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Turning a Near-hovering Controlled Quadrotor into a 3D Force Effector

Guido Gioioso1,2, Markus Ryll3, Domenico Prattichizzo1,2, Heinrich H. Bülthoff3 and Antonio Franchi4,3

Abstract— In this paper the problem of a quadrotor that
physically interacts with the surrounding environment through
a rigid tool is considered. We present a theoretical design that
allows to exert an arbitrary 3D force by using a standard near-
hovering controller that was originally developed for contact-
free flight control. This is achieved by analytically solving the
nonlinear system that relates the quadrotor state, the force
exerted by the rigid tool on the environment, and the near-
hovering controller action at the equilibrium points, during
any generic contact. Stability of the equilibria for the most
relevant actions (pushing, releasing, lifting, dropping, and left-
right shifting) are proven by means of numerical analysis
using the indirect Lyapunov method. An experimental platform,
including a suitable tool design, has been developed and used
to validate the theory with preliminary experiments.

I. INTRODUCTION

Over the past decade, Unmanned Aerial Vehicles (UAVs)

attracted an increasing interest in the robotics community,

due to their versatility and to the many potential indoor

and outdoor applications, including, e.g., landscape survey,

surveillance and reconnaissance, manufacturing and logistics

automation. In this context UAVs have been mainly con-

sidered as flying sensors rather than flying actuators, and

the possibility of using flying robots for mobile manipula-

tion, i.e., enabling physical interaction with the surrounding

environment, has not been sufficiently investigated yet. In

fact, designing novel flying robotic systems able to perform

this kind of interaction would open a much wider range of

possible applications in the aerial robotics field.

Among the UAV platforms, the quadrotor gained a lot

of popularity in the robotic community, due to its me-

chanical simplicity and robustness. Being able to hover

and perform vertical take-off and landing, it represents also

an ideal platform for developing and testing many new

aerial manipulation concepts. In [1] a control law for a

quadrotor equipped with a rigid tool is proposed and tested in

simulation. The controller is based on feedback linearization

thus requiring for a rather precise knowledge of the system

mechanical parameters and state estimation that is sometime

hard to find in real application scenarios. Furthermore, some
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Fig. 1: CAD model of the quadrotor setup developed and used for
our experiments and main frames and symbols used to model it.

caution is needed when dealing with a possible unstable zero

dynamics. A passivity-based controller is presented in [2]

for a quadrotor endowed with a delta-shaped manipulator.

Using a decoupled approach the actuation of the manipulator

is employed to apply forces on a wall relying on the fact

that the flight controller is able to keep steady the UAV

position during contact. The authors in [3] present a hybrid

framework with the goal of letting the quadrotor follow a

desired trajectory while exerting a force on the environment.

The approach relies on the empirical identification of a map

that relates the exerted measured wrench with the thrust and

torque inputs of the used quadrotor platform. In [4] a control

framework is presented that allows the one-dimensional

manipulation of a cart performed by one or two quadrotors

through a rigid tool. In [5] a framework for robust control of

a UAV for docking-undocking operation on a vertical surface

based on a path following strategy is developed and tested

in simulation. A recent work [6] proposes an interaction and

damping assignment passivity-based controller (IDA-PBC)

that is able to change the apparent dynamical parameters

of a quadrotor. The authors have shown that this controller

can be successfully used to shape the dynamical behavior

of a quadrotor when in contact with a physical environment.

Finally, studying the physical interaction with the environ-

ment is essential for applications in which UAVs are used as

mobile manipulating platforms, see, e.g., [7], [8].

In this paper we theoretically formulate the problem of

controlling a quadrotor UAV endowed with a rigid tool

whose tip has to be used in order to exert a prescribed 3D

force on the environment. This is a basic task whose study

may be instrumental for more complex manipulation behav-

mailto:gioioso@dii.unisi.it
mailto:prattichizzo@dii.unisi.it
mailto:markus.ryll@tuebingen.mpg.de
mailto:hhb@tuebingen.mpg.de
mailto:antonio.franchi@laas.fr


ior performed by a single or multiple UAVs. The advantage

of this approach is to obtain a structure that is light-weight,

mechanically simple and with a larger time autonomy than a

single bulky UAV equipped with a manipulator with several

DOFs. Moreover, a system with multiple UAVs endowed

with simple tools might result even more effective and

versatile as shown, e.g., in [9] where it is presented the

control of a flying hand constituted by multiple simple UAVs

each one acting as a single finger.

