match the input instrument source. The proposed system contains a "conservative" transcription pre-processing step in order to detect notes with a high degree of confidence, a dictionary adaptation step, and a final transcription step. The diagram of the proposed system can be seen in Fig. 1.

Pre-processing

As a pre-processing step, we perform an initial transcription which uses a fixed template dictionary (in which the templates might not be extracted from the same instrument source, model, or recording conditions). The main goal is to only detect notes for which we have a high degree of confidence; in order to achieve this, we perform a "conservative" transcription, as in [START_REF] Tidhar | High precision frequency estimation for harpsichord tuning classification[END_REF], where the employed transcription system detects notes with high precision and low recall. In other words, the system returns few false alarms but might miss several notes present in the recording.

In order to perform the conservative transcription preprocessing step, we use the spectrogram factorization-based model of [START_REF] Benetos | An efficient shiftinvariant model for polyphonic music transcription[END_REF], which is based on probabilistic latent component analysis (PLCA) [START_REF] Shashanka | Probabilistic latent variable models as nonnegative factorizations[END_REF] and supports the use of a fixed template dictionary. It should be noted that the system in [START_REF] Benetos | An efficient shiftinvariant model for polyphonic music transcription[END_REF] ranked first in the MIREX transcription tasks [START_REF]Music Information Retrieval Evaluation eXchange[END_REF]. The model of [START_REF] Benetos | An efficient shiftinvariant model for polyphonic music transcription[END_REF] takes as input a normalized log-frequency spectrogram V ω,t (ω denotes frequency and t time) and approximates it as a bivariate probability distribution P (ω, t). P (ω, t) is in turn decomposed as: P (ω, t) = P (t) p,f,s P (ω|s, p, f )P t (f |p)P t (s|p)P t (p) [START_REF]Music Information Retrieval Evaluation eXchange[END_REF] where p, f, s denote pitch, log-frequency shifting, and instrument source (in the single-instrument case, s refers to instrument model), respectively. P (t) is the spectrogram energy (known quantity) and P (ω|s, p, f ) are pre-extracted spectral templates for pitch p, source/model s, which are also pre-shifted across log-frequency according to parameter f . P t (f |p) is the time-varying log-frequency shifting for pitch p, P t (s|p) is the source contribution, and P t (p) is the pitch activation. As a log-frequency representation we use the constant-Q transform [START_REF] Schörkhuber | Constant-Q transform toolbox for music processing[END_REF] with 60 bins/octave, resulting in f ∈ [1, . . . , 5], where f = 3 is the ideal tuning position for the template (using equal temperament).

Using a fixed template dictionary, the parameters that need to be estimated are P t (f |p), P t (s|p), and P t (p). This can be achieved using the expectation-maximization (EM) algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], with 15-20 iterations being typically sufficient. The resulting multi-pitch output is given by P (p, t) = P (t)P t (p).

In order to extract note events in spectrogram factorizationbased AMT algorithms, typically thresholding is performed on the pitch activations (P (p, t) in this case). The value of the threshold θ controls the levels of precision/recall. A low threshold has a high recall and low precision; the opposite occurs with a high threshold. By selecting a high value of θ, in essence we perform a conservative transcription. The final output of the pre-processing step is a collection of pitches and time frames {p 1 , t 1 }, {p 2 , t 2 }, ..., {p N , t N } which can be used in order to adapt the template dictionary. 

