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Relationships Between ΨB-Energy Operator and
Some Time-Frequency Representations

Abdel-Ouahab Boudraa, Senior Member IEEE

Abstract—ΨB operator is an energy operator that measures
the interactions between two complex signals. In this letter, new
properties of ΨB operator are presented. Connections between
ΨB operator and some time-frequency representations (cross-
ambiguity function, short-time Fourier transform, Zak trans-
form, and Gabor coefficients) are established. Link between
ΨB operator of two input signals and their cross-spectrum is
also derived. For two equal input signals, we find that Fourier
transform of ΨB operator is proportional to the second derivative
of the ambiguity function. The established links show the ability
of ΨB operator to analyze non stationary signals. A numerical
example is provided for illustrating how to estimate the second
order moment, of a FM signal, using ΨB operator. We compare
the result to the moment given by the Wigner Ville distribution.

Index Terms—ΨB energy operator, cross-ambiguity, short-time
Fourier transform, Gabor coefficients, cross-spectrum.

I. INTRODUCTION

ΨB operator has been introduced to analyze the interaction
between two signals [1]-[2]. This operator is an extension of
the cross Teager-Kaiser operator [3] to deal with complex
signals [1]. We have recently shown how ΨB operator can
be used for segmentation of dynamic nuclear cardiac images
[4], transient detection [5], time delay estimation [6] and time
series analysis [7]. ΨB operator is defined by [1]:

ΨB(x(t), y(t)) = [0.5ẋ(t)ẏ∗(t)− 0.25(ẍ(t)y∗(t) + x(t)ÿ∗(t))]
+ [0.5ẋ∗(t)ẏ(t)− 0.25(ẍ∗(t)y(t) + x∗(t)ÿ(t))]
(1)

Let Rxy(t, τ) be the instantaneous Cross Correlation (CC) of
x(t) and y(t):

Rxy(t, τ) = x(t +
τ

2
).y∗(t− τ

2
) (2)

The output of ΨB is related to Rxy(t, τ) as follows [1]:

ΨB(x(t), y(t)) = −∂
2Rxy(t, τ)
∂τ2

∣∣∣∣
τ=0

−∂
2R∗

xy(t, τ)
∂τ2

∣∣∣∣
τ=0

(3)

For x(t) = y(t) the notation ΨB(x(t), y(t)) ≡ ΨB(x(t)) is
used. Examination of Eq. (3) shows that ΨB is a cross-energy
function of two signals. Thus, links to transforms using the
concept of instantaneous CC, such as Time-Frequency Repre-
sentations (TFRs), can be found. In this letter new properties
of ΨB are introduced. We show how some TFRs (Gabor
Coefficients (GC), Short-Time Fourier Transform (STFT),
Ambiguity Function (AF), and Zak Transform (ZT)) which
are fundamentally similar and their application domains quite
different, are related to ΨB. These links show that ΨB can be
useful for non stationary signals analysis.

A.O. Boudraa is with IRENav, Ecole Navale, BCRM Brest, CC 600, 29240
BREST Cedex 9, France. e-mail: boudra@ecole-navale.fr.

II. SHORT-TIME FOURIER TRANSFORM

STFT is a classical TFR which allows one to obtain lo-
calized information of time and frequency of a signal. This
transform is constructed by first choosing an analysis window,
x∗(t − a), and then compute the Fourier Transform (FT) of
the windowed signal y(t) [8]:

ψxy(a, b) =
∫
y(t)x∗(t− a)e−2jπtbdt (4)

where a and b are the delay and the modulation parameters.
To relate ΨB to STFT, we recall the link between ΨB and the
cross Wigner-Ville Distribution (WVD)1, Wxy(t, ν) [1]:

ΨB(x(t), y(t)) = 4π2

∫
ν2(Wxy(t, ν) +W ∗

xy(t, ν))dν (5)

where Wxy(t, ν) =
∫
Rxy(t, τ)e−2jπντdτ (6)

Let x(t) and y(t) be two complex signals. ΨB is linked to
STFT by

ΨB(x(t), y(t)) = 8π2

∫
ν2

[
ψy−x(2t, 2ν) + ψy∗

−x∗(2t, 2ν)
]

× e4jπνtdν (7)

where y−(t′) = y(−t′)

Proof: We set u = t+ τ/2 in (6) and we obtain

Wxy(t, ν) = 2e4jπνt

∫
x(u)y∗(2t− u)e−2jπu(2ν)du (8)

If we set y−(t′) = y(−t′), Eq. (8) simplifies to

Wxy(t, ν) = 2e4jπνtψy−x(2t, 2ν) (9)

Using the same setting and the conjugate version of Eq. (6)
we obtain

Wx∗y∗(t, ν) = 2e4jπνtψy∗
−x∗(2t, 2ν) (10)

