sake of clearness, the result is presented in the case

of one SISO global transfer function, i.e. nz = nw = 1: nevertheless, due to the MIMO H∞

norm constraint properties [19], the result can be applied in the case of several ones i.e. for

MIMO global transfer functions.

Theorem 3. Let be η > 0, a stable interconnection M , 3 real matrices X = XT ∈ Rms×ms ≥

0, Y ∈ Rms×ns , Z = ZT ∈ Rns×ns , G and Glp which define the local subsystem Ts and a

SISO local performance (lp) transfer function Tlp such that:

• G ? K = Ts

• Glp ? K = Tlp

and a SISO stable interconnected system W defined by (INw ⊗ Ts) ? MW such that

|W (jω)|−1 ≈ |Tlp(jω)| .

If there exists

(i) a positive definite matrix P ∈ R(Ns+Nw)×(Ns+Nw) such that M̃ is {diag (P ⊗X,−η2I) ,

diag (P ⊗ Y, 0), diag (P ⊗ Z, I)}−dissipative where M̃ is defined by:

(INs+Nw ⊗ Ts) ? M̃ = (INw ⊗ Ts) ? MW × (INs ⊗ Ts) ? M (22)

(ii) a controller K such that
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∥∥∥(−X)
1
2 (G+X−1Y ) ? K (Z − Y TX−1Y )−

1
2

∥∥∥
∞

< 1

‖WlpoGlp ? K Wlpi‖∞ < 1

(23)

then the controller K ensures that the global system (INs ⊗ Ts) ? M is stable and

|((INs ⊗ Ts) ? M) (jω)|dB ≤ − |Wlpo(jω)Wlpi(jω)|dB + 20 log10 (η) , ∀ω (24)

Proof. This theorem is proved by applying Theorem 1 to the (augmented) interconnected

system (INs+Nw ⊗ Ts) ? M̃ where M̃ defined by (22).

Let us assume that both conditions of this theorem are satisfied. Condition (i) is exactly

condition (i) of Theorem 1. The first condition in (23) implies that there exist a controller

K such that

‖T̂‖∞ < 1 (25)

where T̂ is defined by (7). From the discussion on page 13, this condition is equivalent

to condition (ii) of Theorem 1. Then, by applying Theorem 1, the augmented system

(INs+Nw ⊗ Ts) ? M̃ is stable and

∥∥∥(INs+Nw ⊗ Ts) ? M̃
∥∥∥
∞
≤ η.

As W and (INs ⊗ Ts) ? M are SISO, the last inequality is equivalent to:

|((INs ⊗ Ts) ? M) (jω)| ≤ η

|W (jω)|
, ∀ω.

On the other hand, the second condition in (23) implies that (see the definition of Glp):

|Tlp(jω)| < 1

|Wlpo(jω)Wlpi(jω)|
(26)
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Since |W (jω)|−1 ≈ |Tlp(jω)| , we obtain:

|((INs ⊗ Ts) ? M) (jω)| ≤ η

|Wlpo(jω)Wlpi(jω)|
, ∀ω.

Inequality (24) is obtained by expressing the previous equation in dB, which concludes the

proof.

Remark 6. The stable interconnected system W can be interpreted as the global weight-

ing function imposing a global performance frequency constraint as in the standard H∞

approach:

‖W ((INs ⊗ Ts) ? M) ‖∞ ≤ η

Traditionally, in the H∞ framework, the system to be constrained is represented as an

interconnection of integrators i.e. a state-space representation. It is also the case for the

weighting functions as well and then for the augmented system. The existing efficient algo-

rithms of the standard H∞ problem resolution (see e.g. [19,37]) are based on this important

fact.

Nevertheless, in our problem, the global system (INs ⊗ Ts) ? M is naturally represented

as an interconnection of the subsystems dynamics Ts (see (1) and Fig. 1). For this reason,

the weighting function W , similarly to the standard H∞ framework, has to be represented

as the interconnection of Nw subsystems Ts.

Another requirement on the weighting function W is that its magnitude should be equal

to the magnitude of the inverse of a local performance transfer function, at least for some

frequency ranges of interest. This implies that the local performance transfer function Tlp

should be chosen as well as an interconnection of Ts. This original idea allows to introduce
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a natural and strong connection between the local Tlp and global (IN ⊗ Ts)?M performance

transfer functions so that their difference can be easily expressed and minimized.

