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Abstract. Lattice enumeration algorithms are the most basic algorithms
for solving hard lattice problems such as the shortest vector problem and
the closest vector problem, and are often used in public-key cryptanaly-
sis either as standalone algorithms, or as subroutines in lattice reduction
algorithms. Here we revisit these fundamental algorithms and show that
surprising exponential speedups can be achieved both in theory and in
practice by using a new technique, which we call extreme pruning. We
also provide what is arguably the first sound analysis of pruning, which
was introduced in the 1990s by Schnorr et al.

1 Introduction

A lattice is the set of all integer combinations of n linearly independent vectors
b1, . . . ,bn in Rn. These vectors are known as a basis of the lattice. The most
basic computational problem involving lattices is the shortest vector problem
(SVP), which asks to find a nonzero lattice vector of smallest norm, given a
lattice basis as input. The inhomogeneous version of the problem is called the
closest vector problem (CVP); here we are given an arbitrary vector in addition
to the lattice basis and asked to find the lattice point closest to that vector.

Algorithms for these problems can be used to solve a wide range of problems,
such as integer programming [16], factoring polynomials with rational coefficients
[17], integer relation finding [15], as well as problems in communication theory
(see [1,25] and references therein). They are also extremely useful in public-key
cryptanalysis, notably they can break special cases of RSA and DSA (see [23]
and references therein). And the growing interest in lattice-based cryptography
further motivates their study.

There are two main algorithmic techniques for lattice problems. The first
technique, known as lattice reduction, started with the celebrated LLL algo-
rithm [17] and continued with blockwise algorithms [31,32,12] such as BKZ [32].
It works by applying successive elementary transformations to the input ba-
sis in an attempt to make its vectors shorter and more orthogonal. For usual
parameters, such algorithms run in polynomial time, but the approximation
factor they provide is asymptotically exponential (see [13] for experimental re-
sults). A second and more basic approach, which is the focus of our work, is
the enumeration technique which dates back to the early 1980s with work by



Pohst [27], Kannan [16], and Fincke-Pohst [11], and is still actively investigated
(e.g., [32,1,14,28,30,20,35]). In its simplest form, enumeration is simply an ex-
haustive search for the best integer combination of the basis vectors. Enumera-
tion algorithms run in exponential time (or worse) but find the shortest vector
(as opposed to a loose approximation thereof).

The two approaches are often combined. First, blockwise lattice reduction
algorithms rely on a subroutine to find short vectors in a low-dimensional lat-
tice, whose dimension is a parameter known as the “block size”. This subrou-
tine is typically implemented through enumeration. Second, the running time
of enumeration algorithms crucially depends on the quality of the input basis.
Therefore, enumeration algorithms are almost never applied directly to a given
basis; instead, one first applies lattice reduction and then runs an enumeration
algorithm on the resulting reduced basis.

An alternative algorithmic technique for solving lattice problems was sug-
gested in 2001 by Ajtai, Kumar, and Sivakumar [4] (see also [5,26,21,29] for
recent improvements). Although this technique, known as sieving, leads to the
asymptotically fastest algorithms for solving lattice problems exactly (running
in time essentially 2O(n)), it also requires an exponential amount of space, and
as a result, it is so far not useful in practice. We will not discuss this technique
in the remainder of the paper.

Previous results. As mentioned above, the focus of our work is on enumeration
algorithms which are important not just as standalone algorithms, but also as
routines in lattice reduction algorithms. The basic enumeration algorithm (as
in [11,32]) essentially amounts to an exhaustive search for an integer combina-
tion of the basis vectors whose norm is small enough, say, at most some given
threshold R. The search can be seen as a depth-first search on a tree whose
leaves correspond to lattice points, and whose internal nodes correspond to par-
tial assignments to the coefficients of the integer combination, or geometrically,
to the intersection of the lattice with subspaces (see Sect. 3 for a more detailed
description). We include in the tree only those nodes whose norm is at most R.

In an attempt to speed up the running time of this algorithm, Schnorr, Eu-
chner, and Hörner [32,33] suggested in the 1990s a modification of the basic
enumeration algorithm, called pruned enumeration. The rough idea is to prune
subtrees of the tree in which the “probability” of finding a desired lattice point
is “too small”.4 By doing so, we effectively restrict our exhaustive search to a
subset of all possible solutions. The hope is that although this introduces some
probability of missing the desired vector, this “probability” would be small
compared to the gain in running time.

Experimentally, this led to breaking certain instances of the Chor-Rivest
cryptosystem, and as a result, the pruning algorithm of Schnorr and Hörner [33]
made it into the popular mathematical library NTL [34], as a subroutine of
BKZ [32]. Unfortunately, to the best of our knowledge, no careful analysis of
pruned enumeration was ever performed. The arguments that appear in the

4 Making these notions precise requires care, as we shall see later.



existing literature are, as far as we can tell, mostly intuitive and do not provide
a proper analysis of pruned enumeration.5

Our results. We start out by providing what we believe is the first sound analysis
of pruned enumeration. Our analysis applies to a very general family of pruned
enumeration algorithms, in which the pruning is determined by an arbitrary
bounding function, which provides for each level of the tree an upper bound on
the distance of nodes that should be considered. As we will see, the running
time of the enumeration algorithm is determined by the volume of certain high-
dimensional bodies. Our analysis is based on two heuristic assumptions, both of
which we believe are very reasonable. We also provide experimental evidence to
back these assumptions.

Next, we use our analysis to understand the effect of various bounding func-
tions on the performance of pruned enumeration algorithms. For instance, the
analysis can show that well-chosen bounding functions lead asymptotically to
an exponential speedup of about 2n/4 ≈ 1.189n over basic enumeration, while
maintaining a success probability ≥ 95%.

But our main contribution is the realization that further exponential speedups
can be obtained by using bounding functions that significantly reduce the search
region. With such bounding functions, the probability of finding the desired vec-
tor is actually rather low (say, 0.1%), but surprisingly, the running time of the
enumeration is reduced by a much more significant factor (say, much more than
1000). A rigorous explanation of why this happens will be given in Section 5.
As a result, we can repeat the pruned enumeration algorithm several times (say,
1000) until the desired vector is found, and the total running time becomes signif-
icantly smaller than what one would obtain with standard pruned enumeration.
We note that we must “reshuffle” the basis vectors before each enumeration as
otherwise all the enumerations would behave identically (this will be explained
in more detail when we discuss our second heuristic assumption).