Summing Eqs. (9) and (10) and using Eq. (5) complete the
proof. For x(t) = y(t) being real signals, Eq. (7) is reduced
to

ΨB(x(t)) = 16π2

∫
ν2ψx−x(2t, 2ν)e4jπνtdν (11)

Equations (7) and (11) show that time resolution changes by a
factor of 2. Thus, spacing of ΨB is quite large compared to the
range of evaluation points for the STFT. Since the second order
moment does not have a scaling factor in time and frequency,
a well defined sampling grid must be used. If νt is integer, Eq.
(11) is reduced to Eq. (12) which corresponds to the second

1All integrals are from −∞ to +∞ unless otherwise stated.
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order moment in frequency of the STFT where the window is
chosen to be the time-reversed input signal.

ΨB(x(t/2)) = 2π2

∫
(−1)νtν2ψx−x(t, ν)dν (12)

III. GABOR COEFFICIENTS

GC is a signal analysis tool, for example, to process textured
images. Using an analyzing function, γ(t), and for a given
input signal f(t), GC are defined as follows [9]:

Cm,n =
∫
f(t+ n)γ∗(t)e−2jπmtdt (13)

Let x(t) and y(t) be two complex signals. ΨB operator is
related to GC by

ΨB(x(t), y(t)) = 8π2

∫
ν2

[
C2ν,2t + C∗

−2ν,2t

]
e−4jπνtdν

(14)
where γ(t′) = y(−t′)

Proof: Using the same reasoning as for the STFT with u =
τ/2− t we have

Wxy(t, ν) = 2e−4jπνtC2ν,2t (15)

Wx∗y∗(t, ν) = 2e−4jπνtC∗
−2ν,2t (16)

Summing Eqs. (15) and (16) and using relation (5), we derive
the relation (14). If the signal is sampled in both time and
frequency with well defined sampling grid such that m = 2ν
and n = 2t, we can rewrite (14) as

ΨB(x(t), y(t))=8π2

∫
ν2

[
C2ν,2t + C∗

−2ν,2t

]
dν

ΨB(x(
n

2
), y(

n

2
))≈2π2

∑
m

(−1)mnm2
[
Cm,n + C∗

−m,n

]
(17)

For x(t) = y(t) being real signals, relation (17) is reduced to

ΨB(x(t)) = 16π2

∫
ν2C2ν,2tdν (18)

ΨB(x(
n

2
)) ≈ 4π2

∑
m

(−1)mnm2Cm,n (19)

Spacing of ΨB is quite large compared to the range of evalua-
tion points for GC. Equation (18) shows that ΨB corresponds
to the second order moment of GC. The spacing of the GC
and the STFT are large compared to the range of evaluation
points for ΨB. This has a direct effect on the application for
which each is best suited. Both the GC and the STFT are
useful where there is a large amount of data, which must be
analyzed at some coarser resolution (some feature extraction
task as part of a larger image analysis problem). Thus, in this
case ΨB is an efficient and a simple way to calculate the second
moment in frequency of both the GC or the STFT.

IV. CROSS AMBIGUITY FUNCTION

Cross AF (CAF) is a TFR that is useful in many signal
communication systems. CAF is given by:

Axy(u, τ) =
∫
Rxy(t, τ)e−j2πutdt (20)

Let Γxy(u, ν) be the FT, F , of Axy(u, τ) with respect to τ

Rxy(t, τ) t←→ Axy(u, τ) τ←→ Γxy(u, ν) (21)

Γxy(u, ν) represents the 2D FT of Rxy(t, τ) and is the cross
spectrum of x(t) and y(t). Axy(u, τ) is expressed in terms of
the FTs X(ν) and Y (ν) of x(t) and y(t) respectively as

Axy(u, τ) =
∫

Γxy(u, ν)ej2πτνdν

=
∫

X(ν +
u

2
)Y ∗(ν − u

2
)ej2πτνdν (22)

Let x(t) and y(t) be two complex signals. ΨB is related to
Γxy(u, ν) by

F{ΨB(x(t), y(t))}(u) = 4π2

∫
ν2

[
Γxy(u, ν)+Γ∗

xy(−u,−ν)
]
dν

(23)

Proof: According to Eq. (21), Rxy(t, τ) can be rewritten as

Rxy(t, τ) =
∫ ∫

Γxy(u, ν)ej2π(ut+ντ)dudν (24)

Differentiating twice both sides of Rxy(t, τ) and R∗
xy(t, τ)

with respect to τ one gets

∂2Rxy(t, τ)
∂τ2

∣∣∣∣
τ=0

=−4π2

∫ ∫
ν2Γxy(u, ν)ej2πutdudν (25)

∂2R∗
xy(t, τ)
∂τ2

∣∣∣∣
τ=0

=−4π2

∫ ∫
ν2Γ∗

xy(−u,−ν)ej2πutdudν (26)