The model of a quadrotor endowed with a rigid tool is

introduced in Sec. II along with a control law suitable for

force exertion. The control scheme is based on the near-

hovering linearizing control approach that is commonly used

for contact-free flight on many quadrotor UAV platforms.

The adoption of a widely used control law is the main

strength of this approach, which brings many advantageous

consequences: i) our solution can be easily applied by other

research labs by slightly adapting the built-in controller that

is already present on their platform; ii) the same controller is

used both for the free flight phase and for the contact phase

thus being exempt from the need for exact contact detection

and switching-related problems; iii) despite being conceived

for a near-hovering contact-free flight, during contact the

controller can be used with high tilt angles; furthermore,

iv) the control law is based neither on full cancellation,

as feedback linearization, nor on sliding surfaces, thus it is

expected to have a robust behavior in real world conditions.

By virtue of the analytical study carried-out in Sec. III

on the nonlinear equilibria of the controlled system, the

controller can be effectively used to apply, at steady state,

any given 3D contact force at the contact point. Stability

of the controlled system at the equilibria corresponding to

the given forces is numerically proven in Sec. IV for the

most important interaction cases, such as pushing, releasing,

lifting, dropping, and left/right shifting.

The implementation of an experimental platform which

includes the design of a tool that can be easily mounted

on a quadrotor to establish contact with the environment,

is presented in Sec. V where a preliminary experiment in

the dynamic case (i.e., time-varying force profile) is also

shown. Section VI concludes the paper and presents future

developments of this work.

II. MODEL AND STANDARD NH CONTROLLER

In this section we present the notation used throughout

the paper while briefly introducing the standard quadrotor

dynamical model. Refer to Fig. 1 for an illustration. An

inertial world frame W : {OW ,~w1,~w2,~w3} and a quadrotor

body frame B : {OB, ,~b1,~b2,~b3} are considered. The origin

of the body frame is coincident with the center of mass

of the quadrotor which is also the geometric center of the

four propellers. We indicate with p = (p1, p2, p3)
T ∈ IR3 the

position of OB in W and with v = (v1,v2,v3)
T ∈ IR3 the

corresponding linear velocity. The scalar m ∈ IR denotes the

mass of the quadrotor and J ∈ IR3×3 its inertia matrix with

respect to the body frame. Finally, let R ∈ IR3×3 represent

the rotation matrix from the body frame to the inertial

world frame and ω ∈ IR3 be the angular velocity vector that

represents the rotation of B with respect to W , expressed

in B. The orientation of the quadrotor is represented by

η := (φ ,θ ,ψ)T ∈ IR3, with φ ,θ ,ψ being respectively the

roll, pitch and yaw angles (RPY). The rotation matrix can

be written using RPY as R(η) = Rz(ψ)Ry(θ)Rx(φ), where

Rx,Ry,Rz are the elementary rotation matrices about the

three coordinate axis.

As common practice in literature we assume as control

inputs the total thrust acting on the ~−b3 direction, denoted

with λ ∈ IR+, and the total moment expressed in B, denoted

with τ =(τ1,τ2,τ3)
T ∈ IR3. Being the four inputs less than six

(the number of configuration parameters p,η) the quadrotor

is an underactuated system. Nevertheless its actuation is

enough to exert any 3D force on the environment.