We call this method, which we view as our main conceptual contribution,
extreme pruning. We note that a similar idea is used in other algorithms; for
instance, this is one of the underlying ideas in Lenstra’s elliptic curve factoring
method. We are not aware of any other application of this idea in the context of
lattice algorithms. Our analysis shows that a well-chosen extreme pruning leads
asymptotically to an exponential speedup of about (2−ε)n/2 ≈ 1.414n over basic
enumeration, which is roughly the square of the previous speedup 2n/4.

Experimental results. In practice, our best extreme pruning is able to find the
shortest vector of dense knapsack lattices of dimension 110 (resp. 100) in less
than 62.12 (resp. 1.73) CPU days of sequential computation on a single 1.86-Ghz
core, with a negligible amount of memory and in a trivially parallelizable manner.
With plain Schnorr-Euchner enumeration [32] on a BKZ-35 reduced basis, it
would have taken 1.38 · 109 (resp. 482000) CPU years, so the speedup is about
8.1 · 109 (resp. 1.0 · 108). We are currently running new experiments on random

5 In Appendix A, we show some flaws in the analysis of Schnorr and Hörner [33].



lattices (as used in [13]), and we expect similar exponential speedups. To the best
of our knowledge, none of these dense lattices can be handled by standard lattice
reduction: they are harder than the 350-dimensional lattice (solved in [22]) from
the GGH challenges.

Open Questions. We expect extreme pruning to improve the performance of
lattice reduction algorithms [32,13], but we leave it to future work to assess
its precise impact. Our focus in this paper is on high-dimensional enumera-
tion, whereas lattice reduction algorithms typically apply enumeration on blocks
whose dimension is rather small; for instance, the experiments of [22] used a block
size of 60. Currently, our extreme pruning algorithm improves enumeration by
randomization, but still uses negligible space; it would be interesting to see if
further improvements can be made by using more space. One way to do so would
be to design new algorithms for the closest vector problem with preprocessing
(CVPP). Indeed, a good CVPP algorithm can help to prune the enumeration
tree in the following way: one would enumerate all the nodes at some depth k,
and use the CVPP algorithm to discard those which do not lead to any leave,
without having to compute all their children. Unfortunately, we have so far been
unable to obtain an improvement in practice using state-of-the-art CVPP algo-
rithms [2]. (But see [20] for a theoretically important algorithm that combines
CVPP and enumeration.)

Roadmap. We start in Section 2 with some background and notation on lat-
tices, and continue with a description of the basic enumeration algorithm in
Section 3. In Section 4 we describe the pruned enumeration algorithm and give
our rigorous analysis. Using that analysis, we introduce and analyze the extreme
pruning algorithm in Section 5. Finally, we present our experimental results in
Sect. 6. Further information is given in the Appendix: App. A discusses the
Schnorr-Hörner pruning [33]; and App. B describes the code used in our ex-
periments, which includes an apparently new implementation trick that speeds
up enumeration.

2 Preliminaries

Lattices are discrete subgroups of Rm. Any lattice L can be defined by a basis,
which is a set of linearly independent vectors (b1, . . . ,bn) in Rm such that L
is equal to the set L(b1, . . . ,bn) = {

∑n
i=1 xibi, xi ∈ Z} of all integer linear

combinations of the bi’s. All the bases of L have the same number n of elements,
called the dimension of L, and they all have the same volume, called the volume
vol(L) or determinant of L. Throughout the paper, we use row representations
of matrices. The Euclidean norm of a vector v ∈ Rm is denoted ‖v‖. We denote
by Balln(R) the n-dimensional Euclidean ball of radius R, and by Vn(R) =
Rn · πn/2

Γ (n/2+1) its volume. The n-dimensional unit sphere is denoted by Sn−1.



Shortest vector. A lattice L contains non-zero vectors of minimal Euclidean
norm: this norm is called the first minimum λ1(L) of L. A vector of norm
λ1(L) is called a shortest vector of L, and is in general unique up to the sign.
Hermite’s constant γn is the supremum of the ratio (λ1(L)/vol(L)1/n)2 over all
n-dimensional lattices. Minkowski’s theorem shows that

√
γn is smaller than the

diameter of the n-dimensional ball of volume 1:
√
γn ≤ 2 · Vn(1)−1/n ≤

√
n.

Orthogonalization. A basis B = (b1, . . . ,bn) can be written uniquely as a prod-
uct B = µ ·D ·Q where µ = (µi,j) is an n× n lower-triangular matrix with unit
diagonal, D an n-dimensional positive diagonal matrix and Q an n×m matrix
with orthonormal row vectors. Then µD is a lower triangular representation of B
(with respect to Q), B∗ = DQ = (b∗1, . . . ,b

∗
n) is the Gram-Schmidt orthogonal-

ization of the basis, and D is the diagonal matrix formed by the ‖b∗i ‖’s. For all
i ∈ {1, . . . , n+1}, we denote by πi the orthogonal projection on (b1, . . . ,bi−1)⊥.
For all i ∈ {1, . . . , n+ 1}, πi(L) is an n+ 1− i dimensional lattice generated by
the basis (πi(bi), . . . , πi(bn)), with vol(πi(L)) =

∏n
j=i

∥∥b∗j∥∥.

Reduced bases. Lattice reduction algorithms aim to transform an input basis
into a “high quality” basis. There are many ways to quantify the quality of bases
produced by lattice reduction algorithms. One popular way, which is particularly
useful for our purposes, is to consider the Gram-Schmidt norms ‖b∗1‖, . . . , ‖b∗n‖.
Intuitively speaking, a good basis is one in which this sequence never decays
too fast. In practice, it turns out that the Gram-Schmidt coefficients of bases
produced by the main reduction algorithms (such as LLL or BKZ) have a certain
“typical shape”, assuming the input basis is sufficiently random. This property
was thoroughly investigated in [13,24]: accordingly, our speedup analysis assumes
to simplify that ‖b∗i ‖/‖b∗i+1‖ ≈ q where q depends on the reduction algorithm.

