
HAL Id: hal-01083576
https://hal.science/hal-01083576v2

Submitted on 10 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memory Analysis and Optimized Allocation of Dataflow
Applications on Shared-Memory MPSoCs

Karol Desnos, Maxime Pelcat, Jean-François Nezan, Slaheddine Aridhi

To cite this version:
Karol Desnos, Maxime Pelcat, Jean-François Nezan, Slaheddine Aridhi. Memory Analysis and
Optimized Allocation of Dataflow Applications on Shared-Memory MPSoCs: In-Depth Study of
a Computer Vision Application. Journal of Signal Processing Systems, 2015, 80 (1), pp.19-37.
�10.1007/s11265-014-0952-6�. �hal-01083576v2�

https://hal.science/hal-01083576v2
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Memory Analysis and Optimized Allocation of Dataflow
Applications on Shared-Memory MPSoCs
In-Depth Study of a Computer Vision Application

Karol Desnos · Maxime Pelcat ·
Jean-François Nezan · Slaheddine Aridhi

Received: date / Accepted: date

Abstract The majority of applications, ranging from

the low complexity to very multifaceted entities requir-

ing dedicated hardware accelerators, are very well sui-

ted for Multiprocessor Systems-on-Chips (MPSoCs). It

is critical to understand the general characteristics of

a given embedded application: its behavior and its re-

quirements in terms of MPSoC resources.

This paper presents a complete method to study the

important aspect of memory characteristic of an appli-

cation. This method spans the theoretical, architecture-

independent memory characterization to the quasi opti-

mal static memory allocation of an application on a real

shared-memory MPSoC. The application is modeled as

an Synchronous Dataflow (SDF) graph which is used to

derive a Memory Exclusion Graph (MEG) essential for

the analysis and allocation techniques. Practical consid-

erations, such as cache coherence and memory broad-

casting, are extensively treated.

Memory footprint optimization is demonstrated us-

ing the example of a stereo matching algorithm from the

computer vision domain. Experimental results show a

reduction of the memory footprint by up to 43% com-

pared to a state-of-the-art minimization technique, a

throughput improvement of 33% over dynamic alloca-

tion, and the introduction of a tradeoff between multi-

core scheduling flexibility and memory footprint.

Keywords memory allocation · multiprocessor

system-on-chip · stereo vision · synchronous dataflow

K. Desnos, M. Pelcat, J.-F. Nezan
IETR, INSA Rennes, UMR CNRS 6164, UEB
20 Avenue des Buttes de Coësmes, Rennes
E-mail: kdesnos, mpelcat, jnezan@insa-rennes.fr

S. Aridhi
Texas Instrument France
Avenue Jack Kilby, Villeneuve Loubet
E-mail: saridhi@ti.com

1 Introduction

Over the last decade, the popularity of data-intensive

computer vision applications has rapidly grown. Re-

search in computer vision traditionally aims at accel-

erating execution of vision algorithms with Desktop

Graphics Processing Units (GPUs) or hardware imple-

mentations. The recent advances in computing power

of embedded processors have made embedded systems

promising targets for computer vision applications. No-

wadays, computer vision is used in a wide variety of

applications, ranging from driver assistance [1], to in-

dustrial control systems [20], and handheld augmented

reality [34]. When developing data-intensive computer

vision applications for embedded systems, addressing

the memory challenges is an essential task as it can

dramatically impact the performance of a system.

Indeed, the identification of the “memory wall” pro-

blem in 1995 [35] revealed memory issues as a major

concern for developers of embedded systems. Memory

issues strongly impact the quality and performance of

an embedded system, as the area occupied by the mem-

ory can be as large as 80% of a chip and may be respon-

sible for a major part of its power consumption [35,

14]. Despite the large silicon area allocated to mem-

ory banks, the amount of internal memory available

on most embedded Multiprocessor Systems-on-Chips

(MPSoCs) is still limited. Consequently, supporting the

development of computer vision applications on high-

resolution images remains a challenging objective.

Prior work on memory issues for MPSoCs mostly

focused on optimization techniques that minimize the

amount of memory allocated to run an application, thus

reducing the required memory real estate of the devel-

oped system [21,12]. These techniques may only be ap-

plied during late stages of the system design process

2 Karol Desnos et al.

because they rely on a precise knowledge of the system

behavior, particularly the mapping and scheduling of

the application tasks on the system processors.

This paper presents a complete method to study the

memory characteristics of an application. This method

spans from the theoretical and architecture indepen-

dent memory characterization of an application to the

quasi-optimal static memory allocation of this applica-

tion on a real shared memory MPSoC. The objective of

this paper is to show, through the example of a com-

puter vision application, how this method can be used

to efficiently address the memory challenges encoun-

tered during the development of an application on an

embedded multicore processor.

The method proposed in this paper focuses on the

characterization of applications described by a Data-

flow Process Network (DPN). Representing an appli-

cation with a DPN [19] consists of dividing this ap-

plication into a set of processing entities, named ac-

tors, interconnected by a set of First In, First Out data

queues (FIFOs). FIFOs allow the transmission of data

tokens between actors. An actor starts its preemption-

free execution (it fires) when its incoming FIFOs con-

tain enough data tokens. The number of data tokens

consumed and produced during the execution of an ac-

tor is specified by a set of firing rules. The possibility

of analyzing the DPNs as a result of their natural ex-

pressivity of parallelism make them particularly popu-

lar both for research [19,25] and commercial ends [17].

Indeed, it is this that makes DPN an attractive Model

of Computation (MoC) to fully exploit the computing

power offered by MPSoCs [25], GPUs, and manycore

architectures [17].

The computer vision application which serves as our

memory case study, as well as the MoC used to model

it and the target MPSoC architecture are described in

Section 2. The challenges targeted in this paper and the

related works are presented in Section 3. Section 4 intro-

duces a technique to bound the memory footprint of an

application independent of device architecture. Then,

(a) Input Stereo Pair (b) Output Depth Map

Fig. 1 Stereo Matching Example

Section 5 presents several allocation strategies that of-

fer a trade-off between application memory footprint

and flexibility of the application multicore execution. In

Section 6, we present our solutions to practical mem-

ory issues encountered when implementing a DPN on

an MPSoC. Finally, experimental results of our method

on the computer vision application are presented in Sec-

tion 7.

2 Context

This section introduces the context of our paper with

a presentation of the semantics of the DPN MoC used,

a description of the stereo matching application graph,

and a presentation of the targeted architectures.

2.1 Stereo matching

The computer vision application studied in this paper

is a stereo matching algorithm. Stereo matching algo-

rithms are used in many computer vision applications

such as [1,11]. As illustrated in Figure 1, the purpose of

stereo matching algorithms is to process a pair of im-

ages (Figure 1(a)) taken by two cameras separated by a

small distance in order to produce a disparity map (Fig.

1(b)) that corresponds to the 3rd dimension (the depth)

of the captured scene. The large memory requirements

of stereo matching algorithms make them interesting

case studies to validate our memory analysis and opti-

mization techniques.

Stereo matching algorithms can be sorted in two

classes: global and local algorithms [30]. Global algo-

rithms, such as graph cuts [27], are minimization al-

gorithms that produce a depth map while minimizing

a cost function on one or multiple lines of the input

stereo pair. Despite the good quality of the results ob-

tained with global algorithms, their high complexity

make them unsuitable for real-time or embedded ap-

plications. Local algorithms independently match each

pixel of the first image with a pixel selected in a re-

stricted area of the second image [37]. The selection of

the best match for each pixel of the image is usually

based on a correlation calculus.

The stereo matching algorithm studied in this pa-

per is the algorithm proposed by Zhang et al. in [37].

The low complexity, the high degree of parallelism, and

the good accuracy of the result make this algorithm an

appropriate candidate for implementation on an em-

bedded MPSoC. The dataflow model of this algorithm

is detailed in Section 2.2

Memory Analysis and Optimized Allocation of Dataflow Applications on Shared-Memory MPSoCs 3

2.2 Synchronous Dataflow (SDF)

Synchronous Dataflow (SDF) [18] is the most com-

monly used DPN Model of Computation (MoC). In

an SDF graph, the production and consumption to-

ken rates set by the firing rules of the actors are fixed

scalars. This property allows a static analysis of an SDF

graph during the application compilation. Static analy-

ses can be used to ensure consistency and schedulability

properties that imply deadlock-free execution of the ap-

plication and bounded FIFO memory needs. If an SDF

graph is consistent and schedulable, a fixed sequence

of actor firings can be repeated indefinitely to execute

the graph. This minimal sequence is deduced from the

token exchange rates of the graph and is called graph

iteration [19].

An example of an SDF graph with 5 actors is given

in Figure 2. FIFOs are labeled with their token produc-

tion and consumption rates. A FIFO with a dot signifies

that initial tokens are present in the FIFO queue when

the system starts to execute. The number of initial to-

kens is specified by the xN label. Initial tokens are a

semantic element of the SDF MoC that makes commu-

nication possible between successive iterations of the

graph execution; they are often used to pipeline the ex-

ecution of applications described with SDF graphs [18].

Actors have no states in the SDF MoC, consequently

if enough data tokens are available, an actor can start

several executions in parallel. For example in Figure 2,

actor A produces enough data tokens for actor B to

be executed twice in parallel. Hence, the SDF MoC

naturally expresses the parallelism of an application.

However, because of its self-loop FIFO, the two firings

of actor C cannot be executed simultaneously since the

second firing requires data tokens produced by the first.

Assigning a static order to the firings of the actors on

the cores of a target architecture is called scheduling

the application.