We assume that the quadrotor is equipped with a tool

whose tip position in body frame is expressed by the constant

vector d = (dx,dy,dz)
T ∈ IR3. Without loss of generality we

take ~b2 aligned with the projection of the tool on the plane

spanned by ~b1 and ~b2, thus resulting in dy = 0. Let y ∈ IR3

be the position of the tool-tip in the world frame:

y = p+Rd. (1)

The environment interacts with the quadrotor by exerting

a force fe ∈ IR3 on the tool-tip, which is expressed in the

world inertial frame. The interaction moment at the tool-tip

is assumed negligible. This assumption is widely used in lit-

erature and it is referred to as hard finger contact model [10].

Under these assumptions, the equations of motion of the

quadrotor can be written as:

ṗ = v (2)

mv̇ =−λRẑ+mgẑ+ fe (3)

η̇ = T(η)ω (4)

Jω̇ =−ω ×Jω + τ +d×RT fe, (5)

where ẑ = (0,0,1)T and T(η) ∈ IR3×3 transforms ω to the

RPY rates η̇ .

In the following we adopt the common assumption that

the quadrotor is never in a singular configuration (i.e., φ =
θ = 0), in fact if this happens, the total thrust λ cannot be

used to counterbalance the gravity force, thus consisting in

a useless case for our purposes.

A. Standard Near-hovering Controller

In this section we revise a control law that has been

widely used in literature (see, e.g., [11], [12], [13]) to

perform near-hovering and contact-free trajectory tracking.

Even though this controller is well known in literature, it

is essential to recall its main structure and notation for the

following Sec. III where we will show how this controller

can be effectively used to perform a contact force on the

environment even in far-hovering conditions.

An inner-loop PID controller tracks some desired RPY

angles ηd = (φd ,θd ,ψd)
T ∈ IR3, relying on the fact that the
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rotational dynamics is fully actuated. In fact, differentiat-

ing (4) and substituting (5), we get

η̈ = T(η)J−1(−ω ×Jω + τ +d×RT fe)+ Ṫ(η)ω.

The PID attitude regulation controller is thus defined as:

τ = JT−1(η)KAηe (6)

where:

KT
A =






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




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
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
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

















(7)

that leads to the closed-loop dynamics:

η̈ +KAηe = TJ−1(−ω ×Jω +d×RT fe)+ Ṫω.

It has been shown that, in contact-free flight and under

suitable conditions of the initial state and gain selection,

(ηe, η̇e) is locally exponentially stable.

Since in contact-free flight this controller is meant to work

in near hovering T−1(η) can be approximated by a 3× 3

identity matrix in (6). Furthermore, assuming that the J is

diagonal, as common practice, we can hide J in the gain

matrix KA thus obtaining a simpler expression for τ:

τ = KAηe. (8)

Note that even if the previous ones seem crude approxima-

tions, they have been proven to work very well in reality,

see the previously cited work, when the task is to fly in

near hovering. Furthermore, we are not interested in having

excellent performances in free flight since our focus is in the

contact case.

An outer-loop controller is then designed by choosing the

thrust such as to actuate the vertical dynamics

λ =−
m

cosφ cosθ
(−g−bz

Pv3 + kz
PPe3) (9)

where bz
P and kz

PP are two positive scalar gains and e3 is

an additional control input. Secondly, in order to act on the

horizontal dynamics, the desired roll φd and pitch θd are set

such that
(

sinφd

sinθd

)

=
m

λ

(

−sψ cψ

−cψ/cφ −sψ/cφ

)(

−bPv1 + kPPe1

−bPv2 + kPPe2

)

(10)

where e1,e2 are two additional control inputs, and s• and c•
denote sin(•) and cos(•) respectively. The interested reader

is referred to [13] for the analytical derivation of (10). We

gather the three additional control inputs in the vector e =
(e1,e2,e3)

T ∈ IR3.

Remark 1: (Behavior in contact-free flight) In the liter-

ature the controller (8),(9),(10) has been used to steer the

robot during contact-free (i.e., fe = 0) motion. In fact, simply

speaking, if we plug (9) in the third row of (3) we obtain

mv̇3 =−bz
Pv3 + kz

PPe3, (11)

furthermore, if the attitude controller is fast enough, i.e.,

s.t. θ ≃ θd and φ ≃ φd , the first two rows of (3) become

(see [13])

m

(

v̇1

v̇2

)

≃

(

−bPv1 + kPPe1

−bPv2 + kPPe2

)

Therefore, one can choose e = pd −p in order to exponen-

tially regulate p to a desired constant position pd.