Gaussian Heuristic. The Gaussian Heuristic provides an estimate on the number
of lattice points inside a “nice enough” set.

Heuristic 1 Given a lattice L and a set S, the number of points in S ∩ L is
approximately vol(S)/vol(L).

In some cases, this heuristic can be proved. For instance, Ajtai showed [3] that
for any finite Borel set S of measure V which does not contain 0, the expectation
of S ∩ L taken over a certain natural distribution on lattices L of volume D is
V/D. In particular, the expectation of λ1(L) on random lattices of volume D is
the radius of the n-dimensional ball of volume D, that is D1/n ·Vn(1)−1/n, which
is often used as a “prediction” of λ1(L) for a “typical” lattice. There are also
counterexamples to this heuristic (see, e.g., [19] for counterexamples in Zn).

3 Enumeration

We recall Schnorr-Euchner’s enumeration algorithm [32] which is the enumera-
tion algorithm used in practice, and analyze its cost.



3.1 Setting

To simplify the exposition, we assume in the rest of the paper the following
setting. Let L be a lattice whose shortest vector v is unique (up to sign). Our goal
is to find v. (Our entire analysis can be extended in a straightforward manner
to the closest vector problem.) We assume we are given a basis (b1, . . . ,bn) of L
and a very good upper bound R on λ1(L) so that finding ±v amounts to finding
any nonzero lattice vector w ∈ L such that ‖w‖ ≤ R, and therefore, we can
easily check whether or not the solution is correct. In many practical situations,
λ1(L) is known exactly: this is typically true in cryptographic situations, such
as in CJLOSS lattices [7]. In the full version, we will explain how to adapt our
analysis to the general case of SVP.

3.2 Description

To find ±v, enumeration goes through the enumeration tree formed by all vectors
in the projected lattices πn(L), πn−1(L), . . . , π1(L) of norm at most R. More
precisely, the enumeration tree is a tree of depth n, and for each k ∈ {0, . . . , n},
the nodes at depth k are all the vectors of the rank-k projected lattice πn+1−k(L)
with norm at most R. In particular, the root of the tree is the zero vector
(because πn+1(L) = {0}), while the leaves are all the vectors of L of norm ≤ R.
The parent of a node u ∈ πn+1−k(L) at depth k is by definition πn+2−k(u) at
depth k − 1. And we order the child nodes by increasing Euclidean norm: note
that all ancestors of a given node are at most as long as the node, because they
are projections of the node.

We note that the tree is symmetric, because if x ∈ L then −x ∈ L. Thus,
we halve the tree by restricting to “positive” nodes: we only consider nodes
πn+1−k(u) where the last nonzero coordinate of u ∈ L with respect to (b1, . . . ,bn)
is positive. From now on, by enumeration tree, we mean this halved enumeration
tree, which has a single leaf, either v or −v. The Schnorr-Euchner algorithm [32]
performs a Depth First Search of the tree to find the single leaf. The more re-
duced the basis is, the less nodes in the tree, and the cheaper the enumeration.

Concretely, the shortest vector v ∈ L may be written as v = v1b1+· · ·+vnbn
where the vi’s are unknown integers and bi = b∗i +

∑i−1
j=1 µi,jb

∗
j . Then v =∑n

j=1

(
vj +

∑n
i=j+1 µi,jvi

)
b∗j , which gives the norms of its projections as:

‖πn+1−k(v)‖2 =
n∑

j=n+1−k

vj +
n∑

i=j+1

µi,jvi

2

‖b∗j‖2, 1 ≤ k ≤ n (1)

Now, if v is a leaf of the tree, then the n inequalities ‖πn+1−k(v)‖ ≤ R to-
gether with (1) enable us to perform an exhaustive search for the coordinates
vn, vn−1, . . . , v1 of x:

n∑
j=n+1−k

vj +
n∑

i=j+1

µi,jvi

2

‖b∗j‖2 ≤ R2, 1 ≤ k ≤ n,



which can be rewritten for 1 ≤ k ≤ n as

∣∣∣∣∣vn+1−k +
n∑

i=n+2−k

µi,jvi

∣∣∣∣∣ ≤
√
R2 −

∑n
j=n+2−k

(
vj +

∑n
i=j+1 µi,jvi

)2

‖b∗j‖2

‖b∗n+1−k‖
(2)

We start with k = 1 in (2), that is: 0 ≤ vn ≤ R/‖b∗n‖ because we restricted
to “positive” nodes. This allows to perform an exhaustive search for the integer
vn, and we do so by increasing values of vn. Now, assume that the projection
πn+2−k(v) has been guessed for some k: the integers vn+2−k, . . . , vn are known.
Then (2) enables to compute an interval In+1−k such that vn+1−k ∈ In+1−k, and
therefore to perform an exhaustive search for vn+1−k. A Depth First Search of the
tree corresponds to enumerating In+1−k from its middle, by increasing values of
‖πn+1−k(v)‖, namely vn+1−k = b−

∑n
i=n+2−k µi,jvie, b−

∑n
i=n+2−k µi,jvie ± 1,

and so on.

3.3 Complexity

The running time of the enumeration algorithm is N polynomial-time operations
whereN is the total number of tree nodes. Hence, in order to analyze this running
time, we need to obtain good estimates ofN . As already suggested by Hanrot and
Stehlé [14], a good estimate of N can be derived from the Gaussian heuristic.
More precisely, the number of nodes at level k is exactly half the number of
vectors of πn+1−k(L) of norm ≤ R (where the half comes because we halved the
tree). Since vol(πn+1−k(L)) =

∏n
i=n+1−k ‖b∗i ‖, the Gaussian heuristic predicts

the number of nodes at level k scanned by the Schnorr-Euchner algorithm to be
close to

Hk =
1
2
· Vk(R)∏n

i=n+1−k ‖b∗i ‖
. (3)

If this holds, then N ≈
∑n
k=1Hk. In Sect. 6.1, we present experiments that

strongly support this heuristic estimate.
For a typical reduced basis, we have ‖b∗i ‖/‖b∗i+1‖ ≈ q where q depends on

the reduction algorithm (see [13]). The bound R =
√
γnvol(L)1/n is optimal in

the worst case. Since
√
γn = Θ(

√
n), an elementary computation shows that (3)

becomes:

Hk ≈
‖b1‖n−k2O(n)

q(n−1−k)(n−k)/2vol(L)(n−k)/n
=
q(n−k)(n−1)/22O(n)

q(n−1−k)(n−k)/2 = q(n−k)k/22O(n),

where the right-hand term is always less than qn
2/82O(n) because (n − k)(k/2)

is maximized for k = n/2. Hence:

Hk / qn
2/82O(n).