Template Adaptation

Given a collection of detected pitches, the first step regarding template adaptation is to collect the spectra that correspond to the aforementioned pitches in the recording. Thus, for each pitch p all time frames t ip that contain that pitch are collected (where i = 1, ..., N p and N p is the number of frames containing p). Subsequently, for each pitch p we create a collection of spectra where that pitch is observed:

V (p) = V ω,t∈tip ⊗ h p (2) 
where h p is a harmonic comb that serves as an indicator function (setting to zero all frequency bins not belonging to pitch p), and ⊗ denotes elementwise multiplication. In other words, V (p) is a collection of the spectra corresponding to detected pitch p in the input recording. Using information from V (p) , new spectral templates are created for each p that was detected in the conservative transcription step. In order to create the new templates, the standard PLCA algorithm is used with one component [START_REF] Shashanka | Probabilistic latent variable models as nonnegative factorizations[END_REF], with the input in each case being V (p) . The output for each p is a spectral template w (p) which can be used in order to expand the present dictionary.

Given that the conservative transcription step might not have detected all possible pitches present in the recording, information from the extracted templates can be used in order to estimate missing templates. As in the user-assisted case of [START_REF] Kirchhoff | Missing template estimation for user-assisted music transcription[END_REF], we can derive templates at missing pitches by simply shifting existing templates across log-frequency. Given a missing pitch template, we consider a neighbor- hood of up to 4 semitones; if a template exists in the neighborhood, it is shifted accordingly in order to estimate the missing template. Finally, the resulting template dictionary is pre-shifted across log-frequency over a semitone range in order to account for tuning deviations and frequency modulations. The output of the template adaptation step is normalized and denoted as P (ω|s = s new , p, f), where s new refers to the new instrument source that is added to the existing dictionary.

The template adaptation step is illustrated in Fig. 2, where a collection of extracted spectra for note D4 of a piano recording can be seen, along with the computed template, as well as with a template for the same note taken from a different piano model. By comparing the two piano spectra, the importance of adapting templates to the specific instrument source can be seen.

Transcription

Having created an expanded dictionary with a set of note templates taken from the instrument source present in the recording, the recording is re-transcribed using the new dictionary and the model of [START_REF]Music Information Retrieval Evaluation eXchange[END_REF]. In order to further adapt the extracted templates to the input source, an optional step is also applied on updating the new template set during the PLCA iterations. The modified iterative update rule is based on the work of [START_REF] Smaragdis | Separation by "humming": user-guided sound extraction from monophonic mixtures[END_REF] (which incorporated prior information on PLCA update rules) and is applied only for the new set of templates. It is formulated as:

P (ω|s new , p, f) = t αP t (p, f, s new |ω)V ω,t + (1 -α)P (ω|s new , p, f) ω,t αP t (p, f, s new |ω)V ω,t + (1 -α)P (ω|s new , p, f) (3) 
where P t (p, f, s|ω) is the posterior of the model (defined in [START_REF] Benetos | An efficient shiftinvariant model for polyphonic music transcription[END_REF]), and α is a parameter which controls the weight of the PLCA adaptation, with (1α) giving weight to the set of extracted templates from the procedure of Section 2.2. In this work, α is set to 0.05, thus the PLCA template adaptation is only slightly changing the shape of the templates (given that the model is unconstrained, giving a large weight to the PLCA adaptation step would result in non-meaningful templates).

Finally, the output of the transcription step is given by P (p, t) = P (t)P t (p). For converting the non-binary pitch activation into a binary piano-roll representation, as in [START_REF] Dessein | Real-time polyphonic music transcription with non-negative matrix factorization and beta-divergence[END_REF] we perform thresholding on P (p, t) followed by a process removing note events with a duration less than 80ms.

MULTIPLE-INSTRUMENT SYSTEM

In dictionary-based multiple-instrument transcription, the dictionary typically consists of one or more sets of templates per instrument. Thus, in order to update dictionary templates for multiple instruments, modifications need to be made from the system presented in Section 2.