5050150100 25
75
50150200

A C EDB
75

Fig. 2 SDF graph

Our SDF graph of the stereo matching algorithm is

presented in Figure 3. For the sake of readability, all the

token production and consumption rates displayed in

the SDF graph are simplified and should be multiplied

by the number of input image pixels to obtain the real

exchange rates. Below each actor, in bold, is a repetition

factor which indicates the number of executions of this

actor during each iteration of the graph. This number

of executions is deduced from the data productions and

consumptions of actors. Two parameters are used in the

graph: NbDisparities which represents the number of

distinct values that can be found in the output disparity

map, and NbOffsets which is a parameter influencing

the size of the pixel area considered for the correlation

calculus of the algorithm [37]. The SDF graph contains

12 distinct actors:

– ReadRGB produces the 3 color components of an

input image by reading a stream or a file. This actor

is called twice: once for each image of the stereo pair.

– BrdX is a broadcast actor. Its only purpose is to

duplicate on its output ports the data token con-

sumed on its input port.

– GetLeft gets the RGB left view of the stereo pair.

– RGB2Gray converts an RGB image into its gray-

scale equivalent.

– Census produces an 8-bit signature for each pixel

of an input image. This signature is obtained by

comparing each pixel to its 8 neighbors: if the value

of the neighbor is greater than the value of the pixel,

one signature bit is set to 1; otherwise, it is set to 0.

– CostConstruction is executed once per possible

disparity level. By combining the two images and

their census signatures, it produces a value for each

pixel that corresponds to the cost of matching this

pixel from the first image with the corresponding

pixel in the second image shifted by a disparity level.

– ComputeWeights produces 3 weights for each

pixel, using characteristics of neighboring pixels.

ComputeWeights is executed twice for each offset:

once considering a vertical neighborhood of pixels,

and once with a horizontal neighborhood.

– AggregateCosts computes the matching cost of

each pixel for a given disparity. Computations are

based on an iterative method that is executed

NbOffsets times.

– DisparitySelect produces a disparity map by com-

puting the disparity of the input cost map from the

lowest matching cost for each pixel. The first input

cost map is provided by an AggregateCosts actor

and the second input cost map is the result of a

previous comparison.

– RoundBuffer forwards the last disparity map con-

sumed on its input port to its output port.

– MedianFilter applies a 3×3 pixels median filter to

the input disparity map to smooth the results.

– Display displays the result of the algorithm or

writes it in a file.

This SDF description of the algorithm provides a high

degree of parallelism since it is possible to execute in

4 Karol Desnos et al.

ReadRGB

3

3
3

2*3

2*3 2

2
1

1

2
12*3

2*3

3
rgb

3*2*NbOffsets

3*2*NbOffsets

3*2*NbOffsets
*NbDisparities

3

3

3*2*NbOffsets

x1

NbDisparities

1 1 1
11

1

111

1

2*NbDisparities

2

2
2*NbDisparities

Brd0
i o0

o1
rgb

RGB2Gray
gray

GetLeft
rgb rgbLeft

cen
cost

Brd1
i o0

o1

Census
gray cen

Brd2
i o

Brd3
i o weight

Brd4
i o

cost
weights

aggregate aggregate
feed

result
back

i o result filtered filtered

gray

CostConstruction

DisparitySelectAggregateCosts

rgbLeft

DisplayMedianFilterRoundBuffer

ComputeWeights

x1

x2 x1

x1x1 x2*NbOffsets

x1
xNbDisparitiesxNbDisparities

x1x1

xNbDisparitiesx1
x2

x1
x2

Fig. 3 Stereo-matching SDF graph. All rates are implicitly multiplied by the picture size.

parallel the repetitions of the three most computation-

ally intensive actors, namely CostConstruction, Aggre-

gateCosts, and ComputeWeights. A detailed descrip-

tion of the original stereo matching algorithm can be

found in [37] and our open-source SDF implementation

is available online [8].

2.3 Target architectures

In this paper, we consider the implementation of the

stereo matching algorithm on two multicore architec-

tures:

The i7-3610QM is a multicore Central Processing

Unit (CPU) manufactured by Intel [15]. This 64bit pro-

cessor contains 4 physical hyper-threaded cores that

are seen as 8 virtual cores from the application side.
This CPU has a clock speed of between 2.3GHz and

3.3GHz. Using virtual memory management technique,

this CPU provides virtually unlimited memory resour-

ces to the applications it executes.

The TMS320C6678 is multicore Digital Signal Pro-

cessor (DSP) manufactured by Texas Instruments [32].

This MPSoC contains 8 C66x DSPs, each running

at 1.0GHz on our experimental evaluation module.

Although the size of the addressable memory spa-

ce is 8Gbytes, the evaluation module contains only

512Mbytes of shared memory.

Contrary to the Intel’s CPU, the TMS320C6678

does not have a hardware cache coherence mechanism

to manage the private caches of each of its 8 cores.

Consequently, it is the developer’s responsibility to use

writeback and invalidate functions to make sure that

data stored in the two levels of private cache of each

core is coherent.

The diverse memory characteristics and constraints

of the two architectures must be taken into account

when implementing an application. Section 3 presents

the memory challenges encountered when implementing

the stereo matching application on these two architec-

tures.

3 Challenges and Related Works

This section presents the 3 main challenges addressed

in the paper and their related work.

3.1 Memory reuse

To our knowledge, minimizing the memory footprint of

dataflow applications is usually achieved by using FIFO

dimensioning techniques [24,29,22,2]. FIFO dimension-
ing techniques consist of finding a schedule of the ap-

plication that minimizes the memory space allocated to

each FIFO of the SDF graph. For example, considering

actors B and C from the graph of Figure 2, if the two

repetitions of B are scheduled before the two repeti-

tions of C (BBCC), then the FIFO between the two

actors must be allocated enough memory to store 300

data tokens. However, if the 2 executions of B and C

are interleaved (BCBC) then only 150 data tokens need

to be stored in the FIFO. This technique is used in the

most popular dataflow frameworks such as SDF3 [29],

Ptolemy II [24], or Kalray’s dataflow tool chain [3].

The main drawback of FIFO dimensioning techni-

ques is that they do not consider the reuse of memory

since each FIFOs is allocated in a dedicated memory

space. For example, if FIFO dimensioning is applied

to the example of Figure 2, even though FIFOs AB

and DE are never full simultaneously, they will not be

allocated in overlapping memory spaces. Hence, FIFO

dimensioning often results in wasted memory space [21].

Memory Analysis and Optimized Allocation of Dataflow Applications on Shared-Memory MPSoCs 5

As presented in Sections 4 to 6, memory reuse is

a key aspect of the memory analysis and optimiza-

tion techniques presented in this paper. Moreover, con-

trary to most memory optimization techniques for SDF

graphs that consider only monocore architectures [21,

29,22], our method focuses on shared memory multicore

processors.

3.2 Broadcast memory waste

An important challenge when implementing the stereo

matching application is the explosion of the memory

space requirements caused by the broadcast actors. For

example in Figure 3, with NbOffsets = 5, NbDispari -

ties = 60 and a resolution of 450*375 pixels, the broad-

cast actor Brd4 produces 3 ∗ 2 ∗NbOffsets ∗NbDispari -

ties ∗ resolution float values, or 1.13Gbytes of data. Be-

side the fact that this footprint alone largely exceeds the

512Mbytes capacity of the multicore DSP, this amount

of memory is a waste as it consists only of 60 duplica-

tions of the 19.3Mbytes of data produced by the firings

of the ComputeWeights actor.

Non-destructive reads, or FIFO peeking, is a well-

known way to read data tokens without consuming

them, hence avoiding the need for broadcast actors [13].

Unfortunately, this technique cannot be applied with-

out considerably modifying the underlying SDF MoC.

Indeed, in the stereo matching example, using FIFO

peeking would mean that the AggregateCosts only per-

forms peeks and never consumes data tokens on its

weights input port. Consequently, tokens would accu-

mulate indefinitely on the FIFO connected to this port.

In Section 6, we propose a non-invasive addition to

the SDF MoC to solve the broadcast issue.

3.3 Cache coherence

Cache management is a key challenge when implement-

ing an application on a multicore target without auto-

matic cache coherence. Indeed, as shown in [33], the use

of cache dramatically improves the performance of an

application on multi-DSP architectures, with execution

times up to 24 times shorter that without cache.

An automatic method to insert calls to writeback

and invalidate functions in code generated from a SDF

graph is presented in [33]. As depicted in Figure 4, this

method is applicable for shared memory communica-

tions between two processing elements. Actors A and B

both have access to the shared memory addresses where

data tokens of the AB FIFO are stored. The synchro-

nization between cores is ensured by the Send and Recv

actors which can be seen as post and pend semaphore

Core2

Shared
memory

Core2
cache

Core1
cache

Core1

Recv B

Invalidate

Writeback

Valid A-B data

Possibly invalid

A-B data

A Send

Fig. 4 Cache coherence solution without memory reuse

operations respectively. A writeback call is inserted be-

fore the Send operation to make sure that all AB data

tokens from Core1 cache are written back in the shared

memory. Similarly, an invalidate call is inserted after

the Recv operation to make sure that cache lines corre-

sponding to the address range of buffer AB are removed

from Core2 cache.

Core2

Shared
memory

Core2
cache

Core1
cache

Core1

RecvD B

Invalidate

Writeback

C-D dataA-B data

C-D data

A-B data

C

A Send

Automatic
Writeback

Fig. 5 Cache coherence issue with memory reuse

As depicted in Figure 5, a problem arises if the

method presented in [33] is used jointly with memory

reuse techniques. In this example, overlapping mem-

ory spaces are used to store data tokens of two FIFOs:

AB and CD. After the firings of actors C and D, the

cache memory of Core2 is “dirty”, containing data to-

kens of the CD FIFO that were not written back in the

shared memory. Because these data tokens are “dirty”,

the local cache manager might generate an automatic

writeback to put new data in the cache. If however, as

in the example, this automatic writeback occurs after

the writeback from Core1, then the CD data tokens will

overwrite AB tokens in the shared memory, thus cor-

rupting the data accessed by actor B.

In addition to the memory reuse techniques pre-

sented in Sections 4 and 5, we propose a solution to

generate code for cache-incoherent multicore architec-

ture in Section 6.