Thus, maxkHk is super-exponential in n and is reached for k ≈ n/2, which is
consistent with experiments (see Fig. 1 of Sect. 5.2). For small values of n, the
term 2O(n) is not negligible, and may shift a bit the maximum index k ≈ n/2.

We note that if we make the (reasonable) assumption that the location of
the leaf is uniform, the number of nodes scanned by the enumeration algorithm
will only be N/2 in expectation, and not N . For simplicity, we ignore this factor
2 in the sequel.

Finally, we mention that rigorous bounds on N exist. For instance, if the basis
(b1, . . . ,bn) is LLL-reduced, and R = ‖b1‖, then it is well-known that N is at
most 2O(n2). Also, Hanrot and Stehlé [14] showed that if the basis (b1, . . . ,bn)
is so-called quasi-HKZ-reduced, and R = ‖b1‖, then N ≤ nn/(2e)+o(n). See [14]
for details.

4 Pruned Enumeration

Since enumeration is expensive, it is tempting not to enumerate all the tree
nodes, by discarding certain branches. The idea of pruned enumeration goes
back to Schnorr and Euchner [32], and was further studied by Schnorr and
Hörner [33]. For instance, one might intuitively hope that ‖πn/2(v)‖2 / ‖v‖2/2,
which is more restrictive than the inequality ‖πn/2(v)‖2 ≤ ‖v‖2 used by enumer-
ation. Formally, pruning replaces each of the n inequalities ‖πn+1−k(v)‖ ≤ R
by ‖πn+1−k(v)‖ ≤ Rk where R1 ≤ · · · ≤ Rn = R are n real numbers defined
by the pruning strategy. This means that one replaces R by Rk in each of the n
inequalities (2).

At the end of their paper [32] , Schnorr and Euchner briefly proposed Rk =
Rmin(1,

√
(1.05)k/n), but did not provide any analysis, only limited experi-

ments. Schnorr and Hörner [33] later proposed another choice of Rk’s, which we
discuss in App. A: we show that this pruning has flaws, and that the analysis
of [33] is mostly incorrect; in particular, if the heuristic analysis of [33] was cor-
rect, it would imply polynomial-time algorithms for the shortest vector problem,
while the problem is NP-hard under randomized reductions.

We now provide what we believe is the first rigorous analysis of pruned
enumeration: The next two subsections deal with the running time and the
success probability. In principle, this analysis can be used to optimize the choice
of the bounding function in the pruning algorithm. However, we did not attempt
to do that since this is not the main focus of our paper. Instead, our analysis will
be used in the next section to show how exponential speedups (both in theory
and in practice) can be achieved through the use of extreme pruning.

4.1 Running time analysis

The running time of the pruned enumeration algorithm is given by

Tnode ·N



where Tnode is the average amount of time spent processing one node in the
enumeration tree, and N is the number of nodes in the pruned tree. In order to
estimate N , we estimate the number of nodes at each level of the search tree
using the Gaussian heuristic (Heuristic 1). As we shall see later, our estimates
agree very nicely with the experiments, giving some further justification to the
use of the Gaussian heuristic.

Our estimate is very similar to the one in Equation 3, except that instead of
using balls of radius

√
R, we use cylinder-intersections of radii (R1, . . . , Rk) for

1 ≤ k ≤ n. More specifically, define the (k-dimensional) cylinder-intersection of
radii R1 ≤ · · · ≤ Rk as the set

CR1,...,Rk
=

{
(x1, . . . , xk) ∈ Rk, ∀j ≤ k,

j∑
l=1

x2
l ≤ R2

j

}
.

Notice that the set of vertices in level k of the pruned tree correspond exactly
to the points of the projected lattice πn+1−k(L) that are inside CR1,...,Rk

. There-
fore, using the Gaussian heuristic, we can estimate the number of nodes in the
enumeration tree using

N = NR1,...,Rn
(‖b∗1‖ , . . . , ‖b∗n‖) =

1
2

n∑
k=1

VR1,...,Rk∏n
i=n+1−k ‖b∗i ‖

(4)

where VR1,...,Rk
denotes the volume of CR1,...,Rk

, and the factor half is as a result
of the symmetry in the SVP problem.

There are several ways to compute or approximate the volume of cylinder
intersections VR1,...,Rk

. The simplest and most näıve method, which is the one we
used at first in our numerical optimizations, is based on a Monte Carlo method.
Namely, by observing that the cylinder intersection CR1,...,Rk

is contained in a
ball of radius Rk, we can write

VR1,...,Rk
= Vk(Rk) · Pr

u∼Ballk

(
∀j ∈ [1, k] ,

j∑
i=1

u2
i ≤

R2
j

R2
k

)
. (5)

The number of samples required to estimate the above probability by Monte
Carlo sampling is proportional to its inverse. One can speed things up signif-
icantly by replacing the ball with a smaller containing body (such as another
cylinder intersection) whose volume is known and from which we can sample
uniformly.

For certain interesting choices of radii (R1, . . . , Rk), rigorous estimates can be
obtained, as we shall see in Section 5. Moreover, one particular case in which we
can compute the volume exactly is when R1 = R2, R3 = R4, etc. and k is even.
This is because the distribution of the vector (u2

1 + u2
2, u

2
3 + u2

4, . . . , u
2
k−1 + u2

k)
when u is chosen from Ballk is given by a Dirichlet distribution with parameters
(1, . . . , 1) (k/2 + 1 ones), which is simply a uniform distribution over the set of
all vectors whose coordinates are non-negative and sum to at most 1 (see Page
593 of [9]). This leads to an easy way to compute the probability in Eq. 5 exactly



(as it amounts to computing the volume of a certain polytope). This calculation
can also be combined with the Monte Carlo simulation above, leading to much
faster running times.