Regarding the pre-processing step, we still use the model of ( 1), which supports multiple-instrument transcription. In this case, s denotes instrument source. An advantage of the model of ( 1) is that it can produce an instrument assignment output (i.e. each detected note is assigned to a specific instrument). Thus, having estimated the unknown model parameters, the instrument assignment output for instrument s ins is given by the following time-pitch representation:

P (s = s ins , p, t) = P t (s = s ins |p)P t (p)P (t) (4)
The representation P (s, p, t) can be thresholded in the same way as the pitch activation in order to derive a binary pianoroll representation of the notes produced by a specific instrument. Here, we perform "conservative" thresholding (i.e. use a high θ value) for every instrument in P (s, p, t) in order to create a collection of detected pitches and time frames per instrument:

{s 1 , p 1 , t 1 }, {s 2 , p 2 , t 2 }, ..., {s N , p N , t N } (5) 
where s ∈ 1, . . . , S, p ∈ 1, . . . , 88, and t ∈ 1, . . . , T . For performing multi-instrument template adaptation, we collect all time frames t ips that contain pitch p and instrument s. We create a collection of spectra V (p,s) where a pitch is observed for a specific instrument, in the same way as in [START_REF] Benetos | An efficient shiftinvariant model for polyphonic music transcription[END_REF]. Using information from V (p,s) , new spectral templates are created for specific cases of s and p using the single-component PLCA algorithm. As in Section 2.2, templates at missing pitches are derived by translating existing templates across log-frequency. The output of the template adaptation step is denoted as P (ω|s = {s new1 , s new2 , ...}, p, f) where s new1 , s new2 , ... denote the new sets of templates for the existing instruments.

Finally, the input recording is re-transcribed using the model of (1), by utilizing the expanded dictionary. We also apply the same optional PLCA-based dictionary adaptation step shown in Section 2.3. The multiple-instrument transcription system has two sets of outputs: the pitch activation P (p, t) (which is used for multi-pitch detection evaluation) and the instrument contribution P (s, p, t) (which is used for instrument assignment evaluation). An example of how template adaptation can improve transcription performance for a multiple-instrument recording (bassoon and violin) is given in Fig. 3, where the transcription output with template adaptation has significantly fewer false alarms compared with transcription without template adaptation (in which many extra detected notes can be seen in higher pitches).

EVALUATION

Datasets

For training the single-instrument system of Section 2, we used isolated note recordings from the 'AkPnBcht' and 'Sp-tkBGCl' piano models of the MAPS database [START_REF] Emiya | Multipitch estimation of piano sounds using a new probabilistic spectral smoothness principle[END_REF]. We used the standard PLCA algorithm with one component [START_REF] Shashanka | Probabilistic latent variable models as nonnegative factorizations[END_REF] in order to extract a single template per note, covering the complete piano note range. For testing the singleinstrument system, we used thirty piano segments of 30s duration from the MAPS database from the 'ENSTDkCl' piano model; the test dataset has in the past been used for multi-pitch evaluation (e.g. [START_REF] Benetos | An efficient shiftinvariant model for polyphonic music transcription[END_REF][START_REF] Carabias-Orti | Musical instrument sound multi-excitation model for nonnegative spectrogram factorization[END_REF][START_REF] Yoshii | Infinite composite autoregressive models for music signal analysis[END_REF]). For comparative purposes, we also extracted training templates from the same test source ('ENSTDkCl').

For training the multiple-instrument system of Section 3, we used isolated note samples of bassoon and violin from the RWC database [START_REF] Goto | RWC music database: music genre database and musical instrument sound database[END_REF], covering the complete note range of the instruments. For testing the multiple-instrument system, we created ten duets of bassoon-violin, mixed from single instrument tracks from the multi-track Bach10 dataset [START_REF] Duan | Multiple fundamental frequency estimation by modeling spectral peaks and non-peak regions[END_REF]. The duration of the recordings varies from 25-41sec. For comparative purposes, we also extracted dictionary tem-
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Pre 1. Multi-pitch detection results for the singleinstrument system using the MAPS database.

plates for bassoon and violin from the single instrument tracks of the Bach10 database, in order to demonstrate the upper performance limit of the transcription system.