Remark 7. The proof of Theorem 3 reveals that the inequality (24) is deduced from the

inequality:

|((IN ⊗ Ts) ? M) (jω)|dB ≤ |Tlp(jω)|dB + 20 log10 (η) , ∀ω (27)

The inequality (27) presents the relation between the shape of the frequency response of the

global system (IN ⊗ Ts) ?M , that is the global performance, and the shape of the frequency

response of the stand-alone subsystem Tlp that is the local performance.

Discussion In Theorem 3, the first inequality of (23) ensures the strict
{
−Z,−Y T ,−X

}
dissipativity of Ts which is necessary to the application of Theorem 1. The second inequality

ensures the local subsystem performance i.e. the performance of an independent stand-alone

subsystem Tlp which is expressed as the upper frequency bound (26). Therefore, since the

stable interconnected system W is defined as the inverse of Tlp expressed as an interconnec-

tion of Ts, its series combination with the global system (22) defines an augmented system

describing a relation between the global and local performance transfer functions. Ensuring

a bound η on this relation allows to ensure the global system performance (24) by enforcing

the local subsystem performance (26).

Theorem 3 allows to compute the local controller K that ensures the global system

performance expressed in the form of a frequency upper bound (24). This computation is

performed in some how relative fashion i.e. the global system performance is rather ensured

in the relative then the absolute way (see Remark 7). We now discuss how it is possible
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to transform the global system performance problem into a standard local H∞ controller

design problem that implies (23).

Assume that the condition (i) of the Theorem 3 is satisfied. The computation of the

controller such that both inequalities in (23) is actually a multi-objective H∞ optimization

problem. It is usually transformed into a standard one objective optimization problem by

defining an augmented plant G̃ such that, for example:

•
[
I 0

]
G̃ ? K

 I

0

 = G ? K = Ts

•
[

0 I

]
G̃ ? K

 0

I

 = Glp ? K = Tlp

The standard H∞ problem can now be defined: find the controller K such that:

∥∥∥diag
(

(−X)
1
2 , Wlpo

)((
G̃+ diag(X−1Y, 0, 0)

)
? K

)
diag

(
(Z − Y TX−1Y )−

1
2 , Wlpi

)∥∥∥
∞
< 1.

(28)

Due to the H∞ norm properties, the controller K such that the inequality (28) is satisfied is

such that the inequalities (23) are satisfied. Depending on the problem under consideration,

it could be more interesting to replace the H∞ problem defined by (28) by another H∞

problem : ∥∥∥W oĜ ? KW i
∥∥∥
∞
< 1 (29)

where the choice of the plant Ĝ and the weighting functions W o and W i is different from

the choice presented in (28) but where the inequality (29) implies the inequalities (23). The

motivation of this idea is illustrated on the numerical example presented in the next section.
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Figure 3: The active clock distribution network

4 PLL Network design

In this section, the method presented in Section 3 is applied to the design of an active clock

distribution network, that is, a network of Ns Phase-Locked Loops (PLL), (see Fig. 3). A

Phase-Locked Loop is a feedback system that generates a periodic output signal which has

to be synchronized (in frequency and/or in phase) with an external periodic signal. Each

PLL of the network is composed of a Voltage Controlled Oscillator (V CO) generating a local

periodic signal which is fed back through a frequency divider (1/d) to the Phase Detectors

(PD). The purpose of each PD is to measure the phase difference between the V CO signal

and the mi external input signals, up to a scaling factor, see Fig. 3. From the average of

the mi differences (block Σ/mi), the Filter (F ) computes the command signal which is the

input of the V CO and should modify the frequency of its output. In a network of PLLs,

the PDs between adjacent PLLs are usually factorized.

The Microelectronics design problem is to design an active clock distribution network (an

example is presented Fig.3) that achieves the frequency and phase synchronization of the

Ns VCO outputs to an external reference signal, denoted Ref , within a specified time and
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with a suitable damping. Since the main parameters of a V CO and a PD as well as the

network topology are deduced from the technology process, the chip structure and the clock

generation requirements (clock frequency, number of PLLs with their localization, V CO

and PD resolution, etc.), the design problem can be expressed as the design of the filter F

such that the active clock network achieves the specifications.

In the example detailed below, we focus on a network of Ns = 13 PLLs with a circular

topology and one external reference signal connected to the PLL 1, see Fig.3. Such an

example is challenging since the traditional design procedure fails to achieve the design

of a satisfactory network, see [50]. This point is emphasized in the next subsection with

the application of the traditional design procedure. The application of our approach is

investigated in the subsection 4.2 and the subsection 4.3.