Finally, let us also mention that there is a large body of work showing provably
polynomial time algorithms that provide a good approximation to the volume of
any convex body (see, e.g., [10,18]). However, in practice these algorithms are
rather slow and are therefore probably not too useful for our purposes.

4.2 Success probability analysis

We let psucc denote the “probability” that the target vector is still in the tree
after the pruning. Prior to our work, the implicit assumption was that one should
choose a bounding function so as to minimize the running time while keeping
psucc reasonably high, say 95%. As we shall see in the next section, surprising
speedups can be obtained through extreme pruning, i.e., when psucc is very small.

Before proceeding with the analysis, we must explain what we mean by “prob-
ability”, since the pruning algorithm is entirely deterministic. (We note that in
previous work this was often glossed over; see App. A). In order to meaningfully
talk about the success probability psucc, we must assume some kind of distribu-
tion on the inputs (since the pruning algorithm is entirely deterministic). For
that purpose, we make the following heuristic assumption on the input basis:

Heuristic 2 The distribution of the coordinates of the target vector v, when
written in the normalized Gram-Schmidt basis (b∗1/‖b∗1‖, . . . ,b∗n/‖b∗n‖) of the
input basis, look like those of a uniformly distributed vector of norm ‖v‖.

We use here the imprecise term ‘looks like’ on purpose. It should be inter-
preted simply as saying that the estimate on psucc obtained by performing the
analysis under the above assumption on the coordinates of the shortest vector
corresponds to what one observes in practice on any reasonable distribution of
inputs (see Sect. 6 for experiments). We note that Heuristic 2 would follow from
a (stronger) natural heuristic on reduced bases:

Heuristic 3 The distribution of the normalized Gram-Schmidt orthogonaliza-
tion (b∗1/‖b∗1‖, . . . ,b∗n/‖b∗n‖) of a random reduced basis (b1, . . . ,bn) looks like
that of a uniformly distributed orthogonal matrix.

Here, we assume that the reduction is not too strong, that is, the reduced basis
is made of vectors that are significantly longer than the shortest vector of the
lattice. In typical randomly constructed lattices, the number of such vectors is
exponential,6 and hence, we may hope that the reduced basis is not oriented in
any particular direction.

We now estimate the success probability psucc. Let v be the target vector,
and let x = (x1, . . . , xn) ∈ Rn be its coordinates in the orthonormal basis
6 Moreover, for any c ≥ 1 and any n-dimensional lattice L, the number of lattice points

of norm at most 2cVn(1)−1/nvol(L)1/n is at least dcne. But this bound only applies
for radii above Minkowski’s upper bound, which is twice the Gaussian heuristic.



(b∗n/‖b∗n‖, . . . ,b∗1/‖b∗1‖) (notice that the coordinates are reversed, with x1 cor-
responding to bn etc.). By definition, v belongs to the pruned tree if and only
if for all k = 1, . . . , n,

∑k
j=1 x

2
j ≤ R2

k. By Heuristic 2, x is distributed like a uni-
form vector subject to the constraints that ‖x‖ = ‖v‖. Hence, we can estimate
psucc as

psucc = psucc(R1, . . . , Rn) = Pr
u∼Sn−1‖v‖/R

(
∀j ∈ [1, n],

j∑
l=1

u2
l ≤

R2
j

R2
n

)
(6)

where Sn−1 denotes the unit sphere in n dimensions. As before, one can estimate
this probability through Monte Carlo simulation, or compute it exactly in certain
cases (e.g., using the fact that if u is chosen from Sn−1 for even n, then (u2

1 +
u2

2, . . . , u
2
n−3 + u2

n−2) is distributed uniformly over all vectors whose coordinates
are non-negative and sum to at most 1).

5 Extreme Pruning

In this section we present our main contribution, the extreme pruning algorithm,
whose main idea is to apply pruning using bounding functions whose psucc is very
small. Our algorithm takes as input a lattice basis, as well as n real numbers
R2

1 ≤ · · · ≤ R2
n = R2 (the bounding function) where Rk corresponds to the

pruning in depth k. The goal of the algorithm is to find a vector of length at
most R, and is described in Algorithm 1.

Algorithm 1 Extreme Pruning

Repeat until a vector of length at most R is found:

1. Randomize the input basis, and apply basis reduction to it.
2. Run the enumeration on the tree pruned with radii R1, . . . , Rn, as explained in

Sect. 4.

We are being deliberately imprecise in Step 1 of the algorithm. First, we
do not know what the best method of randomization is, and it is quite likely
that this does not matter much. In our experiments, we simply multiplied the
input basis by some small unimodular matrix chosen at random, but one can
also use other methods. Second, as we shall see in the analysis below, the choice
of basis reduction has a great effect on the overall running time, and has to be
set properly. The choice of basis reduction algorithm, as well as of the bounds
R1, . . . , Rn will be the topic of Sections 5.2 and 5.3. But first we analyze the
expected running time of the algorithm.



5.1 Running time analysis

We now analyze the expected running time of the extreme pruning algorithm
based on the analysis in Section 4.

First, we estimate the probability of success in each iteration of the algorithm
by psucc(R1, . . . , Rn), as in Eq. 6, which is based on Heuristic 2. Here, we explic-
itly perform a randomization before reduction, and we stress that Heuristic 2
produces estimates on psucc that agree very nicely with our experiments (see
Sect. 6 for more details).

Next, we estimate the running time of each iteration of the algorithm. Let us
denote the (average) running time of Step 1 by Treduc. Once a choice of random-
ization and reduction algorithm is fixed, this time can be easily estimated experi-
mentally. The running time of Step 2 can be estimated byNR1,...,Rn

(‖b∗1‖ , . . . , ‖b∗n‖),
as in Eq. 4. Notice that this running time depends on the Gram-Schmidt coeffi-
cients of the basis produced in Step 1, and might vary from one iteration to an-
other. In order to simplify the analysis, we assume that these Gram-Schmidt co-
efficients are the same throughout all iterations, and denote them by b̄∗1, . . . , b̄

∗
n.