4 Memory Bounds

Bounding the amount of memory needed to implement

an application on a targeted multicore architecture is

a key step of a development process. Indeed, memory

upper and lower memory bounds are crucial pieces of

6 Karol Desnos et al.

information in the co-design process, as they allow the

developer to adjust the size of the architecture mem-

ory according to the application requirements. Further-

more, as these bounds can be computed during the early

development of an MPSoC, they might assist the de-

veloper in correct memory dimensioning (i.e. to avoid

mapping an insufficient or an unnecessarily large mem-

ory chip).

The technique presented in this section is an analy-

sis technique for deriving the memory allocation bounds

(Figure 6) of an application modeled with an SDF graph.

Insu�cient
memory

Possible
allocated memory

Wasted
memory

Available
Memory

Lower
Bound

Optimal
Allocation≤ Worst

Allocation=Upper
Bound

0

Fig. 6 Memory Bounds

This bounding technique is applicable in every sta-

ges of the development of an application, even when

there is a complete abstraction of the system architec-

ture. The bounding technique can be used both to pre-

dict memory requirements of an application in the early

stages of its development, and to assess the quality of an

allocation result during the implementation of an ap-

plication. This bounding technique was first introduced

in [6]. It is presented in this paper as a necessary first

step to our memory reuse techniques as well as a way to

assess the quality of our allocation results in Section 7.

4.1 SDF graph pre-processing

The first step to derive the memory bounds of an ap-

plication consists of successively transforming its SDF

graph into a single-rate SDF and into a Directed Acyclic

Graph (DAG) so as to reveal its embedded parallelism

and model its memory characteristics.

As exposed in [3], the transformation of an SDF

graph into its equivalent single-rate SDF can be ex-

ponential in terms of number of actors. As a conse-

quence, the method we propose should only be ap-

plied to SDF graphs with a relatively coarse grained

description: graphs whose single-rate equivalent have

at most hundreds of actors and thousands of single-

rate buffers [6]. Despite this limitation, the single-rate

transformation has proven to be efficient for many real

applications, notably in the telecommunication [25] and

the multimedia [7] domains.

4.1.1 Pre-processing objectives

In the context of memory analysis and allocation, the

single-rate and the DAG transformations are applied

with the following objectives:

− Expose data parallelism: Concurrent analysis of

data parallelism and data precedence gives information

on the lifetime of memory objects prior to any sche-

duling process. Indeed, two FIFOs belonging to paral-

lel data-paths may contain data tokens simultaneously

and are consequently forbidden from sharing a memory

space. Conversely, two single-rate FIFOs linked with

a precedence constraint can be allocated in the same

memory space since they will never store data tokens

simultaneously. In Figure 7 for example, FIFO AB1 is

a predecessor to C1D1 . Consequently, these two FIFOs

may share a common address range in memory.

− Break FIFOs into shared buffers: The memory

needed to allocate each FIFO corresponds to the maxi-

mum number of tokens stored in the FIFO during an

iteration of the graph [21]. However, in our method, the

memory allocation can be independent from scheduling

considerations. It is for this reason that FIFOs of unde-

fined size before the scheduling step are replaced with

buffers of fixed size during the transformation of the

graph into a single-rate SDF.

− Derive an acyclic model: In the absence of a

schedule, deriving a DAG permits the use of single-rate

FIFOs that will be written and read only once per it-

eration of this DAG. Consequently, before a single rate

FIFO is written and after it is read, its memory space

will be reusable to store other objects.

4.1.2 Graph transformations

The first transformation applied to the input SDF

graph to reveal parallelism is a conversion into a single-

rate SDF graph. A single-rate SDF graph is an SDF

graph where the production and consumption rates on

each FIFO are equal. Each vertex of the single-rate

SDF graph corresponds to a single actor firing from

the SDF graph. This conversion is performed by com-

puting the topology matrix [18], by duplicating actors

by their number of firings, and by connecting FIFOs

properly. For example, in Figure 7, actors B, C, and

D are each split in two instances and new FIFOs are

added to ensure the equivalence with the SDF graph of

Figure 2. An algorithm to perform this conversion can

be found in [28].

The second conversion consists of generating a Di-

rected Acyclic Graph (DAG) by isolating one itera-

tion of the algorithm. This conversion is achieved by

ignoring FIFOs with initial tokens in the single-rate

Memory Analysis and Optimized Allocation of Dataflow Applications on Shared-Memory MPSoCs 7

75

75

50

50

150

150

A
C2

C1

E
D2

D1

B2

100

25

25

B1

100

Fig. 7 Single-rate SDF graph. (Directed Acyclic Graph
(DAG) if dotpoint FIFO is ignored)

SDF graph. In our example, this approach means that

the feedback FIFO C2C1 , which stores 75 initial to-

kens, is ignored. Our optimization technique does not

allow the concurrent execution of successive iterations

of the graph since the lifetime of each memory object is

bounded by the span of a graph iteration. As presented

in [18], delays can be added to acyclic data-paths of a

dataflow graph in order to pipeline an application. By

doing so, the developer can divide a graph into several

unconnected graphs whose iterations can be executed

in parallel, thus improving the application throughput.

From the memory perspective, pipelining a graph will

increase the graph parallelism and consequently the

amount of memory required for its allocation. In the

case of stereo matching, the addition of a pipeline stage

after the AggregateCost actor leads to an increase of the

memory footprint by 50%. However, since the critical

path is largely dominated by the most parallel actors,

pipelining this application does not lead to a substan-

tial throughput improvement.

4.1.3 Memory objects

The DAG resulting from the transformations of an SDF

graph contains three types of memory objects:

− Communication buffers: The first type of mem-

ory object, which corresponds to the single-rate FIFOs

of the DAG, are the buffers used to transfer data to-

kens between consecutive actors. In our approach, we

consider that the memory allocated to these buffers is

reserved from the execution start of the producer actor

until the completion of the consumer actor. This choice

is made to enable custom token accesses throughout ac-

tor firing time. As a consequence, the memory used to

store an input buffer of an actor should not be reused

to store an output buffer of the same actor. In Figure 7,

the memory used to carry the 100 data tokens between

actors A and B1 can not be reused, even partially, to

transfer data from B1 to C1 .

− Working memory of actors: The second type of

memory object corresponds to the maximum amount

of memory allocated by an actor during its execution.

This working memory represents the memory needed to

store the data used during the computations of the ac-

tor but does not include the input buffer nor the output

buffer storage. In our method, we assume that an actor

keeps exclusive access to its working memory during its

execution. This memory is equivalent to a task stack

space in an operating system.

− Feedback/Pipeline FIFOs: The last type of mem-

ory object corresponds to the memory needed to store

feedback FIFOs ignored by the transformation of a

single-rate SDF into a DAG. In Figure 7, there is a

single feedback FIFO between C2 and C1 . Each feed-

back FIFO is composed of 2 memory objects: the head

and the (optional) body. The head of the feedback FIFO

corresponds to the data tokens consumed during an it-

eration of the single-rate SDF. A head memory object

may share memory space with any buffer that is both a

successor to the actor consuming tokens from the feed-

back FIFO and a predecessor to the actor producing

tokens on the feedback FIFO.

The body of the feedback FIFO corresponds to data

tokens that remain in the feedback FIFO for several

iterations of the graph before being consumed. A body

memory object is needed only if the amount of delay

on the feedback FIFO is greater than its consumption

rate. A Body memory object must always be allocated

in a dedicated memory space.

4.2 Memory Exclusion Graph (MEG)

Once an application SDF graph has been transformed

into a DAG and all its memory objects have been iden-

tified, we derive a Memory Exclusion Graph (MEG)

which will serve as a basis to our analysis and alloca-

tion techniques.

A Memory Exclusion Graph (MEG) is an undirec-
ted weighted graph denoted by G =< V,E,w > where:

– V is the set of vertices. Each vertex represents an

indivisible memory object.

– E is the set of edges representing the memory ex-

clusions, i.e. the impossibility to share memory.

– w : V → N is a function with w(v) the weight of a

vertex v. The weight of a vertex corresponds to the

size of the associated memory object.

– N(v) the neighborhood of v, i.e. the set of vertices

linked to v by an exclusion e ∈ E. Vertices of this

set are said to be adjacent to v.

– |S| the cardinality of a set S. |V | and |E| are the

number of vertices and edges respectively of a graph.

– δ(G) = 2·|E|
|V |·(|V |−1) the edge density of the graph

corresponding to the ratio of existing exclusions to

all possible exclusions.

Two memory objects of any type exclude each other

(i.e. they can not be allocated in overlapping address

8 Karol Desnos et al.

ranges) if the DAG can be scheduled in such a way that

both these memory objects store data simultaneously.

Some exclusions are directly caused by the properties

of the memory objects, such as exclusions between in-

put and output buffers of an actor. Other exclusions

result from the parallelism of an application, as is the

case with the working memory of actors that might be

executed concurrently because they belong to parallel

data-paths.

C1C2
75

D1E
25

D2E
25

C2D2
50

C1D1
50

B2C2
150

B1C1
150

AB2100

AB1100

A
20

E
30

B110

B210

C150

C250

D140

D240
25

25
100

100

150

150

50

50

x7575
75

CPU1 schedule CPU2 schedule

A
20

B
10

C
50

200 100 150 150 D
40

50 50 E
30

25 50
7575

x75

A
20

D
40

200
100 50

50 E
30

25 507575

B
10

C
50

150 150

Sr
c

Sr
c

Sn
k

Sn
k

100 50

75 75

h
x75

E
30

D
20

150
150

100
100

150
150

100
100

Fig. 8 Memory Exclusion Graph (MEG) derived from Fig. 2

The MEG presented in Figure 8 is derived from the

SDF graph of Figure 2. The complete MEG contains

18 memory objects and 69 exclusions but, for clarity,

only the vertices corresponding to the buffers between

actors (1st type memory objects) are presented. The

values printed below the vertices names represent the

weight w of the memory objects.