4.1 Traditional design process

The traditional design process consists in: (i) design a filter F such that the stand-alone

PLL has a good behavior and (ii) evaluation of the behavior of the active clock distribu-

tion network with this PLL. The design of a stand-alone PLL filter is based on a model

where the periodic signals are represented by their phase [47, 49, 51]. In this domain, the

synchronization of the V CO signal with a periodic (sinusoidal) external signal is expressed

as tracking the phase of the V CO signal given by a ramp whose slope is the reference os-

cillator frequency. In addition, the phase domain PLL model, which is non-linear, can be
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Figure 4: Phase domain model of the PLL subsystem

linearized around an operating point2. Based on this assumption and the PLL represen-

tation illustrated in Fig.3, the (linearized phase domain) model of one PLL is presented

in Fig.4 (left part), where Kpd denotes the phase detector linear gain and Pr(s) the V CO

transfer function defined with KV CO the gain of the V CO by

Pr (s) =
KV CO/d

s
.

The numerical values are presented in Tab. 1 where the V CO central frequencies represent

constant perturbations at the V CO inputs that have to be rejected to ensure the synchro-

nization.

Using the traditional frequency domain design methods, the following filter F is obtained

with a satisfying behavior (PLL synchronization with periodical external signal at its input,

response time less then 6 µsec, infinite gain margin, phase margin of 79 degrees, etc.):

F (s) = 0.44
s+ 464.2

s
.

2One major non-linear issue of such PLL network known as mode-locking states will not be addressed

in this paper but can be circumvented independently as in [2, 3, 5].
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Table 1: Numerical values of the considered clock distribution network

Parameter Numerical value

Reference frequency fref = 50 kHz

Frequency divider factor d = 4

V CO central frequencies

random initialized

around d · fref ± 25%

V CO gain KV CO = 160.12 Hz/c. u.

PD gain KPD = 21.22 e. u./rad

Number of inputs

mi ∈ {1, 2} depending

on PLL position

Dimensions Ns = 13, ns = 1, ms = 1
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the global network (full black line)

Unfortunately, the obtained active clock distribution network does not behave as well as

one stand-alone PLL, see Fig.5. In this figure, the time-domain simulation reveals that, in

contrast with the synchronization error εi of the stand-alone PLL (blue line), the synchro-

nization error ε1 of the PLL 1 of the network is not well-damped (considerable overshoot

and parasite oscillations) and slowly decays to zero (around 100 times). This different be-

havior can be observed in the frequency domain. Let Sloc = Tri→εi be the transfer function

between the reference input ri and the synchronization error εi = ri−ϕi of the stand-alone

PLL, see Fig. 4:

Sloc(s) =
1

1 + F (s)KPDPr(s)
.

Let Sglob = TRef→ε1 be the transfer function between the reference input Ref of the network

and the PLL 1 synchronization error defined as the difference between the reference signal

and the PLL 1 V CO output: ε1 = Ref − ϕ1. Fig.6 illustrates the magnitude of the

frequency response of Sloc (dashed blue line) and of Sglob (full blue line). In both cases,
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performance

the synchronization (or ramp tracking) is ensured by the slope of +40 dB/dec in the low

frequency (LF) range. The time response is reduced by increasing the cut-off frequency

and decreasing the transfer function magnitude in the LF range. The overshoot is limited

by reducing the maximal transfer function gain (see [19, 52] for more details). Therefore,

in order to improve the behavior of the PLL network (reduced time response and well-

dampedness), the magnitude of the frequency response of the transfer function Sglob has to

respect the frequency constraint represented by the red dotted line in Fig.6. This frequency

constraint enforces a more important cut-off frequency and magnitude attenuation in LF

range while maintaining the peak low in the middle frequency range. It can be represented

as the magnitude of the frequency response Ω(ω) of a transfer function as defined below:

Ω (s) = |Wgl(s)|−1 / (Wgl (s))
−1 =

2.23 (s+ 0.56)2

(s+ 6269)2
. (30)
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In the next subsection, we reveal how to design F such that the magnitude of the frequency

response of the transfer function Sglob satisfies this frequency constraint.