This is partly justified by the observation that bases produced by known reduc-
tion algorithms have a clear shape that depends only on the reduction algorithm
and not so much on the input basis. Alternatively, it should be straightforward
to refine our analysis so that it takes into account the distribution of Gram-
Schmidt coefficients produced in Step 1, as opposed just to their average. Yet
another possibility is to modify the algorithm so that ‘bad’ bases (i.e., those that
differ significantly from the average behavior) are discarded.

To summarize, we can estimate the expected time required to find the desired
vector by

Textreme(R1, . . . , Rn, b̄∗1, . . . , b̄
∗
n) :=

Treduc + Tnode ·NR1,...,Rn(b̄∗1, . . . , b̄
∗
n)

psucc(R1, . . . , Rn)
. (7)

5.2 Choosing Parameters for the Experiments

In order to optimize the running time of the extreme pruning algorithm, we
need to choose the basis reduction algorithm used in Step 1, as well as the
bounding parameters R1 ≤ · · · ≤ Rn used in Step 2. These choices are crucial
in determining the running time of the algorithm.

Since finding the exact optimum of the expression in Eq. (7) seems difficult,
we decided to try numerical optimization. We wrote a program that starts from
the linear bounding function R2

k = (k/n) · R2 and successively tries to apply
small random modifications to it. After each such modification it checks if the
expression in Eq. (7) decreased or not, with an exact computation based on the
Dirichlet distribution (as described in Sect. 4.1). If it did, the modification is
accepted; otherwise it is rejected.

This yielded bounding functions whose predicted running time is only 62.1
CPU days (including reduction time) in dimension 110 for hard knapsack lattices,
which is significantly better than the linear bounding function (see Figure 1).
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Fig. 1. On the left are the linear function and our best bounding function found by
numerical optimization. On the right we compare the estimated expected number of
nodes (with respect to the depth) visited in a run of full enumeration, extreme pruning
with the linear function, and extreme pruning using our best bounding function. Note
that basis reduction times are ignored here.

5.3 Asymptotic Analysis

In this section, we provide a rigorous justification to the effectiveness of extreme
pruning. We do this through an analysis of three bounding functions, whose
asymptotic behavior we can analyze (under our reasonable heuristic assump-
tions). The first is the linear bounding function. The speedup it offers over full
enumeration is provably exponential, but it is not significantly better than what
we can achieve using non-extreme pruning. This is perhaps not surprising since
its success probability psucc is 1/n, which is relatively high (so this bounding
function is not too ‘extreme’). Our second example is a step bounding func-
tion. We show that this function obtains an exponential improvement over our
best non-extreme bounding function in terms of the number of nodes scanned
in the middle level of the tree. This function nicely highlights the reason ex-
treme pruning is superior to non-extreme pruning. Our third bounding function
is a piecewise linear bounding function. Its analysis combines the previous two
analyses and leads to the best speedups we can rigorously demonstrate.

Throughout this section, we make the simplifying assumption that ‖v‖ =
R (which, as discussed above, is the case in many scenarios, and is also the
worst case for pruning algorithms). We also ignore the reduction time, which
in practice might make the claimed speedups a bit smaller (but does not affect
the asymptotics). Finally, instead of giving an absolute bound on the number of
nodes in (each level of) the enumeration tree, we compare this number to that
in the full enumeration tree. This allows us to focus on analyzing the volume
of cylinder intersections, and ignore the properties of the given basis, which we
leave for future work.

Linear pruning. We define the linear bounding function as R2
k = (k/n) · R2, for

k = 1, . . . , n. The motivation for this setting comes from the fact that if v is a
uniformly random vector of length R (as we assume in our heuristic), then the



expectation of the squared norm of its projection on the first k coordinates is
exactly (k/n) ·R2. Although this bounding function leads to running times that
are far from optimal, it is interesting as it can be analyzed rigorously and shown
to provide an exponential speedup over full enumeration. In the full version,
we prove the following claim, which states that the success probability of linear
pruning is exactly 1/n:

Claim. Let u be a vector uniformly distributed in the unit sphere Sn−1. Then,

Pr
u

(
∀j ∈ {1, . . . , n},

j∑
i=1

u2
i ≤

j

n

)
=

1
n
.

This also shows that linear pruning keeps an exponentially small proportion
(between 1/k (k/n)k/2 and (k/n)k/2 at each depth k) of nodes:

Corollary 1. For any integer n ≥ 1,

Vn(1)/n ≤ vol
{
u ∈ Balln(1) : ∀j ∈ {1, . . . , n},

j∑
i=1

u2
i /‖u‖2 ≤

j

n

}
≤ Vn(1). (8)

Hence, compared to full enumeration, linear pruning reduces the number of
nodes at depth k by the multiplicative factor (n/k)k/2, up to some polynomial
factor. As we saw in Section 3, for typical reduced bases, most of the nodes in
the enumeration tree are concentrated around n/2, in which case the speedup is
approximately 2n/4 ≈ 1.189n.

Step bounding function. We now present an example in which extreme pruning
is significantly superior to non-extreme pruning, at least in the asymptotic sense.

Consider the step bounding function given by R2
k = αR2 for 1 ≤ k ≤ n/2,

and Rk = R otherwise, where α > 0 is a constant to be determined later. (We fix
the location of the step to n/2 for simplicity; the analysis can be easily extended
to any step function.) With this bounding function, the number of nodes in the
middle level of the pruned enumeration tree compared to that in the middle level
of the full enumeration tree is smaller by a factor of α

n
4 . We omit the analysis

for other levels of the tree because our next bounding function will have a much
better performance in this respect, and its analysis is not more complicated.

We now compute the success probability psucc. Eq. 6 tells us that psucc is
equal to the probability that for a random point u = (u1, . . . , un) on the sphere
Sn−1, we have

∑n/2
i=1 u

2
i ≤ α. It follows from classical concentration inequalities

(see, e.g., Lemma 2.2 in [8]) that this probability is 1 − 2−Ω(n) if α > 1/2, and
2−Ω(n) if α < 1/2. Hence, for α > 1/2, we are in the non-extreme regime, and by
choosing α close to 1/2 we obtain that the number of nodes in the middle level of
the pruned enumeration tree is smaller by a factor of about 2n/4 ≈ 1.189n than
that in the full enumeration tree. Since most of the nodes are located at depths
around n/2, this is a good approximation of the speedup offered by non-extreme
pruning using a step function.