The pseudo-code of an algorithm to build the com-

plete MEG of an application is given in Figure 9.

The MEG obtained at this point of the method is

a worst-case scenario since it models all possible ex-

clusions for all possible schedules. As will be shown in

Section 5, it is possible to update a MEG with sche-

duling information in order to reduce the number of

exclusion, thus favoring memory reuse.

4.3 Bounding techniques

The upper and lower bounds of the static memory allo-

cation of an application are a maximum and a minimum

limit respectively to the amount of memory needed to

run an application, as presented in Figure 6. The fol-

lowing four sections explain how the upper bound can

be computed and give three techniques to compute the

memory allocation lower bound. These three techniques

offer a trade-off between accuracy of the result (Fig-

ure 10) and complexity of the computation.

4.3.1 Least upper bound

The least upper memory allocation bound of an appli-

cation corresponds to the size of the memory needed

Input: a single-rate SDF srSDF =< A,F > with:
A the set of actors
F the set of FIFOs

Output: a Memory Exclusion Graph MEG =< V,E,w >
1: Define Pred[], I[], O[] : A→ V ∗ ⊂ V
2: Sort A in the DAG precedence order
3: for each a ∈ A do
4: /* Process working memory of a */
5: workingMem← new v ∈ V
6: w(workingMem)← workingMemorySize(a)
7: for each v ∈ V \ {Pred[a], workingMem} do
8: Add e ∈ E between workingMem and v
9: end for

10: I[a]← I[a] ∪ {workingMem}
11: /* Process output buffers of a */
12: for each f ∈ (F \ feedbackFIFOs) ∩ outputs(a) do
13: bufMem← new v ∈ V
14: w(bufMem)← size(f)
15: for each v ∈ V \ {Pred[a], bufMem} do
16: Add e ∈ E between bufMem and v
17: end for
18: Pred[consumer(f)]← Pred[a] ∪ I[a]
19: I[consumer(f)]← I[consumer(f)] ∪ {bufMem}
20: O[a]← O[a] ∪ {bufMem}
21: end for
22: end for
23: /* Process Feedback FIFOs */
24: for each ff ∈ F ∩ feedbackFIFOs(F) do
25: headMem← new v ∈ V
26: w(headMem)← rate(ff)
27: set← (V ∩ P [producer(ff)]) \ P [consumer(ff)]
28: set← set \ I[consumer(ff)] ∪O[consumer(ff)]
29: for each v ∈ V \ set do
30: Add e ∈ E between headMem and v
31: end for
32: if rate(ff) < delays(ff) then
33: bodyMem← new v ∈ V
34: w(bodyMem)← delays(ff)− rate(ff)
35: for each v inV do
36: Add e ∈ E between bodyMem and v
37: end for
38: end if
39: end for

Fig. 9 Building the Memory Exclusion Graph (MEG)

to allocate each memory object in a dedicated memory

space. This allocation scheme is the least compact al-

location possible as a memory space used to store an

object would never be reused to store another.

Given a MEG G, its upper memory allocation

bound is thus the sum of the weight of its vertices:

BoundMax(G) =
∑
v∈V

w(v) (1)

The upper bound for the MEG of Figure 8 is 725 units.

As presented in Figure 10, using more memory than

the upper bound means that part of the memory re-

sources is wasted. Indeed, if a memory allocation uses

an address range larger than this upper bound, some

addresses within this range will never be read nor writ-

ten.

Memory Analysis and Optimized Allocation of Dataflow Applications on Shared-Memory MPSoCs 9

Insu�cient
memory

Possible
allocated memory

Wasted
memory

Available
Memory

Maximum-Weight
Clique Problem

Heuristic for
Maximum-Weight

Clique Problem
≤ ≤ Interval Coloring

Problem

Sum of
vertices weights

0

Insu�cient
memory

Possible
allocated memory

Wasted
memory

Available
Memory

Lower
Bound

=
Optimal

Allocation

Upper
Bound

=
Worst

Allocation

0

Fig. 10 Computing the lower memory bound

4.3.2 Method 1 to compute the greatest lower bound -

Interval Coloring Problem

The greatest lower memory allocation bound of an ap-

plication is the least amount of memory required to

execute it. Finding this optimal allocation based on a

MEG can be achieved by solving the equivalent Interval

Coloring Problem [4,12].

A k-coloring of a MEG is the association of each

vertex vi of the graph with an interval Ii = {a, a +

1, · · · , b−1} of consecutive integers - called colors -, such

that b−a = w(v). Two distinct vertices vi and vj linked

by an edge must be associated to non-overlapping in-

tervals. Assigning an interval to a weighted vertex is

equivalent to allocating a range of memory addresses to

a memory object. Consequently, a k-coloring of a MEG

corresponds to an allocation of its memory objects.

The Interval Coloring Problem consists of finding a

k-coloring of the exclusion graph with the fewest inte-

gers used in the Ii intervals. This objective is equiv-

alent to finding the allocation of memory objects that

uses the least memory possible, thus giving the greatest

lower bound of the memory allocation.

Unfortunately, as presented in [4], this problem is

known to be NP-Hard, therefore it would be prohibi-

tively long to solve for applications with hundreds or

thousands of memory objects. Moreover, a sub-optimal

solution to the Interval Coloring problem corresponds

to an allocation that uses more memory than the mini-

mum possible: more memory than the greatest lower

bound. Consequently, a sub-optimal solution fails to

achieve our objective which is to find a lower bound

to the size of the memory allocated for a given applica-

tion.

4.3.3 Method 2 to compute a lower bound - Exact

solution to the Maximum-Weight Clique Problem

Since the greatest lower bound can not be found in

reasonable time, we focus our attention on finding a

lower bound close to the size of the optimal allocation.

In [12], Fabri introduces another lower bound derived

from an exclusion graph: the weight of the Maximum-

Weight Clique (MWC).

A clique is a subset of vertices that forms a sub-

graph within which each pair of vertices is linked with

an edge. As memory objects of a clique can not share

memory space, their allocation requires a memory as

large as the sum of the weights of the clique elements,

also called the clique weight. Subsets S1 :={AB1, AB2,

B2C2} and S2 :={C1D1, D2E, C2D2, D1E} are exam-

ples of cliques in the MEG of Figure 8. Their respective

weights are 350 and 150. By definition, a single ver-

tex can also be considered as a clique. A clique is called

maximal if no vertex can be added to it to form a larger

clique. In Figure 8, clique S2 is maximal, but clique S1

is not as B1C1 is linked to all the clique vertices and

can therefore be added to the clique.

The Maximum-Weight Clique (MWC) of a graph is

the clique whose weight is the largest of all cliques in the

graph. Although this problem is also known to be NP-

Hard, several algorithms have been proposed to solve

it efficiently. In [23], Österg̊ard proposes an exact algo-

rithm which is, to our knowledge, the fastest algorithm

for MEGs with an edge density under 0.80. For graphs

with an edge density above 0.80, a more efficient algo-

rithm was proposed by Yamaguchi et al in [36]. Both

algorithms are recursive and use a similar branch-and-

bound approach. Beginning with a subgraph composed

of a single vertex, they search for the MWC Ci in this

subgraph. Then, a vertex is added to the considered

subgraph, and the weight of Ci is used to bound the

search for a larger clique Ci+1 in the new subgraph. In

[6], the two algorithms were implemented to compare

their performances on exclusion graphs derived from

different applications. In the exclusion graph of Fig-

ure 8, the MWC is {AB2,B1C1,B2C2,C1C2,C1D1} with

a weight of 525 units.

The weight of the MWC corresponds to the amount

of memory needed to allocate the memory objects be-

longing to this subset of the graph. By extension, the

allocation of the whole graph will never use less mem-

ory than the weight of its MWC. Therefore, this weight

is a lower bound to the memory allocation and is less

than or equal to the greatest lower bound, as shown in

Figure 10.

4.3.4 Method 3 to compute a lower bound - Heuristic

for the Maximum-Weight Clique Problem

Österg̊ard’s and Yamaguchi’s algorithms are exact al-

gorithms and not heuristics. Since the MWC problem

is an NP-Hard problem, finding an exact solution in

polynomial time can not be guaranteed. For this rea-

10 Karol Desnos et al.

son, we have developed a heuristic algorithm for the

MWC problem.

The proposed heuristic approach, presented in Fig-

ure 11, is an iterative algorithm whose basic principle

is to remove a judiciously selected vertex at each itera-

tion, until the remaining vertices form a clique.

Input: a Memory Exclusion Graph G =< V,E,w >
Output: a maximal clique C
1: C ← V
2: nbedges ← |E|
3: for each v ∈ C do
4: cost(v)← w(v) +

∑
v′∈N(v) w(v′)

5: end for
6: while |C| > 1 and

2·nbedges

|C|·(|C|−1)
< 1.0 do

7: Select v∗ from V that minimizes cost(·)
8: C ← C \ {v∗}
9: nbedges ← nbedges − |N(v∗) ∩ C|

10: for each v ∈ N(v∗) ∩ C do
11: cost(v)← cost(v)− w(v∗)
12: end for
13: end while
14: Select a vertex vrandom ∈ C
15: for each v ∈ N(vrandom) \ C do
16: if C ⊂ N(v) then
17: C ← C ∪ {v}
18: end if
19: end for

Fig. 11 Maximum-Weight Clique Heuristic Algorithm

Our algorithm can be divided into 3 parts:

– Initializations (lines 1-5): For each vertex of the

MEG, the cost function is initialized with the weight

of the vertex summed with the weights of its neigh-

bors. In order to keep the input MEG unaltered

through the algorithm execution, its set of vertices

V and its number of edges |E| are copied in local

variables C and nbedges.

– Algorithm core loop (lines 6-13): During each it-

eration of this loop, the vertex with the minimum

cost v∗ is removed from C (line 8). In the few cases

where several vertices have the same cost, the low-

est number of neighbor |N(v)| is used to determine

the vertex to remove. If the number of neighbors

is equal, then selection is performed based on the

smallest weight w(v). By doing so, the number of

edges removed from the graph is minimized and the

edge density of the remaining vertices will be higher,

which is desirable when looking for a clique. If there

still are multiple vertices with equal properties, a

random vertex is selected among them.