III. NONLINEAR EQUILIBRIA DURING CONTACT

Departing from the assumption that is commonly done

in the literature when dealing with such controller (see

Remark 1) in this paper we consider the case when fe 6= 0

and possibly θ 6= θd and φ 6= φd . To this aim in this section

we analytically derive the equilibria of the closed loop

system (2)–(5) subject to control (8),(9),(10). In particular

we are interested in the static nonlinear relationship between

−fe, i.e., the force exerted at the equilibrium by the quadrotor

on the environment through the tool-tip, and e, i.e., the 3D

control input that is left free by the controller described

in Sec. II. The goal of the following analysis will be to

find e given a desired −fe. The equations to be solved

in order to find the sought relation can be obtained by

writing (3),(5),(8),(9),(10) at the equilibrium (i.e., v = v̇ =
ω = ω̇ = 0). This results in the following nonlinear system

of 12 scalar equations

−λRẑ+mgẑ+ fe = 0 (12)

τ +d×R⊤fe = 0 (13)

τ −KAηe = 0 (14)

λcθ cφ −mg+ kPPe3 = 0 (15)
(

sφd

sθd

)

−
mkPP

λ

(

−sψ cψ

−cψ/cφ −sψ/cφ

)(

e1

e2

)

= 0 (16)

where the 12 unknowns are the sought e1,e2,e3, together

with φ ,θ ,ψ,φd ,θd ,λ ,τ1,τ2,τ3. The admissible values of

the variables are φ ,θ ∈ (−π
2
, π

2
), ψ ∈ (−π,π), and λ > 0.

The known parameters are the external force components

f e
1 , f e

2 , f e
3 , and m,g,d,KA,kPP and ψd .

A. Total thrust λ and e3

Equation (12) can be rewritten as:

f e
1 = λ (cψ cφ sθ + sψ sφ ) (17)

f e
2 = λ (cφ sψ sθ − sφ cψ) (18)

f e
3 +mg = λcθ cφ (19)

from which it descends, after some straightforward algebra,

that the total thrust must be:

λ =
√

( f e
1 )

2 +( f e
2 )

2 +( f e
3 +mg)2. (20)

Moreover, using (19) and (15) the unknown e3 can immedi-

ately be obtained as

e3 =−
f e
3

kPP

. (21)
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B. RPY Angles φ ,θ ,ψ , desired roll/pitch φd ,θd , and e1.e2

Operating the following change of variables:

x = cφ sθ y = sφ , (22)

(17) and (18) can be rewritten as a linear system:
(

cψ sψ

sψ −cψ

)(

x

y

)

=
1

λ

(

f e
1

f e
2

)

(23)

that can be easily solved thus obtaining the following ex-

pressions for sφ and sθ

sφ =
1

λ
( f e

1 sψ − f e
2 cψ) (24)

sθ =
1

λcφ
( f e

1 cψ + f e
2 sψ). (25)

Given the admissible values for φ ,θ , it must be cφ > 0

and cθ > 0, therefore we have

cφ =+
√

1− s2
φ (26)

cθ =+
√

1− s2
θ . (27)

Substituting τ in (13) from (14), we obtain:

−KAηe = d×R⊤fe. (28)

Moreover, from equation (16) it is straightforward to express

sφd
and sθd

as

sφd
=

mkPP

λ
(−sψ e1 + cψ e2) (29)

sθd
=

mkPP

λcφ
(−cψ e1 − sψ e2) (30)

The system composed by (24),(25),(28),(29),(30) is thus

made by 7 equations with 7 unknowns φ ,θ ,ψ,φd ,θd ,e2,e3.

From this point the solution changes depending on the

values of the integral gains in KA.