Let us now consider what happens when we take α < 1/2 and move into
the extreme pruning regime. By definition,

∑n/2
i=1 u

2
i is distributed according

to the beta distribution Beta(n4 ,
n
4 ). Therefore, we can express psucc using the

regularized incomplete beta function as:

psucc = Iα(
n

4
,
n

4
) ≥

(n2 − 1)!
(n4 )!(n4 − 1)!

α
n
4 (1− α)

n
4 − 1 = Ω

(
1√
n

(4α(1− α))
n
4

)
where the inequality follows from integration by parts of the incomplete beta
function. Hence, the total number of middle level nodes that will be scanned in
the extreme pruning algorithm (which can be seen as an approximation of the
overall running time) is smaller than that in full enumeration by a factor of

Ω
(

1√
n

(4(1− α))
n
4

)
.

This expression is maximized for very small α > 0, in which case the speedup
is asymptotically roughly 4

n
4 ≈ 1.414n, which is greatly superior to the speedup

of 1.189n obtained with non-extreme pruning.
As this example nicely demonstrates, the advantage of extreme pruning

comes from the fact that for small α > 0, although the success probability
is exponentially small, the volume of the search region decreases by a stronger
exponential factor.

Piecewise linear bounding function. Consider the bounding function defined as
R2
k = (2k/n)α · R2 for k = 1, . . . , n/2, and R2

k = (2α − 1 + 2k(1 − α)/n) · R2

otherwise, where we assume that 0 < α < 1/4 is a constant. In the full ver-
sion, using similar arguments than for linear and step pruning, we show that:
psucc ≥ Ω

(
n−5/2(4α(1− α))

n
4
)
. Ignoring polynomial factors, for sufficiently

large n, the total number of level k nodes that will be scanned in the extreme
pruning algorithm is shown to be smaller than that in full enumeration by a
factor of

Ω
(

2
n
2−

k
2 α

n
4−

k
2 (1− α)

n
4

(n
k

) k
2
)

for k ≤ n/2 and by a factor of

Ω
(

2
n
2−

k
2 (1− α)

n
2−

k
2

(n
k

) k
2
)
.

for k > n/2. We see that for levels around n/2 (say, 0.49n ≤ k ≤ 0.51n), in
order to maximize the expressions above, one should choose a small α, in which
case the speedup is roughly of 2

n
2 ≈ 1.414n. For other values of k, the number of

nodes may actually increase, but typically these levels contain a small fraction
of the nodes, and the global asymptotical speedup is not affected.

6 Experiments

The setup. All our experiments are run on 64-bit Xeon processors with frequency
1.86 GHz, and compiled with g++ version 4.2.4 x86 64 (options -O9 -ffast-math
-funroll-loops -ftree-vectorize). Running times are provided for a single core.



Implementation. For lattice reduction, we used fplll [6]’s implementation of LLL,
and NTL [34]’s implementation of BKZ [32]. We implemented our own enumera-
tion algorithms (see App. B) in basic C++, using double and long arithmetic; we
plan to release the source codes. The input basis and its Gram-Schmidt orthogo-
nalization were pre-computed with NTL [34] in RR precision, and then rounded
to double precision before entering the enumeration procedure. While floating-
point arithmetic is known to cause stability problems during LLL reduction, we
did not experience such problems during enumeration, even up to dimension 110;
we note that a rigorous analysis of enumeration with floating-point arithmetic
has recently been done in [28].

Lattices. It is important to test algorithms on lattices that do not have a special
structure that can be exploited by standard reduction algorithms. On the other
hand, we need to be able to decide if the algorithm was successful, therefore
λ1(L) must be known. For concreteness, we performed all our experiments on
hard knapsack lattices, namely the so-called CJLOSS lattices [7] of density 0.94
where the knapsack solution was further chosen with exactly as many 0s as
1s. For these lattices, we can easily check whether the vector found is the
shortest vector because it corresponds to knapsack solutions. It can also be
checked experimentally that they are quite dense, in the sense that their first
minimum λ1(L) is close to the Gaussian heuristic, which can be seen as an
indication that they are hard instances of SVP (see [13]). Moreover, these lattices,
we believe, serve as a good representative of hard lattices that typically occur in
practice. In particular, we believe that the results reported here are not limited to
CJLOSS lattices, but in fact represent a general phenomenon. We are currently
running new experiments on random lattices (as used in [13]), for which we have
a tight estimate on the first minimum λ1(L), but do not know shortest vectors
in advance.

Rate of enumeration. The amount of time an enumeration algorithm spends per
node in the tree might depend slightly on the depth of that node in the tree.
Luckily, this dependence is typically not too strong, and more importantly, most
nodes are concentrated around the same depth of the tree (see, e.g., Fig. 1). In
all our experiments in dimensions 100–110, the running time of the enumeration
algorithm was directly proportional to the number of nodes in the tree, and the
rate of enumeration was very close to 0.94 ·107 nodes per second, or equivalently
0.3·1015 nodes per core-year. This is faster than fplll’s [6] implementation (which
is itself an improvement over NTL [34]) by about 40%. This is due to a code
optimization described in App. B.

Estimated running times. Table 1 compares the expected total number of nodes
to be scanned under four different bounding functions for CJLOSS lattices in di-
mensions 90–120; this number of nodes is obtained by multiplying the expected
number of nodes in the pruned tree (as estimated by the Gaussian heuristic)
by 1/psucc. Recall that 0.3 · 1015 nodes represent one year of sequential com-
putation. The first row corresponds to full enumeration under BKZ-35 reduced



dim 90 100 110 120

Full enumeration 1.2 · 1017 1.6 · 1020 4.0 · 1023 1.9 · 1027

Schnorr-Hörner 2.3 · 1012 7.4 · 1014 4.7 · 1017 3.8 · 1020

Linear pruning 1.1 · 1011 2.6 · 1013 1.0 · 1016 8.3 · 1018

Extreme pruning n/a 7.7 · 1011 2.5 · 1013 n/a
Table 1. Pruning vs. full enumeration.

bases. The second row corresponds to Schnorr-Hörner’s pruning under BKZ-35
reduced bases with an optimal choice of parameter p so that the success probabil-
ity is still greater than 90% (this corresponds to p = 48, 57, 67, 77 for dimensions
90, 100, 110, and 120 respectively). The third row corresponds to extreme prun-
ing using the linear bounding function under BKZ-35 reduced bases. And the
last row corresponds to extreme pruning using our best numerically optimized
bounding function (which we computed only for dimensions 100 and 110) and
the optimum BKZ-30 (resp. BKZ-32) in dim 100 (resp. 110).