This loop is iterated until the vertices in subset C

become a clique. This condition is checked line 6,

by comparing 1.0 (the edge density of a clique) with

the edge density of the subgraph of G formed by the

remaining vertices in C. To this purpose nbedge, the

number of edges of this subgraph, is decremented

line 9 by the number of edges in E linking the re-

moved vertex v∗ to vertices in C. Lines 10 to 12, the

costs of the remaining vertices are updated for the

next iteration.

– Clique maximization (lines 14-19): This last part of

the algorithm ensures that the clique C is maximal

by adding neighbor vertices to it. To become a mem-

ber of the clique, a vertex must be adjacent to all

its members. Consequently, the candidates to join

the clique are the neighbors of a vertex randomly

selected in C. If a vertex among these candidates is

linked to all vertices in C, it is added to the clique.

The complexity of this heuristic algorithm is of the or-

der of O(|N |2), where |N | is the number of vertices of

the MEG.

In Table 1, the algorithm is applied to the MEG of

Figure 8. For each iteration, the costs of the remaining

vertices are given, and the vertex removed during the

iteration is crossed out. The column δ(C) corresponds

to the edge density of the subgraph formed by the re-

maining vertices. For example, in the first iteration, the

memory object D2E has the lowest cost and is thus re-

moved from the MEG. Before beginning the second it-

eration, the costs of memory objects C1D1, C2D2, and

D1E are decremented by 25: the weight of the removed

memory object.

Costs

Iter δ(C) AB1 AB2 B1C1 B2C2 C1C2 C1D1 C2D2 D2E D1E

1 0.67 500 650 625 700 600 625 375 150 475

2 0.75 500 650 625 700 600 600 350 450

3 0.81 500 650 625 650 550 550 400

4 0.87 500 625 625 625 525 525

5 1.00 525 525 525 525 525

Table 1 Algorithm proceeding for the MEG of Figure 8

In this simple example, the clique found by the heu-

ristic algorithm and the exact algorithm are the same,

and their weight also corresponds to the size of the op-

timal allocation. This example proves that, as shown

in Figure 10, the result of the heuristic can be equal to

the exact solution of the MWC problem, whose size can

also equal that of the optimal allocation.

5 Memory Allocation Strategies

Given an initial MEG constructed from a non-scheduled

DAG, we propose three possible implementation stages

to perform the allocation of this MEG in shared mem-

ory: prior to any scheduling process, after an untimed

Memory Analysis and Optimized Allocation of Dataflow Applications on Shared-Memory MPSoCs 11

multicore scheduling of actors, or after a timed multi-

core scheduling of the application. The scheduling flex-

ibility resulting from the three alternatives are detailed

in the following subsections.

5.1 Memory Exclusion Graph (MEG) updates

As presented in Section 4.2, the MEG built from the

non-scheduled DAG is a worst-case scenario as it mod-

els all possible exclusions for all possible schedules of

the application on any number of cores. If a multicore

schedule of the application is known, this schedule can

be used to update the MEG and lower its density of

exclusions.

Scheduling a DAG on a multicore architecture intro-

duces an order of execution of the graph actors, which is

equivalent to adding new precedence relationships be-

tween actors. Adding new precedence edges to a DAG

results in a decreased inherent parallelism of the ap-

plication. For example, Figure 12 illustrates the new

precedence edges that result from scheduling the DAG

on 2 cores. In this example, Core1 executes actors B1 ,

C1 , D1 and D2 ; and Core2 executes actors A, B2 , C2

and E .

75

75

50

50

150

150

A
C2

C1

E
D2

D1

B2

100

25

25

B1

100

Core1 Schedule Core2 Schedule

Fig. 12 Scheduled Single-rate SDF graph

As presented in Section 4.2, memory objects belong-

ing to parallel data-paths may have overlapping life-

times. Reducing the parallelism of an application re-

sults in creating new precedence paths between memory

objects, thus preventing them from having overlapping

lifetimes and removing exclusions between them. Since

all the parallelism embedded in a DAG is explicit, the

scheduling process cannot augment the parallelism of

an application and cannot create new exclusions be-

tween memory objects. Figure 13 illustrates the up-

dated MEG resulting from the multicore schedule of

Figure 12.

A second update of the MEG is possible if a timed

schedule of the application is available. A timed sched-

ule is a schedule where not only the execution order

of the actors is fixed, but also their absolute starting

and ending times. Such a schedule can be derived if the

exact, or the worst-case execution times of all actors

C1C2
75

D1E
25

D2E
25

C2D2
50

C1D1
50

B2C2
150

B1C1
150

AB2100

AB1100

A
20

E
30

B110

B210

C150

C250

D140

D240
25

25
100

100

150

150

50

50

x7575
75

Core1 schedule Core2 schedule

A
20

B
10

C
50

200 100 150 150 D
40

50 50 E
30

25 50
7575

x75

A
20

D
40

200
100 50

50 E
30

25 507575

B
10

C
50

150 150

Sr
c

Sr
c

Sn
k

Sn
k

100 50

75 75

h
x75

E
30

D
20

150
150

100
100

150
150

100
100

Fig. 13 MEG updated with schedule from Figure 12

are known at compile time [25]. Updating a DAG with

a timed schedule consists of adding precedence edges

between all actors with non-overlapping lifetimes.

Following assumptions made in Section 4.1, the life-

time of a memory object begins with the execution start

of its producer, and ends with the execution end of its

consumer. In the case of working memory, the lifetime

of the memory object is equal to the lifetime of its as-

sociated actor. Using a timed schedule, it is thus pos-

sible to update a MEG so that exclusions remain only

between memory objects whose lifetimes overlap. For

example, the timed schedule of Figure 14(a) introduces

a precedence relationship between actors B2 and C1

which translates into removing the exclusion between

AB2 and C1D1 from the MEG.

5.2 Static MEG allocation

Allocating a MEG in memory consists of statically as-

signing an address range to each memory object. Possi-

ble approaches to perform the memory allocation are:

– Running an online allocation (greedy) algorithm.

Online allocators assign memory objects one by one

in the order in which they are fed to the allocator.

Performance of online algorithms can be greatly im-

proved by feeding the allocator with memory objects

sorted in a smart order [7]. The most commonly

used online allocators are the First-Fit (FF) and the

Best-Fit (BF) algorithms [16]. FF algorithm consists

of allocating an object to the first available space in

memory of sufficient size. The BF algorithm works

similarly but allocates each object to the available

space in memory whose size is the closest to that of

the allocated object.

– Running an offline allocation algorithm [14,21]. In

contrast to online allocators, offline allocators have

a global knowledge of all memory objects requiring

allocation, thus making further optimizations possi-

ble.

– Coloring the MEG. Each vertex of the graph is asso-

ciated with a set of colors such that two connected

vertices have no color in common. The purpose of

12 Karol Desnos et al.

graph coloring technique is to minimize the total

number of colors used in the graph [4].

– Using constraint programming [31] where memory

constraints can be specified together with resource

usage and execution time constraints.

In addition to these static allocation techniques, which

are executed during the compilation of the application,

dynamic allocation techniques can also be used. Dy-

namic allocation consists of allocating the memory ob-

jects of the MEG during the execution of the applica-

tion. To keep the runtime overhead of dynamic allo-

cation as low as possible, lightweight allocation algo-

rithms such as the FF or the BF allocators are com-

monly used [16,32].

5.3 Pre-scheduling allocation

Before scheduling the application, the MEG models all

possible exclusions that may prevent memory objects

from being allocated in the same memory space. Hence,

a pre-scheduling MEG models all possible exclusions

for all possible multicore schedules of an application.

Consequently, a compile-time allocation based on a pre-

scheduling MEG will never violate any exclusion for any

valid multicore schedule of this graph on any shared-

memory architecture.

Since a compile-time memory allocation based on a

pre-scheduling MEG is compatible with any multicore

schedule, it is also compatible with any runtime sched-

ule. The great flexibility of this first allocation approach

is that it supports any runtime scheduling policy for the

DAG and can accommodate any number of cores that

can access a shared memory.

A typical scenario where this pre-scheduling

compile-time allocation is useful is a multicore archi-

tecture implementation which runs multiple applica-

tions concurrently. In such a scenario, the number of

cores used for an application may change at runtime to

accommodate applications with high priority or those

with high processing needs. The compile-time alloca-

tion relieves runtime management from the weight of a

dynamic allocator while guaranteeing a fixed memory

footprint for the application.

The downside of this first approach is that, as will be

shown in the results of Section 7, this allocation tech-

nique requires substantially more memory than post-

scheduling allocators.

5.4 Post-scheduling allocation

Post-scheduling memory allocation offers a trade-off be-

tween amount of allocated memory and multicore sche-

duling flexibility. The advantage of post-scheduling over

pre-scheduling allocation is that updating the MEG

greatly decreases its density which results in using less

allocated memory [7].

Like pre-scheduling memory allocation, the flexibil-

ity of post-scheduling memory allocation comes from

its compatibility with any schedule obtained by adding

new precedence relationships to the scheduled DAG.

Indeed, adding new precedence edges will make some

exclusions useless but it will never create new exclu-

sions. Any memory allocation based on the updated

MEG of Figure 13 is compatible with a new schedule

of the DAG that introduces new precedence edges. For

example, we consider a single core schedule derived by

combining schedules of Core1 and Core2 as follows A

B2 , B1 , C1 , C2 , D1 , D2 and E . Updating the MEG

with this schedule would result in removing the exclu-

sions between AB2 and {B1C1 ,C1C2 ,C1D1 ,D1E}.
The scheduling flexibility for post-scheduling alloca-

tion is inferior to the flexibility offered by pre-schedu-

ling allocation. Indeed, the number of cores allocated

to an application may be only decreased at runtime for

post-scheduling allocation while pre-scheduling alloca-

tion allows the number of cores to be both increased

and decreased at runtime.