1) No Integral Action (k
φ
IA = kθ

IA = k
ψ
IA = 0): This is the

most complex case. The third row of (28) is

KPAsψd−ψ =−x[ f1(cψ sθ sφ − sψ cφ )+ f2(sψ sθ sφ + cψ cφ )

+ f3sφ cθ ] (31)

If dx = 0 then ψ = ψd , and the solution for this case is given

in Sec. III-B.2.

In the general case of dx 6= 0 we first show how

φ ,θ ,ψ can be separately found solving the subsystem

formed by (24),(25),(31). In fact, plugging (24),(25),(26),(27)

into (31), after some algebra, we obtain a trigonometric

equation in which the only unknowns are sψ and cψ , i.e.,

the yaw ψ . Using the tangent half-angle substitution (t ψ
2
=

tan(ψ
2
)) the trigonometric equation that can be written as a

8-th order polynomial equation:

(α(2)+α(7))t8
ψ
2

−2(α(4)+α(8))t7
ψ
2

−4(α(2)−α(5)−α(6))t6
ψ
2

−

2(4α(3)−3α(4)+α(8))t5
ψ
2

+2(8α(1)+3α(2)−4α(5)+4α(6)−α(7))t4
ψ
2

+

2(4α(3)−3α(4)+α(8))t3
ψ
2

−4(α(2)−α(5)−α(6))t2
ψ
2

+

2(α(4)+α(8))t ψ
2
+α(2)+α(7)=0 (32)

where the coefficients are defined as follows:

α(1) = (kα f e
1 cψd

)2; α(2) = (kα f e
2 sψd

)2

α(3) =−2k2
α f e

1 cψd
( f e

1 sψd
+ f e

2 cψd
)

α(4) =−2k2
α f e

2 sψd
( f e

1 sψd
+ f e

2 cψd
)

α(5) = k2
α [( f e

1 sψd
)2 +( f e

2 cψd
)2 +4 f e

1 f e
2 sψd

cψd
]

α(6) = a2
α − (kα λcψd

)2; α(7) = b2
α − (kα λ sψd

)2

α(8) = 2aα bα +2(kα λ )2sψd
cψd

and

aα = f e3
1 + f e

1 f e2
2 − f e

1 λ 2 + f e
1 f e2

3 + f e
1 f e

3 mg

bα =− f e3
2 − f e2

1 f e
2 + f e

2 λ 2+ f e
2 f e2

3 + f e
2 f e

3 mg, kα =
−λkPA

dx

.

The real solutions of (32), that are efficiently found numer-

ically, represent only candidate solutions for ψ , since some

of them hold for negative values of cθ and cφ , which are

not allowed in our setting. In order to prune the candidates

it is then sufficient to plug them in (24),(25),(26),(27) and

validate the found values by substitution in (31).

The variables φd and θd can be then computed from the

first two rows of (28) and from the knowledge of φ ,θ ,ψ:

φd = φ +
dz

k
φ
PA

[ f e
1 (cψ sθ sφ −cφ sψ)+ f e

2 (sψ sθ sφ +cφ cψ)+ f e
3 sψ cθ ]

(33)

θd = θ −
dz

kθ
PA

[ f e
1 (cθ cψ)+ f e

2 (sψ cθ )− f e
3 sθ ]+

dx

kθ
PA

[ f e
1 (cψ cφ sθ + sθ sψ)+ f e

2 (sψ cφ sθ − sφ cψ)+ f e
3 cθ cφ ]

(34)

Finally, from (29),(30) it is easy to obtain

e1 =
λ

mkPP

(−sψ sφd
− cψ sθd

cφ ) (35)

e2 =
λ

mkPP

(cψ sφd
− sψ sθd

cφ ). (36)

Fig. 2 shows the evolution of e1,e2,e3 in this case, depending

on f1, f2, f3 for typical values of the mechanical and control

parameters and ψd = 0.