4.2 Proposed design process

The purpose is to compute F in order to enforce the synchronization of PLL 1 of the network

with a specified behavior i.e. the frequency response of the global transfer function Sglob

respects the frequency constraint enforced by (30). To this purpose, the approach presented

section 3 (Theorem 3) is iteratively applied by modifying X, Y , Z and the weighting func-

tions Wlpi and Wlpo until the global specifications are satisfied. The synchronization of all

Ns PLLs or more complex synchronization specifications [50] can be explicitly investigated

by this approach. Nevertheless, for the sake of clarity, these cases are not presented in this

example.

Notations First, let us redefine the problem in Theorem 3 notations. In the example

under consideration, the transfer function Sglob = TRef→ε1 (s) can be represented as an
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interconnection M of Ns subsystems Ts = G ? K, (IN ⊗ Ts (s)) ? M , with

M =



0 0 0 0 · · · 0 1
2

1
2

1
2

0 1
2

0 · · · 0 0 0

0 1 0 0 · · · 0 0 0

...
. . . . . . . . . . . .

...
...

...

...
. . . . . . . . . . . .

...
...

...

0
. . . . . . . . . . . . 0 0 0

0 · · · · · · · · · 0 1 0 0

−1 0 · · · · · · · · · · · · 0 1



G(s) =

 0 Pr(s)

1 −Pr(s)

 and K(s) = KpdF (s).

The local performance transfer function Tlp is defined as:

Tlp (s) = Sloc (s) = Tri→εi (s) =
1

1 +K(s)Pr(s)
.

Thus, Tlp = Glp ? K with

Glp(s) =

 1 −Pr(s)

1 −Pr(s)

 .
Note that in our problem, Ts is defined as Ts (s) =

K(s)Pr(s)

1 +K(s)Pr(s)
. Tlp can be represented

as an interconnection of Ts, since

Tlp = 1− Ts. (31)

In order to ensure that |W (jω)|−1 ≈ |Tlp(jω)| for the frequency range of interest, where W
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can be represented as an interconnection of subsystems Ts, we choose:

W =
1

Tlp + α
=

1

1 + α− Ts

where α = 0.01 is such that W is well-posed3, stable and |W (jω)|−1 ≈ |Tlp(jω)| in the

frequency range of interest. Then, W = Ts ? MW with

MW =


(1 + α)−1 (1 + α)−1

(1 + α)−1 (1 + α)−1

 =

 MW
11 MW

12

MW
21 MW

22

 .
The system Sglob augmented with the weighting function W defined by (IN+Nw ⊗ Ts)?M̃ =

(INw ⊗ Ts) ? MW × (IN ⊗ Ts) ? M is represented in Fig. 7 while M̃ is defined by:

M̃ =


MW

11 MW
12M21 MW

12M22

0 M11 M12

MW
21 MW

22M21 MW
22M22

 .

3For more details, see [53].
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Local control for global performance In order to ensure the global performance, by

applying Theorem 3, the conditions (i) and (ii) should be ensured for some X, Y , Z and

W i
lp, W

o
lp chosen such that the frequency constraint defined by (30) and:

− |Wlpi (jω)Wlpo (jω)|dB + 20 log10 (η) ≤ −20 log (Ω(ω)) (32)

Condition (i) of Theorem 3 is satisfied by an appropriate choice of X, Y , Z which are

scalars in the considered example. One possible choice is described in Subsection 2.4.

Condition (ii) (i.e. (23)) can be satisfied by solving the standard H∞ problem (28) with

G̃ (s) =


0 0 Pr (s)

1 1 −Pr (s)

1 1 −Pr (s)

 : G̃ (s) ? K =

 Ts (s) Ts (s)

Tlp (s) Tlp (s)

 .

Nevertheless, in order to ensure additional design specification on the PLL, the H∞ prob-

lem (28) is replaced by another H∞ problem (29).

Additional local performance specifications In addition to synchronization, the ef-

fects of the input/output PD/V CO noises and possible perturbations have to be attenu-

ated/rejected at the local level. The temperature and power disturbances as well as the

central frequency variations of the V CO can be modeled as a constant or a slowly varying

perturbation on the V CO input. Another specification is the limitation of the controller

bandwidth (reduced control energy and noise attenuation). Such specifications can be en-

forced for a stand-alone PLL by ensuring upper bounds on the magnitude of the frequency

response of the following transfer functions:
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• For synchronization, PLL damping, V CO output noise rejection: Tri→εi(s) = Tlp (s)

• For V CO input noise and constant perturbation rejection: Pr(s)Tlp(s)