5.5 Post-Timing allocation

A MEG updated with a timed schedule has the lowest

density of the three alternatives, which leads to the best

results in terms of allocated memory size. However, its

reduced parallelism makes it the least flexible scenario

in terms of multicore scheduling and runtime execution.

Core2

Core1 D2C1 D1

C2

B1

B2 EA
(a)

Core2

Core1 B1

B2

D2C1 D1

C2 EA
(b)

Core2

Core1 D2C1 D1

C2

B1

B2 EA
(c)

Fig. 14 Loss of runtime flexibility with timed allocation.
(a) Timed schedule for the graph of Figure 12.
(b)(c) Execution Gantt charts for timed and post-scheduling
allocation with a doubled execution time for actor B2.

Figure 14 illustrates the possible loss of flexibility

resulting from the usage of post-timing allocation. In

the timed schedule of Figure 14(a), the same memory

space can be used to store buffers AB2 and C1D1 since

Memory Analysis and Optimized Allocation of Dataflow Applications on Shared-Memory MPSoCs 13

B2 execution ends before C1 execution starts. In Fig-

ures 14(c) and 14(b), we consider that the execution

time of actor B2 is double that of the timed sched-

ule. With timed allocation (Figure 14(b)), the execution

of C1 must be delayed until B2 completion, or other-

wise C1 might overwrite and corrupt data of the AB2

buffer. With post-scheduling allocation (Figure 14(c)),

only the actor order on each core must be guaranteed.

C1 can thus start its execution before B2 completion

since buffers AB2 and C1D1 exclude each other in the

corresponding MEG (Figure 13).

Although timed allocation provides the smallest mem-

ory footprints [7], its lack of runtime flexibility makes

it a bad option for implementation. Nevertheless, com-

puting the memory bounds for a MEG updated with a

timed schedule is a convenient way to approximate the

memory footprint that would be allocated by a dynamic

allocator. Using dynamic allocation consists of dynam-

ically allocating each buffer when it is first needed and

freeing it when it has been consumed. Static timed al-

location and dynamic allocation reach similar memory

footprints as they both allow memory reuse as soon as

the lifetime of a buffer is over.

A comparison of the three allocation strategies is

available in [7] and their application to the stereo

matching algorithm will be presented in Section 7.

6 Solutions to Implementation Issues

6.1 Zero-copy broadcasts

The memory waste produced by the broadcast actors

of an SDF graph is illustrated in Figure 15. As intro-

duced in Section 3.2, the only purpose of the broadcast

actor of Figure 15(a) is to duplicate the n data tokens

produced by actor A to provide a copy of these data to-

kens to actors B, C, and D. In the corresponding MEG

(Figure 15(b)), each FIFO connected to the broadcast

actor is associated with a separate memory object of

size n. Following the rules presented in Section 4.1, ex-

clusions are added between all memory objects. Since

the 4 memory objects form a clique, their allocation re-

quires enough memory to store 4 ∗n data tokens. Since

all 4 memory objects store identical data, this pattern

can be seen to be a waste of memory.

During its execution, an SDF actor can use its input

buffers as scratchpad memory and write new values in

these memory spaces. Duplicating the broadcasted data

tokens is thus necessary to make sure that the data in

the input buffer of an actor is not corrupted by the

activity of another actor.

Our solution to avoid the waste of memory caused

by broadcast actors is to allow the developer to specify

D

B

C
3*n

n

n

n

nnA Brd

(a) SDF

C1C2
75

D1E
25

D2E
25

C2D2
50

C1D1
50

B2C2
150

B1C1
150

AB2100

AB1100

A
20

E
30

B110

B210

C150

C250

D140

D240
25

25
100

100

150

150

50

50

x7575
75

Core1 schedule Core2 schedule

A
20

B
10

C
50

200 100 150 150 D
40

50 50 E
30

25 50
7575

x75

A
20

D
40

200
100 50

50 E
30

25 507575

B
10

C
50

150 150

Sr
c

Sr
c

Sn
k

Sn
k

100 50

75 75

h
x75

E
30

D
20

150
150

100
100

150
150

100
100

ABrd
n

BrdB
n

BrdD
n

BrdC
n

(b) MEG

Fig. 15 Broadcast memory waste

whether an actor uses its input buffers as scratchpad

memories or if it only reads the consumed values. In

Figure 15(a) and Figure 3, read only input ports are

marked with a black dot within the port anchor. Be-

cause actors B and D have a read only input port,

a private copy of the broadcasted data tokens is no

longer needed and both actors can have a direct access

to the ABrd memory object. Actor C however requires

a private copy of the data tokens since it does not have

a read only input port. Consequently, adding the read

only information allows us to merge the memory objects

ABrd, BrdB, and BrdD as a single memory object of

size n. As a result, only 2 ∗ n memory units are needed

to allocate the SDF graph of Figure 15(a), or half as

much as the original memory requirement.

Contrary to FIFO peeking [13], our buffer merging

technique does not require any change of the underly-

ing SDF MoC. Similarly to annotations of imperative

languages, marking an input port with the read only at-

tribute does not have any effect on the behavior of the

application. Indeed, read only attributes can be ignored

during graph transformations and during the schedu-

ling of the application and can be optionally used to

reduce the memory footprint during the memory allo-

cation process.

In addition to a drastic reduction of the memory

footprint of the application, buffer merging also im-

proves the performance of the application. Since the

input buffers with a read only attribute are merged

with the broadcasted buffer, the copy operation asso-

ciated to these buffers is no longer needed. As shown

in Section 7, these zero-copy broadcasts have a pos-

itive impact on the application performance both on

the multicore DSP and the CPU targets.

6.2 Automatic cache coherence

The cache coherence mechanism presented in Sec-

tion 3.3 is incompatible with memory reuse techniques.

As presented in Figure 5, the insertion of writeback and

invalidate calls around inter-core synchronization ac-

tors Send and Recv may result in data corruption in

cases where a memory space is reused to store data to-

14 Karol Desnos et al.

kens from several buffers. This data corruption is caused

by the automatic writeback of dirty lines of cache cor-

responding to a reused memory space.

Core2

Shared
memory

Core2
cache

Core1
cache

Core1

RecvD B

Invalidate

Writeback

A-B data

C-D data

A-B data

C

A Send

Fig. 16 Multicore cache coherence solution

Our solution to prevent unwanted writebacks is to

make sure that no dirty lines of cache remain once the

data tokens of a FIFO have been consumed. To this

purpose, a call to the invalidate function is inserted

for each buffer, after the firing of the actor consuming

this buffer. As illustrated in Figure 16, the new calls

to invalidate replace those inserted after the Recv syn-

chronization actor.

As shown in Section 7, this solution allows us to ac-

tivate the cache of the multicore DSP, leading to a huge

improvement of the stereo-matching algorithm perfor-

mance.

7 Experiments

7.1 Hardware/software exploration workflow

The stereo matching algorithm and the memory anal-

ysis and optimization presented in this paper were im-
plemented within a rapid prototyping framework called

Preesm. Preesm (the Parallel and Real-time Embed-

ded Executives Scheduling Method) is an open source

framework developed at the IETR for research and ed-

ucational purposes [25]. Rapid prototyping consists of

extracting information from a system in the early stages

of its development. It enables hardware/software co-

design and favors early decisions that improve system

architecture efficiency.

Figure 17 illustrates the position of the memory

analysis and optimization techniques in the rapid pro-

totyping process of Preesm [25]. Inputs of the rapid

prototyping process consist of: an algorithm model re-

specting the SDF MoC, an architecture model respect-

ing the System-Level Architecture Model (S-LAM) se-

mantics [26], and a scenario providing constraints and

prototyping parameters. The scenario ensures the com-

plete separation of algorithm and architecture models.

In Preesm, algorithm and architecture models first

undergo transformations in preparation for the rapid

Rapid
Prototyping

EESDF
Algo

S-LAM
Archi

Scenario

Algo
Transfos

Archi
Transfos Scheduling

Simulation

CodeE
Generation

Exporting
Results

MemoryEBounds
Computation

DAG

Memory
Allocation

Exclusion Graph

Fig. 17 Preesm rapid prototyping process

prototyping steps. Then, static multicore scheduling is

executed to dispatch and schedule the algorithm actors

to the architecture processing elements [25,5]. Finally,

the multicore scheduling information is used to simulate

the system behavior and to generate compilable code

for the targeted architecture.

The complete independence between the architec-

ture and algorithm models simplifies the porting of an

application on different targets. For example, once the

stereo-matching algorithm of Figure 3 was developed

and tested on the Intel’s CPU, it took only two hours

to adapt the readRGB and display actors and generate

a functional version for the 8 cores of the C6678 mul-

ticore DSP. Afterwards, it takes only a few seconds to

generate code for one of the two multicore architectures.

The Preesm project of the stereo matching appli-

cation studied in this paper is available online [8].

7.2 Memory study of the stereo matching algorithm

Table 2 shows the memory characteristics resulting

from the application of the techniques presented in this

paper to the SDF graph of the stereo matching algo-

rithm. The memory characteristics of the application

are presented for 4 scenarios, each corresponding to a

different implementation stage of the algorithm. The

|V | and δ(G) columns respectively give the number of

memory objects and the density of exclusion of the

MEG. The next two columns present the upper and

lower allocation bounds for each scenario. Finally, the

last two columns present the actual amount of mem-

ory allocated for each target architecture. The alloca-

tion results are expressed as the supplementary amount

of memory allocated compared to the lower bound.

These results were obtained with NbOffsets = 5, Nb-

Disparities = 60 and a resolution of 450*375 pixels.