2) Integral Action only on ψ (k
φ
IA = kθ

IA = 0, k
ψ
IA > 0): In

this case, because of the integral action, at the equilibrium

we have that

ψ = ψd . (37)

Therefore φ ,θ ,φd ,θd can be computed directly by plug-

ging (37) in (24),(25),(26),(29),(30). Finally, as in the previ-

ous case, e1,e2 are obtained from (35) and (36), respectively.

3) Integral Action on φ and θ (k
φ
IA > 0,kθ

IA > 0, k
ψ
IA any):

In this case the values of ψ,φ and θ can be computed as

per Sec. III-B.1 or as per Sec. III-B.2, depending on the

value of k
ψ
IA (either equal or greater than zero). Then, because

of the integral actions, at the equilibrium we have φ = φd
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Fig. 2: Evolution of e1,e2,e3 depending on f1, f2, f3 [N] in the case
of ‘no integral action’.

and θ = θd . Therefore, equating the rhs of (24) with the rhs

of (29) and the rhs of (25) with the rhs of (30) we obtain:

e1 =−
f e
1

mkPP

e2 =−
f e
2

mkPP

. (38)

C. Torques τ

In any case can be retrieved by using (14), i.e.,

τ =−d×R⊤fe. (39)

D. Short Discussion on the Equilibria

Let’s observe the expressions of e as function of the

desired force −fe and the desired yaw ψd that we found in the

three different cases considered in Sec. III-B.1, III-B.2 and

III-B.3. First it can be observed that an analytical expression

in closed-form can be written only when at least some

integral actions are considered, while it must be numerically

computed when k
φ
IA = kθ

IA = k
ψ
IA = 0. Moreover, in all the

cases the value of e3 only depends on the value of f e
3 while

this decoupling property holds for e1 and e2 only in the third

case (where k
φ
IA > 0,kθ

IA > 0, k
ψ
IA any). In this last case it can

be also observed that the value of e does not depend on the

position d of the tool-tip in body frame.

IV. STABILITY OF THE EQUILIBRIUM POINTS

This section presents a numerical stability analysis for the

equilibrium points defined in Sec. III using the indirect Lya-

punov method for the case of ‘no integral action’. We plan to

address the remaining cases in a future work. The dynamical

system defined by (3),(4),(5) subject to control (8),(9),(10)

can be interpreted as nonlinear system ẋ = f (x,u) with state

x = (p,v,η ,ω) and inputs u = (e,ψd). In Sec. III we found

how to efficiently compute the equilibrium (xe,ue) for any

given external force fe. It is therefore possible to compute

the Jacobian matrix
∂ f

∂x
in (xe,ue) and efficiently check

its eigenvalues. Negativeness of the largest real part of all

the eigenvalues implies local asymptotical stability of the

equilibrium (xe,ue) for the nonlinear system [14].

To this aim, we numerically computed the eigenvalues

of the Jacobian matrix considering reasonable values for

the system parameters and letting fe,ψd and d vary over

the domains of interest. In particular, we set m = 1 kg,

J = diag{0.13,0.13,0.22} kg·m2, kPP = 10 bP = 9, kz
PP =

10, bz
P = 9, k

φ
PA = kθ

PA = k
ψ
PA = 12, k

φ
DA = kθ

DA = k
ψ
DA =

7. All the integral gains of the position and the atti-

tude controller were set to zero. In all these cases we

also set ψd = 0. and consider all the possible positions

of the tool-tip d according to the design described in

Sec. V-A, i.e., dx ∈ {0.25,0.27,0.29,0.31,0.33,0.35} and

dz ∈ {−0.14,−0.11,−0.08,−0.05,0.5,0.8,0.11,0.14} (we

recall that we assumed, without loss of generality, dy = 0).

The forces are sampled considering five clusters that cover

typical interaction cases such as pure pushing/releasing,

lifting/dropping while pushing with low and high pushing

force, and shifting left/right while pushing with low and

high pushing force. Each of the five plots of Fig. 3 shows

the evolution of the largest real part within each of the five

clusters for every considered value of dx and dz. It is possible

to see that in all the cases in exam the largest real part is

negative thus resulting in a Hurwitz
∂ f

∂x
and, consequently,

in a locally asymptotically stable equilibria for the nonlinear

system. We now analyze more in detail each considered case.