Metrics

For evaluating the performance of the proposed systems for multi-pitch detection, we employ onset-only note-based transcription metrics, which are used in the MIREX note tracking task [START_REF]Music Information Retrieval Evaluation eXchange[END_REF]. A detected note is considered correct if its pitch matches a ground truth pitch and its onset is within a 50ms tolerance of a ground-truth onset. The resulting note-based precision, recall, and F-measure are defined as:

Pre n = N tp N sys Rec n = N tp N ref F n = 2Rec n Pre n Rec n + Pre n ( 6 
)
where N tp is the number of correctly detected pitches, N sys is the number of pitches detected by the system, and N ref is the number of reference pitches.

For the instrument assignment evaluations we use the pitch ground-truth of each instrument separately (compared with the instrument-specific piano-roll output of the system), and compute the F-measure metrics for bassoon (F b ) and violin (F v ).

Results -Single Instrument Evaluation

For single-instrument transcription evaluation using the 30 MAPS recordings, results are shown in Table 1 using four different system configurations. Configuration C1 corresponds to the system without template adaptation; C2 to the system with template adaptation; C3 to the system with template adaptation using both the creation of the new dictionary plus the PLCA update of the dictionary, as shown in Section 2.2. Finally, C4 refers to comparative experiments without template adaptation, but using templates from the same instrument source ('ENSTDkCl' model in the single-instrument case), which is meant to demonstrate the upper performance limit of the transcription system.

From the single-instrument multi-pitch detection results, it can be seen that an improvement of +0.9% in terms of F n is reported when using the template adaptation procedure; the improvement rises to +1.2% when also using the PLCA dictionary adaptation updates. The performance difference between the original C1 system (without knowledge of the source templates) and the 'optimal' system (C4) which contains templates from the same test source is 2.8%; thus, the proposed template adaptation steps can help bridge the gap, without requiring any knowledge of the test instrument source. Regarding precision and recall, in all cases it can be seen that the transcription system has fewer false alarms than missed note detections. The proposed template adaptation steps help in equally improving precision and recall.

In order to determine the value of the conservative transcription threshold θ, we used a training subset of 10 recordings from the MAPS 'SptkBGCl' models; the value of θ = 0.028 was selected by maximising Pre n . In Figure 4, transcription performance on the MAPS-ENSTDkCl set is reported by selecting various values for θ. It can be seen that the transcription performance can reach up to F n =57.4% with θ = 0.015, which enforces the argument that the proposed template adaptation method can successfully adapt dictionary templates so that they match the input instrument source.

Another comparison for the single-instrument system is made, where the dictionary derived from Section 2.2 replaces the dictionary of instrument 'SptkBGCl' (instead of expanding the original dictionary). The resulting F n is 55.88%, indicating that expanding the dictionary leads to better results compared with replacing the dictionary. It should also be noted that the achieved transcription performance outperforms the system in [START_REF] Yoshii | Infinite composite autoregressive models for music signal analysis[END_REF] which reports a frame-based F-measure of 52.4%, whereas the template adaptation system reports a frame-based F of 59.73%. Finally, no rigorous figures for statistical significance of the results can be given since all signal frames cannot be considered as independent samples. However, the reported tests are run on several thousands of frames which leads, if the samples were independent, to a statistically significant difference of the order of 0.6% (with 95% confidence).

Results -Multiple Instrument Evaluation

For multiple-instrument evaluation, we also use the four different system configurations that were used for singleinstrument transcription. For system configuration C3, we perform the PLCA dictionary update using 3 variants: by updating the bassoon only, by updating the violin only, or by updating both dictionaries. Transcription results for the multiple-instrument case are shown in Table 2.