• For controller bandwidth limitation: K(s)Tlp(s)

• For PD and reference signal noise rejection: Pr(s)K(s)Tlp(s) = Ts(s)

Note that the first local performance specification is related to the transfer function Tlp, i.e.

the same transfer function introduced to enforce the global performance. In order to take

into account these local performance requirements, the H∞ problem (29) is solved with

Ĝ =



1 −Pr (s) −Pr (s)

0 0 1

X−1Y Pr (s) Pr (s)

1 −Pr (s) −Pr (s)


W o = diag

(
W o

1 , W
o
2 , (W i

1)
−1
, b
)

W i = diag (W i
1, W

i
2)

where b = (−X)−
1
2
(
Z − Y TX−1Y

)−1
2 . Due to the properties of the H∞ norm, the solution

of problem (29) directly implies the following conditions (see the expression of Ĝ).

‖(Ts +X−1Y ) b‖∞ < 1

that is, the first condition (23) of Theorem 3, and

‖W o
1PrTlpW

i
2‖∞ < 1 ‖W o

2KTlpW
i
1‖∞ < 1

‖W o
2PrKTlpW

i
2‖∞ < 1 ‖W o

1TlpW
i
1‖∞ < 1

(33)

The weighting functions W
i(o)
1(2) are chosen such that they imply the local performance con-

straint i.e. the second constraint in (23) of Theorem 3 and the additional local performance

specifications.
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It is true that the additional local performance is ensured for a stand-alone PLL and

is not necessarily ensured for the PLL in the network (globally). Nevertheless, for some

performance specification, global performance specification can be related to the local one.

Let us focus on

• Reference noise rejection on the first PLL output: TRef→ϕ1 (s) = Pr (s)K (s)Sglob (s)

• Power consumption of the first PLL or, equivalently, the global bandwidth limitation

of the first PLL : TRef→u1 (s) = K (s)Sglob (s)

Note that

∣∣∣∣K (jω)Sglob (jω)

K (jω)Tlp (jω)

∣∣∣∣ =

∣∣∣∣Pr (jω)K (jω)Sglob (jω)

Pr (jω)K (jω)Tlp (jω)

∣∣∣∣ =

∣∣∣∣Sglob (jω)

Tlp (jω)

∣∣∣∣ =

∣∣∣∣((IN ⊗ Ts) ? M) (jω)

Tlp (jω)

∣∣∣∣
From the proof of Theorem 3, if its conditions are satisfied then

∣∣∣∣((IN ⊗ Ts) ? M) (jω)

Tlp (jω)

∣∣∣∣ ≤ η

Therefore

|TRef→u1 (jω)|dB ≤ − |K (jω)Tlp (jω)|dB + 20 log10 (η)

and

|TRef→ϕ1 (jω)|dB ≤ − |Pr (jω)K (jω)Tlp (jω)|dB + 20 log10 (η)

that is, for these specifications, the global performance specification is constrained by the

local one.
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4.3 Computation results

The numerical results for the proposed design approach are now presented. On the iterations

on the matrices X, Y , Z and the weighting functions, we detail the numerical results for

the last iteration, except for some graphical representation which can be present some

intermediate results.

We first compute a filter F such that the global system is stable by applying Corollary 1

where condition (ii) is replaced by the resolution of the H∞ problem defined by the first

inequality of (23). In order to obtain the matrices X, Y and Z such that condition (i)

of Corollary 1 is satisfied, the optimization problem (17) is solved. The circle center c =

0.1 satisfies condition (18) since 1

2max
i

(|Re(λM11
i )|) = 0.5233. Then the resolution of the

optimization problem (17) gives r = 0.947, X = −1.129, Y = 0.113, Z = 1. For these

values, the resolution of the H∞ problem defined by the first inequality of (23) gives a filter

F such that condition (ii) of Corollary 1 is satisfied:

F (s) =
K (s)

Kpd

=
0.64 (s+ 205.9)

s
.

The global system stability is confirmed by the maximum real part of its poles: -75.9. Fig.8

reveals that with this filter, neither the local system (blue dashed line) or the global system

(blue full line) satisfies the performance specification (red dotted line).

We now focus on the design of a filter F such that the global system performance specifi-

cation is satisfied by applying Theorem 3. Let us choose β = r2 · η20 = 316 with η0 ≈ 19.65,

that is 26 dB which is an upper bound on the difference between |Sglo(jω)| and |Sloc(jω)|

for the previously computed filter F , see Fig.8. By solving the optimization problem (20),
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Figure 9: Chosen local (red dashed line) and global (red full line) frequency constraints

we obtain: r = 0.905, X = −1.236, Y = 0.124, Z = 1, η ≈ 19.63, and that is 25.9 dB.