Summing Eqs. (25) and (26) and using Eq. (3) followed by
the FT complete the proof. Let x(t) and y(t) be two complex

signals. The FT of ΨB operator is linked to CAF by

F{ΨB(x(t), y(t))}(u) = − ∂2

∂τ2

[
Axy(u, τ)+A∗

xy(−u, τ)
]

τ=0
(27)

Proof: According to Eq. (20) Rxy(t, τ) can be written as

Rxy(t, τ) =
∫
Axy(u, τ)ej2πutdu (28)

Differentiating twice both sides of Eq. (28) and its conjugate
version we get

∂2Rxy(t, τ)
∂τ2

∣∣∣∣
τ=0

=
∫
∂2Axy(u, τ)

∂τ2

∣∣∣∣
τ=0

ej2πutdu (29)

∂2R∗
xy(t, τ)
∂τ2

∣∣∣∣
τ=0

=
∫
∂2A∗

xy(−u, τ)
∂τ2

∣∣∣∣
τ=0

ej2πutdu (30)

Using Eq. (3) we obtain

ΨB(x(t), y(t)) = −
∫

∂2

∂τ2

[
Axy(u, τ) +A∗

xy(−u, τ)
]

τ=0︸ ︷︷ ︸
H(u)

× ej2πutdu (31)
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Observe from Eq. (31) that ΨB is the inverse FT of H(u).

Let x(t) and y(t) be two complex signals. If x(t) = y(t) then

F{ΨB(x(t))}(u) = −2
∂2Axx(u, τ)

∂τ2

∣∣∣∣
τ=0

(32)

Proof: Using Eq. (2) it is easy to see that for x(t) = y(t)

∂2Rxx(t, τ)
∂τ2

∣∣∣∣
τ=0

=
∂2R∗

xx(t, τ)
∂τ2

∣∣∣∣
τ=0

(33)

and it follows from (29) and (30) that

∂2Axx(u, τ)
∂τ2

∣∣∣∣
τ=0

=
∂2A∗

xx(−u, τ)
∂τ2

∣∣∣∣
τ=0

(34)

Using Eq. (31) with x(t) = y(t) one gets∫
ΨB(x(t))e−j2πutdt = −2

∂2Axx(u, τ)
∂τ2

∣∣∣∣
τ=0

(35)

which completes the proof.

Computing the FT of ΨB is identical to computing the second
derivative, with respect to lag τ , of the CAF. Equation (23)
shows another link of the FT of ΨB which is equal to the
second order moment in frequency of the cross spectrum of
the two input signals. Eq. (32) gives the link between ΨB and
the AF.

V. ZAK TRANSFORM

ZT is a mixed TFR of a signal that has relationships with
the WVD, the Rihaczek distribution, and the Radar AF [10].
For α ≥ 0, ZT of f , Zαf , is a function on R

2d:

Zαf(x, y) =
∑
k∈Z

f(x− αk)e−2jπαky (36)

In this work, we use the ZT with α = 1, d = 1, which
is denoted by Zf(x, y). The CAF of f(t) and g(t) can be
computed directly from ZTs Zf (x, y) and Zg(x, y):

Afg(u, τ) =
∫ 1

0

∫ 1

0

Zf (x, y)Z∗
g (x+ τ, y + u)e−2jπxudxdy

(37)
Let f(t) and g(t) be two complex signals. ΨB is related to

the ZT by

ΨB(f(t), g(t))=
∫ +∞

−∞

∫ 1

0

∫ 1

0

(Zf (x, y)Z̈∗g(x, y + u)

+Z∗
f (x, y)Z̈g(x, y − u))e−2jπu(x−t)dxdydu

(38)

Proof: Differentiating twice both sides of equation (37) and
its conjugate version with respect to τ we get

∂2Afg(u, τ)
∂τ2

∣∣∣∣
τ=0

=
∫ 1

0

∫ 1

0

Zf (x, y)Z̈∗
g (x, y+u)e−2jπxudxdy

(39)
∂2A∗

fg(u, τ)
∂τ2

∣∣∣∣
τ=0

=
∫ 1

0

∫ 1

0

Z∗
f (x, y)Z̈g(x, y−u)e−2jπxudxdy

(40)

Substituting Eqs. (39) and (40) in Eq. (31) completes the proof
where Z̈g(x, y+u) = ∂2Zg(x+ τ, y±u)/∂τ2|τ=0. If f(t) =
g(t), equation (38) is reduced to

ΨB(f)=2
∫ +∞

−∞

∫ 1

0

∫ 1

0

Zf(x, y)Z̈∗g(x, y+u)e−2jπu(x−t)dxdydu

(41)
The AF on the integer lattice is defined as

Aff (n,m) =
∫ 1

0

∫ 1

0

| Zf (x, y) |2 e2jπ(−mx+ny)dxdy (42)

Using equation (32) it is easy to show that

F{ΨB(x(t))}(n) = 8π2

∫ 1

0

∫ 1

0

x2(t) | Zf(x, y) |2 e2jπnydxdy

(43)
Eqs. (38), (41), and (43) reveals links between ZT and Ψ B.