7.2.1 Effect of broadcast merging

A comparison between the two pre-schedule scenarios

of Table 2 reveals the impact of the merging of broad-

Memory Analysis and Optimized Allocation of Dataflow Applications on Shared-Memory MPSoCs 15

MEG Bounds Allocations2

Scenarios |V | δ(G) Upper Lower i7 C6678

Pre-schedule1 1000 0.68 1524MB 1378MB +0kB +52kB

Pre-schedule 437 0.57 178MB 104MB +168kB +695kB

Post-schedule 437 0.47 178MB 84MB +0kB +14kB

Post-timing 437 0.39 178MB 73MB +0kB +350kB
1: Merging of broadcasted buffers not applied in this scenario.
2: Relatively to the lower bound.

Table 2 MEGs characteristics and allocation results

casted buffers presented in Section 6.1. The first pre-

schedule scenario presented in the table corresponds

to the memory characteristics of the stereo matching

application when buffer merging is not applied. With

a memory footprint of 1378Mbytes, this scenario for-

bid the allocation of the application in the 512Mbytes

shared memory of the multicore DSP. The application

of the buffer merging technique in the second scenario

leads to a reduction of the memory footprint by 92%,

from 1378Mbytes to 104Mbytes.

Another positive aspect of the buffer merging tech-

nique is the simplification of the MEG. Indeed, 563 ver-

tices are removed from the MEG as a result of the buffer

merging technique. The computation of the memory

bounds of the MEG and the allocation of the MEG

in memory are both accelerated by a factor of 6 with

the simplified MEG.

In addition to the large reduction of the memory

footprint, buffer merging also has a positive impact on

the application performance. On the i7 multicore CPU,

the stereo matching algorithm reaches a throughput

of 1.84 frames per second (fps) when the broadcasted

buffers are not merged, and a throughput of 3.50 fps

otherwise. Hence, the suppression of the memcpy re-

sults in a speedup ratio of 90%. On the C6678 DSP,

the suppression of the memcpy results in a speedup ra-

tio of 40%, rising from 0.24fps to 0.34fps.

7.2.2 Memory footprints

Results presented in Table 2 reveal the memory sav-

ings resulting from the application of the memory reuse

techniques presented in this paper. 178Mbytes of mem-

ory are required for the allocation of the last three

scenarios if, as in existing dataflow frameworks [29,3,

24], memory reuse techniques are not used. In the pre-

scheduling scenario, memory reuse techniques lead to a

reduction of the memory footprint by 41%. This reduc-

tion of the memory footprint does not have any coun-

terpart since the MEG is compatible with any schedule

of the application (cf. Section 5). In the post-scheduling

and in the post-timing scenarios, the memory footprints

are respectively reduced by 53% and 59% compared to

the memory footprint obtained without memory reuse.

The memory footprints allocated on the i7 CPU for

these scenarios are optimal since the lower bounds for

the MEGs and the allocation results are equal.

The memory footprints presented in Table 2 result

from the allocation of the MEG with a Best-Fit (BF)

allocator fed with memory objects sorted in the largest-

first order. A comparison of the efficiency of the differ-

ent allocation algorithms that can be used to allocate

a MEG is presented in [7].

Since all production and consumption rates of the

stereo matching SDF graph are multiples of the image

resolution, the memory footprints allocated with our

method are proportional to the input image resolution.

Using our memory reuse techniques, with NbOffsets =

5 and NbDisparities = 60, the 512Mbytes of the C6678

DSP allows the processing of stereo images with a res-

olution up to 720p (1280*720pixels). Without memory

reuse, the maximum resolution that can fit within the

multicore DSP memory is 576p (704*576pixels), which

is 2.27 times less than when memory reuse is in effect.

7.2.3 Cache activation

Because of cache alignment constraints, the memory

allocation results presented in Table 2 for the C6678

multicore DSP are slightly superior to the results for

the i7 CPU. In order to avoid data corruption when

the cache of the DSP is activated, the memory allocator

must make sure that distinct buffers are never cached

in the same line of cache. To this end, each buffer is

allocated in a memory space aligned on the size of a L2

cache line: 128 bytes. On average, this policy results in

an allocation increase of only 0.3% compared with the

unaligned allocation of the i7 CPU.

As presented in Section 6.2, the insertion of write-

back and invalidate calls in the code generated by

Preesm allows the activation of the caches of the C6678

multicore DSP. Without caches, the stereo-vision appli-

cation reaches a throughput of 0.06fps. When the caches

of the DSP are activated, the application performance

is increased by a factor of 5.7 and reaches 0.34fps.

7.3 Comparison with FIFO dimensioning techniques

As presented in Section 3, FIFO dimensioning is cur-

rently the most widely used technique to minimize the

memory footprint of applications modeled with a da-

taflow graph [24,29,22]. Table 3 compares allocation

results of a FIFO dimensioning algorithm with those of

our reuse technique for 4 application graphs. The FIFO

dimensioning technique tested is presented in [29] and

its implementation is part of the SDF3 framework [10].

16 Karol Desnos et al.

The stereo graph is the application presented in Fig-

ure 3. The h263 enc. graph is a video encoder that

was taken from the SDF3 database [10]. The sobel and

chaotic graphs are a sobel video filtering application

and a generator of chaotic sequences inspired by [9].

For a fair comparison, broadcast merging was simu-

lated for the FIFO dimensioning technique by replacing

broadcasted FIFOs with a parallel buffer of equivalent

lifetime. Without this improvement, FIFO dimension-

ing techniques would produce similar results to those

obtained with our reuse method before merging the

broadcasted buffers.

Graph Upper Bound1 Pre-sched.1 Post-sched.1 FIFO dim.

stereo +109% +20% -15% 0%

h263 enc. +116% -1% -17% 0%

sobel +46% -43% -43% 0%

chaotic +222% +77% +33% 0%

1: Percentages are relative to the FIFO dimensioning result.

Table 3 Comparison of allocation results with FIFO dimen-
sioning techniques from SDF3 [10].

Table 3 presents the results of the memory footprint

size for the 4 scenarios. For each application, the results

are expressed as percentages relative to the FIFO di-

mensioning case which is marked with 0%. For the first

3 graphs, the post-scheduling scenario of our memory

reuse technique offers the best results, with memory

footprints up to 43% lower than the FIFO dimension-

ing technique. The FIFO dimensioning technique itself

offers memory footprints on average 51% lower than the

computed upper bound.

7.3.1 Memory reuse technique limitations

In Table 3, the FIFO dimensioning technique provides

the best result for the chaotic graph, with 25% less

memory than the post-scheduling memory allocation.

This result reveals two current limitations of our mem-

ory reuse technique.

- Bad handling of divide/merge operations. During

the single-rate transformation presented in Section 4.1,

special actors are introduced to replace FIFOs with un-

equal production and consumption rates. These actors

are responsible for dividing a buffer produced (or con-

sumed) by an actor into subparts consumed (or pro-

duced) by other actors. Since the divided buffer and its

subparts are input and output buffers of a single special

actor, they exclude each other in the MEG and their

allocation requires twice the size of the divided buffer

in memory. This issue is not present in the FIFO di-

mensioning technique since buffer division is naturally

implemented by successive data-token reads in FIFOs.

The numerous divide and merge operation of the single-

rate chaotic graph are thus responsible for its higher

memory footprint.

- Absence of memory-aware scheduling process. As

presented in Section 3, FIFO dimensioning techniques

consists of finding the schedule of the application that

minimizes the memory space allocated to each FIFO of

the graph. In Preesm, the aim of the scheduling process

is to minimize the latency of the schedule, independent

of the memory allocation concerns. This policy often

results in bad choices from the memory perspective, as

is the case for the chaotic application where several ac-

tors producing large buffers are executed before any of

the large buffers are consumed. With FIFO dimension-

ing techniques, the consuming actor of the large buffer

would be scheduled immediately after its producer.

7.4 Static vs dynamic memory allocation

As presented in Section 5, similar footprints are ob-

tained with dynamic allocation and static allocation

in the post-timing scenario. In both cases, the mem-

ory allocated to a memory object can be reused as

soon as the lifetime of this memory object ends. In this

section we will show that although dynamic allocators

provide low memory footprints, their runtime overhead

and their unpredictability make them bad choices when

compared to static allocation.

7.4.1 Runtime overhead

Throughput

Target Static Allocation Dynamic Allocation Overhead

C6678 DSP 0.39fps 0.26fps 32%

Table 4 Comparison of the stereo matching performance
with static and dynamic allocations

Table 4 presents the performance of the stereo

matching algorithm on the C6678 DSP. Two versions

of the code were generated with Preesm: the first with

post-scheduling allocation, and the second with dy-

namic memory allocation. For a fair comparison, the

same schedule was used for both allocation strategies.

To increase the application throughput in these tests, a

software pipeline stage was added between the Aggre-

gateCost and the DisparitySelect actors.

Dynamic allocation had a negative impact on the

performance of the application. On the C6678 DSP, the

throughput reduction of 32% had three main sources:

Memory Analysis and Optimized Allocation of Dataflow Applications on Shared-Memory MPSoCs 17

– The overhead of the dynamic allocator. Each time

a memory object is dynamically allocated, the on-

line allocation algorithm searches for an free space

of sufficient size in the heap to store this memory

object.

– The extra synchronization added to the generated

code to dynamically support the merging of broad-

casted buffers. A semaphore was associated with

each broadcasted buffer and initialized with the

number of actors accessing this buffer. Each actor

accessing the broadcasted buffer decremented the

value of the semaphore after its firing. When the

semaphore value reached zero, a free operation was

issued for the broadcasted buffer.

– The insertion of cache operations for the memory

object pointers. Each time a buffer was allocated on

one core, a writeback call was issued to ensure that

the pointer value was written back in the shared

memory. Similarly, a call to invalidate was required

when a core accesses a buffer allocated on another

core.

On the i7 CPU, the dynamic allocator overhead and

the dynamic support for merged buffers also cause a

throughput reduction of 22%.

7.4.2 Unpredictable footprint

Although dynamic allocation provides memory foot-

prints similar to post-timing allocation, the dynamic

memory footprint cannot be bounded at compile time.