The weighting functions Wlpi, Wlpo are chosen such that (32) is satisfied:

(Wlpo(s)Wlpi(s))
−1 =

7.28 (s+ 0.56)2

(s+ 50310)2
(34)

see Fig.9. Note that the difference between two constraints in logarithmic scale is equal to

25.9 dB for the whole frequency range except the high frequencies. Nevertheless, since in

the high frequency range, the magnitude of the global transfer function Sglob is closed to 0

dB, see [50], this issue is not critical. The additional local weighting functions W o
1(2) and

W i
1(2) are chosen as:

W i
1 (s) = 9.22 · 10−7 W i

2 (s) = 6.34 · 10−6;

W o
1 (s) =

2 · 105 (s+ 1.23 · 106)

s+ 273.9
W o

2 (s) = 1010.

Since Sloc = Glp ?K is the first input, first output transfer function of Ĝ?K, a first choice of
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W o
1 and W i

1 can be such that |W o
1W

i
1| ≈ |WlpoWlpi|. In this case, from equation (34), W o

1W
i
1

has to be a transfer function of order at least 2, which is not the case. The main reason is

that it is interesting to limit the order of the weighting functions, in order to obtain a filter

of the smallest order. For this purpose, note that, from (33), ‖W o
1PrTlpW

i
2‖∞ < 1. Then,

‖WlpoGlp ? KWlpi‖∞ < 1 can be ensured by choosing W o
1 and W i

2 such that W o
1PrW

i
2 ≈

WlpoWlpi. As Pr(s) = KV CO/d
s

, W i
1, W

i
2 and W o

2 can be chosen constant and W o
1 a transfer

function of order 1.

The resolution of the standard H∞ problem (29) leads to the filter:

F (s) =
49.7 (s+ 1483)

s
.

The global stability, the local performance specification (26), the additional local perfor-

mance specification (33) and the global performance (24) are ensured with this filter. The

local performance transfer functions with the corresponding constraints are represented in

Fig.10.

The evolution of the magnitude of global performance transfer function Sglob (dashed blue

lines) along the different iterations is illustrated in the Fig.11. The cut-off frequency and

Low Frequency (LF) range gain change until the global performance specification is reached.

The result of the last iteration is represented by the full red line.

The results of the last iteration are presented in details in the Fig.12. The magnitude of

the local performance transfer function Sloc (blue dashed line) satisfies the local frequency

constraint |Wlpo (jω)Wlpi (jω)|−1 (red dashed line). Furthermore the magnitude of the global

performance transfer function Sglob (blue full line) satisfies the local frequency constraint
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Figure 11: Obtained global performance transfer function magnitudes as a result of the

heuristic design approach (black full line), of intermediate iteration (blue dashed lines) and

last iteration (red full line) of the proposed design approach, the global frequency constraint

(red dotted line)

|Sloc (jω)|dB+20 log(η) (green dashed-dotted line). Since the constraint |Sloc (jω)|+20 log(η)

is lower than the global performance frequency constraint Ω (jω) (full red line), the global

performance specification is satisfied.

The benefit of the proposed design process with respect to the traditional one is illustrated

by Fig.13 where the magnitudes of the frequency response of global (full lines) and local

(dashed lines) transfer functions are represented for the traditional process (black lines) and

the proposed process (blue lines). In Fig.14 is represented the tracking error in the time

domain with both approaches. We observe that the time response and the damping are

dramatically improved.
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5 Conclusion

A new control law design method for large scale LTI systems defined as the given inter-

connection of identical subsystems is presented in this paper. The design method enforces

a general global performance specification by designing a local controller such that the

(stand-alone) closed loop subsystem satisfies performance specifications. This approach is

motivated by improving the traditional design process of PLL network, rather than propos-

ing a totally different one in order to ensure the acceptability of the method by the designers.

The application to the design of a PLL network reveals that in addition to a priori ensure

global stability and performance, a high level of performance is achieved with respect to

the traditional design. The proposed design procedure has some common features with the
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traditional iterative, “trial and error” approaches to decentralized control [6]. Thanks to

the a priori guarantees of global stability and performance, it is a nice alternative to these

traditional approaches.
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