1) Pushing/Releasing: In this cluster (first plot in Fig. 3)

f e
1 has been regularly sampled from 0 N to -5 N with a

sampling step 0.01 N while f e
2 and f e

3 have been keep equal

to zero. Since ψd = 0, this corresponds to the case in

which the quadrotor is performing a frontal pushing on the

environment with pushing force − f e
1 . In every case a smaller

dx corresponds to a larger absolute value of the real part.

This behavior is more evident when dz > 0, i.e., the tool-tip

is placed below the Center of Mass (CoM). The absolute

value is constant w.r.t. dz when dz > 0 and monotonically

decreasing w.r.t. dz when dz < 0.

2) Lifting/Dropping while Pushing: In these two clusters

(second and third plots of Fig. 3) f e
3 is sampled between 0 N

to 2 N with sampling step 0.01 N and two different (constant)

values are considered for f e
1 , corresponding to a low (-2.5 N)

and a high (-5 N) pushing force, respectively. The component

f 3
e is kept equal to zero. The trends w.r.t. to dx and dz are

qualitatively comparable to the pure pushing case.

3) Shifting Left/Right while Pushing: In these two last

clusters (fourth and fifth plots of Fig. 3) f e
2 is regularly

sampled from -2 N to 2 N with a sampling step 0.01 N. The

frontal pushing force f e
1 takes, as in the previous case, two

different constant values (soft and hard pushing) and f 3
e is

kept equal to zero. Since ψd = 0 this corresponds to the

case in which the quadrotor has to perform a lateral shift of

the tooltip. It is interesting to note that in the case of low

pushing force, basically dz does not affect the largest real

part. Dependency from the distance dx is in accordance with
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Fig. 3: Stability of the linearized systems. Each square in the plots

represents the largest real part of the eigenvalues of
∂ f
∂x

when fe is
sampled along relevant interaction force trajectories (clusters) for
certain values of dz and dx.

the previous analyzed cases. Concerning the trend when f e
1 =

-5 N we see that dependency from dx becomes relevant only

when dz > 0 (tooltip below the CoM).

V. PRELIMINARY EXPERIMENTS

To further validate the theoretical and numerical analysis

we developed an experimental setup that includes a in-house

developed quadrotor (described in Sec. V-A), a Six-Axis

force torque sensor ‘Gamma’ by ATI and an external motion

capture system aimed at tracking the position and orientation

of the quadrotor (see Fig. 1 for the CAD model and Fig. 5 for

its implementation). In this Sec. V-B we report the outcome

of a preparatory experiment that is designed to approximately

perform a pushing and releasing maneuver.

A. Quadrotor and Tool Design

The quadrotor used to perform the experiments is based

on the MK-Quadro MikroKopter platform. The overall mass

including the tool is 1.2 kg. To increase the agility and

decrease the size of the quadrotor we decided to use

20 cm diameter propellers. The overall diameter between

two opposing propeller axis is l = 0.314 m. The distance

vector between the tool-tip and the quadrotor body frame in

performed experiment is d = (0.334,0.0,0.056)m. A copy

of the tool was mounted on the opposite side in order to

balance the weight of the one actually used to apply force on

Fig. 4: Left: CAD picture of tool tip: 1. Gimbal bearing, 2. Springs
to stabilize gimbal, 3. End effector plate, 4. Micro switch, 5.
Connection to quadrotor, 6. Springs to bring back the plate in rest
position when not in contact; Right: Schematic side view of tool
tip presenting the degrees of freedom of the tool tip.

the sensor (see Fig. 1). The tool tip end effector (see Fig. 4)

includes a gimbal bearing offering degrees of freedom in

all the rotation axis (thus allowing the implementation of a

hard finger contact). As it was mounted on our quadrotor, a

big degree of freedom (±45◦) was offered around the pitch

axis. To stabilize this degree of freedom a spring system is

keeping the end effector tool-tip in the zero position when

not in contact. Minor degrees of freedom (±15◦) are offered

around the roll and yaw axis. The end effector tip additionally

includes a micro switch that detects the contact.