It can be seen that without any template adaptation (C1), F n = 67.72%; by performing the proposed template adaptation step (C2), the multi-pitch detection F-measure im- Table 2. Multi-pitch detection and instrument assignment results for the multiple-instrument system using the Bach10 dataset.

proves by +4.8%. By performing template adaptation with C3 which also includes the PLCA update rule of (3), although no performance gain is obtained over the C2 configuration for the violin updates, there is a +2.4% improvement over C2 when updating the bassoon dictionary only. Finally, when updating both dictionaries, there is a performance drop over the C2 configuration (but the system still outperforms the original C1 system). The performance of the PLCA-based dictionary updates can be explained by the fact that the update rule of (3) might combine the observed spectra from both instruments and produce dictionaries that might represent a combination of the two instruments. Finally, the C4 system represents the upper performance limit, which is +11.7% higher than when using a dictionary from a different instrument models or recording conditions. It can be seen that the proposed template adaptation methods help in bridging that performance gap, resulting in a dictionary that closely matches the test instrument sources.

Regarding instrument assignment performance, in all cases the bassoon note identification reports better results compared to violin note identification. It can be seen that with the proposed template adaptation, the bassoon identification remains relatively constant (a small improvement of +0.6% is reported when comparing C1 with C2). On the other hand, violin identification improves by +3.9%; this indicates that the RWC bassoon templates closely matched the Bach10 bassoon models, whereas the violin RWC templates could greatly benefit from template adaptation.

By comparing the MAPS and Bach10 evaluations, an observation can be made that the performance improvement using the proposed template adaptation method depends on the mismatch between the original dictionary and the spectral shape of the instruments present in the recordings. Thus, the 11.7% performance gap for the Bach10 dataset led to a greater improvement for the template adaptation method compared to the 2.8% performance gap reported for the MAPS dataset (which led to a smaller, yet consistent improvement when using the proposed template adaptation method).

CONCLUSIONS

In this paper, we proposed a novel method for template adaptation for automatic music transcription, that can be used in dictionary-based systems. We utilized a multipleinstrument transcription system based on probabilistic la-tent component analysis, and performed a conservative transcription pre-processing step in order to detect notes with a high confidence. Based on the initial transcription, the spectra of the detected notes are collected, processed, and are used in order to create a new dictionary that closely matches the spectral characteristics of the input instrument source(s). Both single-instrument and multi-instrument variants of the proposed method are presented and evaluated, in terms of multi-pitch detection and instrument assignment. Experimental results using the MAPS and Bach10 datasets show that there is a clear and consistent performance improvement when using the proposed template adaptation method, especially when there is a large discrepancy between the original dictionary and the spectral characteristics of the test instrument sources.

In the future, we will evaluate the proposed system using multiple-instrument recordings with more than two instruments. Parametric models (such as source-filter models) will also be investigated for updating the note templates, along with adaptive methods for deriving the conservative transcription threshold. We also plan to evaluate the proposed system in the next MIREX evaluations [START_REF]Music Information Retrieval Evaluation eXchange[END_REF]. Finally, the proposed template adaptation steps will also be evaluated in the context of score-informed source separation using spectrogram factorization models [START_REF] Ewert | Score-informed source separation for musical audio recordings[END_REF].
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 2 Figure 2. Top: a collection of spectra V (42) (note D4) from piano recording 'alb se2' taken from the MAPS database (piano model: ENSTDkCl). Middle: extracted normalised template P (ω|p = 42). Bottom: a D4 template from piano model AkPnBcht from the MAPS database.
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 1 Figure 1. Proposed system diagram.
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 3 Figure 3. (a) The pitch ground truth for the bassoon-violin duet 'Nun bitten' from the Bach10 database. (b) The transcription piano-roll without template adaptation. (c) The transcription piano-roll with template adaptation.
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 4 Figure 4. Multi-pitch detection results on the MAPS-ENSTDkCl set using different values of θ.

Table

  

		n	Rec n	F n
	C1	66.41% 48.41% 55.33%
	C2	68.07% 48.80% 56.26%
	C3	67.84% 49.38% 56.56%
	C4 (oracle) 70.43% 50.35% 58.17%