VI. RESULTS

We show how ΨB can be used to estimate the second order
moment in frequency, < ν 2 >t, of an FM signal, which is a
useful feature for signal classification. Using equation (5), the
moment < ν2 >t of signal y(t) is given by

< ν2 >t=

∫
ν2Wy(t, ν)dν

| y(t) |2 (44)

< ν2 >t=
ΨB(y(t))

8π2 | y(t) |2 (45)

where | y(t) |2=
∫
Wy(t, ν)dν. Let y(t) be a noisy version

of LFM signal, x(t) = e2jπφ(t), defined by

y(t) = x(t) + n(t) (46)

φ(t) = αt2 + βt + c. n(t) is a Gaussian noise, N (0, σ2).
This complex noise consists of independent real and imaginary
parts. The WVD of x(t) is a Dirac function concentrated along
its instantaneous frequency, νx(t) = 2αt+ β:

Wx(t, ν) = δ(ν − β − 2αt) (47)

Since | x(t) |2= 1 and putting (47) in Eq. (44) we obtain

< ν2 >t= (2αt+ β)2 (48)

To illustrate the computation of < ν 2 >t, we consider a signal
y(t) with parameters (α = 50, β = 25, c = 10) where t ∈
[0, 1.2], sampled at T = 5.10−4 and with different SNRs. We
compare the true value of < ν 2 >t (Eq. 48) and the numerical
estimations by WVD (Eq. 44) and ΨB (Eq. 45). Operator ΨB

is implemented using symmetric finite difference scheme [6].
WVD displayed in Fig. 1, clearly reveals the features of the
noisy signal y(t) (SNR=40 dB). Results of < ν2 >t, by ΨB

and WVD, from 600 runs Monte-Carlo simulations are shown
in Figs. 2 and 3. Origin of time axis is shifted to -0.1 sec for
displaying purpose. Although the match of the moments <
ν2 >t is not perfect, ΨB shows a good match (Fig. 2) and with
little oscillations due to noise (Fig. 3(a)). Figure 2 also shows
an agreement of the WVD moment with the true value but
with fluctuations of high magnitude at the beginning and the
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end of free-noise signal x(t). These fluctuations are due to the
effect of the broad frequency spread observed on the beginning
and on the end of the signal y(t) (Fig. 1). For noisy signal,
these fluctuations are very high over all the signal (Fig. 3(b)).
In Fig. 4(a), we plot the MSEs in < ν2 >t estimation versus
the SNRs for both ΨB and VWD. As seen in Fig. 4(a), across
a range of different SNRs, ΨB provides a good performance
over the VWD. Bias measures reported in Fig. 4(b) show that
both ΨB and WVD are less biased for SNR > 15 dB but
the little bias is achieved by DWV. Due to its localization
property, ΨB is sensitive in very noisy environment compared
to WVD, however it offers a significant computation advantage
over WVD. Cost of calculating ΨB is very small compared to
WVD. In general, ΨB gives interesting results provided that
ΨB(n(t)) � −2ΨB(x(t), n(t)). Also, attention must be given
to discretization of ΨB.
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Fig. 1. WVD of noisy signal y(t) (SNR=40dB).
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Fig. 2. Moment < ν2 >t of y(t) (SNR=∞). True (black star), ΨB (blue
dashed line) and WVD (red solid line).

VII. CONCLUDING REMARKS

Main point of this letter is to establish links between ΨB and
some TFRs. Even the studied TFRs have different application
domains, they are all related to ΨB. Lemmas 1 and 2 show that
time resolution changes by a factor of 2. Thus, the spacing of
ΨB is quite large compared to the range of evaluation points
for both STFT and GC. Connections between ZT and ΨB are
also derived. The established links show the interest of ΨB

to analyze non stationary signals. Particularly relation (18)
shows that ΨB corresponds to the second order moment in
frequency of GC. We have established the link between the
FT of ΨB of two input signals and the second order moment
of the cross-spectrum. For two equal input signals we find
that the FT of ΨB is proportional to the second derivative
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Fig. 3. Moment < ν2 >t of y(t) (SNR=40 dB). True (black), ΨB (blue
dashed line) and WVD (red solid line).
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Fig. 4. (a): MSEs (dB) in < ν2 >t estimation for ΨB and WVD. (b): Bias
in < ν2 >t estimation for ΨB and WVD.

of the AF. Preliminary results show that in moderate noisy
environment ΨB is effective for estimating the second order
frequency moment of a signal.
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