B. Preliminary Result

In Fig. 5 a sequence of snapshots of the performed

experiment is shown. The quadrotor equipped with the tool

was remotely driven by a human operator to establish a

contact with the surface. During the contact-free phase the

operator commands a desired velocity to the UAV. During the

contact phase the operator directly commands e1, by means

of a joystick, to let the pushing force applied by the robot

on the surface follow approximately a trapezoidal profile

(relying on the quasi-linear relation of Fig. 2 top). The results

obtained during the experiments are plotted in Fig. 6. The

plots refer only to the contact phase. It is easy to observe how

the force applied by the quadrotor and read by the sensor

follows the shape of the desired e. Moreover the fingertip

position remains practically constant during the experiment

(no slippage occurs at the contact point). Finally in Fig. 7 the

linear relationship between the applied pushing force and the

signal e1 commanded by the operator is plotted. The expected

hysteresis is due to the fact that it is almost impossible for

a human operator to fulfill the quasi-staticity of the motion

due to the coarse control over e1 allowed by a small joystick.

For the same reason, the increasing and the decreasing phases

are clearly asymmetric in Fig. 6. The reader is encouraged

to watch the video attached to this submission in which the

preliminary experiment is shown.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a control design that allows a

quadrotor to exert a desired 3D contact force on a surface

through a tool rigidly attached on it. We showed how the

same near-hovering controller used for the free flight can be

used in contact with the environment to generate a desired

contact force. The stability of the system has been then

studied and its dependence on the desired 3D force and the

Preprint version, final version at http://ieeexplore.ieee.org/ 6 2014 IEEE ICRA



Fig. 5: Snapshots of time series while quadrotor is performing the experiment.
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Fig. 6: The main quantities recorded during the performed experi-
ment.
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Fig. 7: The relationship between the commanded signal e1 and the
force read from the sensor during the contact phase (− f1).

position of the tool-tip in body frame has been investigated.

The presented theory has been validated by preliminary

experimental results in which a human operator manually

increased and decreased the value of the error component

e1, emulating a “Push and Release” task.

As future work we want to thoroughly study the dynamic

case and perform full experiments with an autonomous robot

in order to validate the approach in the different interaction

cases considered in the paper. The desired interaction forces

will be given as input to the system thus fully exploiting the

theoretical results derived in Section III.

ACKNOWLEDGMENTS

The research leading to these results has received funding

from the European Union Seventh Framework Programme

FP7/2007-2013 under grant agreement n 601165 of the

project WEARHAP WEARable HAPtics for humans and

robots.

REFERENCES

[1] D. J. Lee and C. Ha, “Mechanics and control of quadrotors for tool
operation,” in 2012 ASME Dynamic Systems and Control Conference,
(Fort Lauderdale, FL), Oct. 2012.

[2] M. Fumagalli, R. Naldi, A. Macchelli, R. Carloni, S. Stramigioli,
and L. Marconi, “Modeling and control of a flying robot for contact
inspection,” in 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems, (Vilamoura, Portugal), pp. 3532–3537, Oct 2012.
[3] S. Bellens, J. De Schutter, and H. Bruyninckx, “A hybrid pose/wrench

control framework for quadrotor helicopters,” in 2012 IEEE Int. Conf.

on Robotics and Automation, (St.Paul, MN), pp. 2269–2274, May
2012.

[4] M. B. Srikanth, A. Soto, A. Annaswamy, E. Lavretsky, and J.-J.
Slotine, “Controlled manipulation with multiple quadrotors,” in AIAA

Conf. on Guidance, Navigation and Control, (Portland, OR), Aug.
2011.

[5] L. Marconi, R. Naldi, and L. Gentili, “Modeling and control of a flying
robot interacting with the environment,” Automatica, vol. 47, no. 12,
pp. 2571–2583, 2011.
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