To illustrate this issue, we measured the dynamic mem-

ory footprint of the stereo matching algorithm during

200 iterations of the graph execution. This experiment

was conducted on the C6678 by measuring, after each

iteration, the maximum size of the heap on which the

memory objects were dynamically allocated. The ex-

periment was repeated 12 times with the same code

but with different cache configurations (activation of

level 1 and level 2 caches, location of the code, debug

or release). These different configurations modify actor

execution times and thus the order of memory alloca-

tion primitive calls. Each blue curve in Figure 18 rep-

resents the footprints measured during one of the 12

experiments.

This experiment shows that the dynamic memory

footprint of an application increases during the first

iterations. This increase of the memory footprint is

caused by the fragmentation of the memory. Memory

fragmentation happens when a free space in the heap

is too small to allocate new memory objects. Because

the DSP has no defragmenting process, the memory

fragmentation tends to accumulate during the first it-

iterations

0 25 50 75 100 125 150 175 200

heap size

118MB

119MB

120MB

121MB

122MB

123MB

124MB

125MB
Post-scheduling allocation

Fig. 18 Dynamic allocation: Heap size after N iterations.
Each blue line represents the heap size for an execution of
the stereo matching application.

erations of the application, which results in an increase

of the heap size.

The memory footprints measured in Figure 18 range

between 118.5Mbytes and 125.7Mbytes. The 6% dif-

ference between these two values illustrates the unpre-

dictability of the dynamic memory footprint of applica-

tions. Finally, post-scheduling allocation for this sched-

ule results in a memory footprint of 125.4Mbytes. Con-

sequently, these experiments show that despite a slight

reduction in the memory footprint with dynamic al-

location, the exact memory footprint cannot be pre-

dicted with dynamic allocation and this dynamic foot-

print might even exceed its static equivalent.

8 Conclusion

In this paper, we have proposed new techniques to an-

alyze and optimize the memory characteristics of ap-

plications modeled with SDF graphs. These techniques

address key memory challenges encountered through-

out the development of a system: from the estima-

tion of the application memory footprint in the early

stages of development, to the reduction of this memory

footprint during the application implementation on a

shared memory MPSoC. These techniques are the first

to exploit memory reuse for the allocation of dataflow

graphs in a multicore context. Through the applica-

tion of our techniques on a state-of-the-art computer

vision application, we have demonstrated the efficiency

of these techniques and how they may be used to im-

plement a data-intensive application on real MPSoCs

with limited memory resources. Our experimental re-

sults showed that static allocation and memory reuse

techniques significantly reduce the memory footprints

of applications. Specifically, the memory footprint was

reduced by a factor 18 on the stereo matching algorithm

and up to 43% less memory than state-of-the-art min-

18 Karol Desnos et al.

imization techniques. We also showed the positive im-

pact of our optimizations on application performance,

with a throughput improvement of 33% compared to

dynamic allocation techniques.

Future work on this subject may include the exten-

sion of our analysis and optimization techniques to sup-

port targets with distributed memory such as manycore

architectures. Another potential direction of interest is

the design of an iterative scheduling process that uses

memory bounds to allow a trade-off between applica-

tion latency and memory footprint.

References

1. Arndt, O., Becker, D., Banz, C., Blume, H.: Parallel im-
plementation of real-time semi-global matching on em-
bedded multi-core architectures. In: Embedded Com-
puter Systems: Architectures, Modeling, and Simulation
(SAMOS XIII) (2013)

2. Benazouz, M., Marchetti, O., Munier-Kordon, A., Urard,
P.: A new approach for minimizing buffer capacities with
throughput constraint for embedded system design. In:
Computer Systems and Applications (AICCSA), 2010
IEEE/ACS (2010)

3. Bodin, B., Munier-Kordon, A., de Dinechin, B.: K-
periodic schedules for evaluating the maximum through-
put of a synchronous dataflow graph. In: Embedded
Computer Systems (SAMOS) (2012)

4. Bouchard, M., Angalović, M., Hertz, A.: About equiva-
lent interval colorings of weighted graphs. Discrete Appl.
Math. (2009). DOI 10.1016/j.dam.2009.04.015

5. Boutellier, J.: Quasi-static scheduling for fine-grained
embedded multiprocessing. Ph.D. thesis, University of
Oulu (2009)

6. Desnos, K., Pelcat, M., Nezan, J., Aridhi, S.: Memory
bounds for the distributed execution of a hierarchical syn-
chronous data-flow graph. In: Embedded Computer Sys-
tems (SAMOS), 2012 International Conference on (2012)

7. Desnos, K., Pelcat, M., Nezan, J.F., Aridhi, S.: Pre-and
post-scheduling memory allocation strategies on mpsocs.
In: Electronic System Level Synthesis Conference (ES-
Lsyn) (2013)

8. Desnos, K., Zhang, J.: Preesm project
- stereo matching (2013). URL
svn://svn.code.sf.net/p/preesm/code/trunk/tests/stereo

9. El Assad, S., Noura, H.: Generator of chaotic sequences
and corresponding generating system (2013). URL
http://www.google.com/patents/EP2553567A1?cl=en.
EP Patent App. EP20,110,720,313

10. Electronic Systems Group TU Eindhoven, .: Sdf for free
(sdf3) (2013). URL http://www.es.ele.tue.nl/sdf3/

11. Embedded Vision Alliance, .: Embedded vision alliance
(2013). URL http://www.embedded-vision.com

12. Fabri, J.: Automatic storage optimization. Courant In-
stitute of Mathematical Sciences, New York University
(1979)

13. Fischaber, S., Woods, R., McAllister, J.: Soc memory hi-
erarchy derivation from dataflow graphs. In: Signal Pro-
cessing Systems, 2007 IEEE Workshop on, pp. 469–474
(2007). DOI 10.1109/SIPS.2007.4387593

14. Greef, E.D., Catthoor, F., Man, H.D.: Array placement
for storage size reduction in embedded multimedia sys-
tems. ASAP (1997)

15. Intel: i7-3610qm processor product page (2013). URL
http://ark.intel.com/products/64899/

16. Johnson, D.S.: Near-optimal bin packing algorithms.
Ph.D. thesis, Massachusetts Institute of Technology
(1973)

17. Kalray: Many-core processors - dataflow (2013). URL
http://www.kalray.eu/technology/dataflow/

18. Lee, E., Messerschmitt, D.: Synchronous data flow. Pro-
ceedings of the IEEE 75(9), 1235 – 1245 (1987). DOI
10.1109/PROC.1987.13876

19. Lee, E.A., Parks, T.M.: Dataflow process networks. Pro-
ceedings of the IEEE 83(5), 773–801 (1995)

20. Malamas, E.N., Petrakis, E.G., Zervakis, M., Petit, L.,
Legat, J.D.: A survey on industrial vision systems, ap-
plications and tools. Image and vision computing 21(2),
171–188 (2003)

21. Murthy, P., Bhattacharyya, S.: Shared memory imple-
mentations of synchronous dataflow specifications. In:
Design, Automation and Test in Europe Conference and
Exhibition 2000. Proceedings (2000)

22. Murthy, P.K., Bhattacharyya, S.S.: Memory management
for synthesis of DSP software. CRC Press (2010)

23. Österg̊ard, P.R.J.: A new algorithm for the maximum-
weight clique problem. Nordic J. of Computing (2001)

24. Parks, T.M.: Bounded scheduling of process networks.
Ph.D. thesis, University of California (1995)

25. Pelcat, M., Aridhi, S., Piat, J., Nezan, J.F.: Physical
Layer Multi-Core Prototyping: A Dataflow-Based Ap-
proach for LTE eNodeB. Springer (2012)

26. Pelcat, M., Nezan, J.F., Piat, J., Croizer, J., Aridhi, S.:
A System-Level architecture model for rapid prototyping
of heterogeneous multicore embedded systems. DASIP
(2009)

27. Roy, S.: Stereo without epipolar lines: A maximum-flow
formulation. International Journal of Computer Vision
34(2-3), 147–161 (1999)

28. Sriram, S., Bhattacharyya, S.S.: Embedded Multiproces-
sors: Scheduling and Synchronization, 2nd edn. CRC
Press, Inc., Boca Raton, FL, USA (2009)

29. Stuijk, S., Geilen, M., Basten, T.: Exploring trade-offs in
buffer requirements and throughput constraints for syn-
chronous dataflow graphs. In: Proceedings of the 43rd
annual Design Automation Conference (2006)

30. Szeliski, R., Zabih, R.: An experimental comparison of
stereo algorithms. In: Vision Algorithms: Theory and
Practice, pp. 1–19. Springer (2000)

31. Szymanek, R., Kuchcinski, K.: A constructive algorithm
for memory-aware task assignment and scheduling. In:
CODES Proceedings (2001)

32. Texas Instruments, .: Tms320c6678 product page (2013).
URL http://www.ti.com/product/tms320c6678

33. Urban, F., Raulet, M., Nezan, J.F., Déforges, O.: Au-
tomatic dsp cache memory management and fast proto-
typing for multiprocessor image applications. In: 14th
European Signal Processing Conference, Eusipco (2006)

34. Wagner, D.: Handheld augmented reality. Ph.D. thesis,
Graz University of Technology (2007)

35. Wulf, W.A., McKee, S.A.: Hitting the memory wall: im-
plications of the obvious. ACM SIGARCH computer ar-
chitecture news 23(1), 20–24 (1995)

36. Yamaguchi, K., Masuda, S.: A new exact algorithm for
the maximum weight clique problem. In: 23rd Interna-
tional Conference on Circuit/Systems, Computers and
Communications (ITC-CSCC’08) (2008)

37. Zhang, J., Nezan, J.F., Pelcat, M., Cousin, J.G.: Real-
time gpu-based local stereo matching method. In: De-
sign and Architectures for Signal and Image Processing
(DASIP), 2013 Conference on, pp. 209–214. IEEE (2013)