Here we are only considering the number of nodes scanned, and ignoring the
basis reduction time. Except our numerically optimized bounding function, it is
negligible. For our best bounding function it adds about 50% to the total running
time. Another caveat is that the number of nodes in full enumeration (as well
as in Schnorr-Hörner pruning and linear pruning) decreases as we increase the
block size of the reduction algorithm beyond 35. However, this does not decrease
the overall running time by much since the running time of reduction algorithms
depends exponentially on the block size.

Actual running time. The actual running times match the predictions well. In
practice, extreme pruning is able to find the shortest vector of 0.94-density
CJLOSS lattices of dimension 110 in less than 63 CPU days (including reduc-
tion time) of sequential computation on a single core, with a negligible amount
of memory and in an easily parallelizable manner. With plain Schnorr-Euchner
enumeration [32] on a BKZ-35 reduced basis, it would have taken 1.38 ·109 (resp.
482000) CPU years, so the speedup is about 8.1 · 109 (resp. 1.0 · 108).

6.1 Verifying the Heuristics

In this section we report on some experiments meant to verify our heuristic
assumptions.

The accuracy of the Gaussian heuristic. Although the Gaussian heuristic was
already suggested as a useful heuristic for analyzing the running time of enu-
meration algorithms (see [14]), we are not aware of any published experimental
verification of the heuristic. We therefore ran a significant number of experiments
comparing the actual number of nodes in the enumeration tree to the prediction
given by the Gaussian heuristic. We tried both CJLOSS lattices and random
lattices with several different reduction algorithms and with either full enumer-
ation or pruned enumeration. In all cases, the estimates given by the Gaussian



heuristic were very precise, and typically matched the exact count of nodes to
within an error of at most 5%.

Randomness of reduced bases. The success of our experiments gives some ev-
idence to the validity of Heuristics 2 and 3. In the full version, we report on
additional experiments whose goal is to validate these heuristics directly. We
note that the heuristics cannot apply to very strong reduction notions, where
the first basis vector is with very high probability the shortest lattice vector: in
such cases, there is no need for enumeration since the shortest vector is already
provided to us. But it seems to apply to weaker yet still strong reduction notions,
such as BKZ-30 in dimension 100.
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A Schnorr-Hörner Pruning

Here we revisit the pruning strategy described by Schnorr and Hörner in [33], and
analyze it in our framework. Their pruning strategy is implemented in NTL [34]
as a subroutine to BKZ [32]. It turns out that their bounding function suffers
from some fundamental flaws and is clearly inferior to our proposed bounding
functions. Furthermore, we show that the analysis of [33] is not satisfying.

A.1 Description

In more detail, given a basis B = (b1, . . . ,bn), the Schnorr-Hörner pruning
strategy is defined by the following bounding function, which is parameterized
by an integer p > 0,

R2
k = R2 −

(
2−p vol(L(b1, . . . ,bn−k))/Vn−k

)2/(n−k)
= R2 − 1

π

(
2−p vol(L(b1, . . . ,bn−k))Γ ((n− k)/2 + 1)

)2/(n−k)
, (9)

where Vn−k = Vn−k(1) is the volume of the unit ball in n− k dimensions. Note
that [33] used a different description than the one we gave, but both descriptions
can be shown to be equivalent.

In the full version, we rigorously analyze this pruning strategy, and show that
it is inferior to our extreme pruning (see also Table 1). Here, we briefly mention
several disadvantages. First, the fact that the bounding function depends on a
parameter p is undesirable; the analysis of [33] does not give any clear indication
on the optimal choice of p. Second, the bounding function may not be positive
when p is too small, in which case failure is certain. Third, even for larger
values of p, the bounding function may initially decrease, in which case some
nodes enumerated in the top levels of the tree are guaranteed to lead to a dead
end. In other words, by replacing their bounding function R2

1, . . . , R
2
n with the

bounding function defined by R′
2
k = min(R2

k, . . . , R
2
n), we obtain exactly the

same success probability at a lower running time.

A.2 The Analysis of Schnorr and Hörner

We now present some of our observations regarding the original analysis given
by Schnorr and Hörner [33, Sect. 3] and why we believe it is flawed. It should
be stressed that the analysis presented there is quite terse, and there is a possi-
bility that our interpretation of it is not what the authors had in mind; yet we
think that there is sufficient evidence to suggest that the use of their pruning
function should be avoided and we feel that it is important to bring this to the
community’s attention.

The core of their analysis is [33, Thm. 2], which states that if xn+2−k, . . . , xn ∈
Z are fixed, and if (b1, . . . ,bn) is a random basis of L such that its Gram-Schmidt
coefficients µi,j are independent and uniformly distributed modulo 1, then the



vector t = xn+2−kbn+2−k+· · ·+xnbn is such that t−πn+2−k(t) is uniformly dis-
tributed modulo the lattice L̄ spanned by b1, . . . ,bn+1−k, which implies, by [33,
Lemma 1], that the expectation E of the number of (x1, . . . , xn+1−k) ∈ Zn+1−k

such that ‖x1b1 + · · · + xnbn‖ ≤ R is Vn+1−k(
√
R2 − ‖πn+2−k(t)‖2)/vol(L̄).

And [33] seems to interpret E as the expectation of the number of leaves (in the
enumeration tree) which derive from the node πn+2−k(t) at depth k − 1.

Then, [33] claims that Thm. 2 implies that the probability that the pruned
enumeration misses the shortest vector is at most 2−pc where c is said to be ex-
perimentally proportional to cp,n2p for random LLL-reduced bases, where cp,n
decreases to 0 as p increases. The failure probability is claimed to be experi-
mentally ≤ 0.9 for n < 30 and p = 7. Finally, [33] claims that under heuristic
arguments, they can show that for p > log2 n: given a random basis (b1, . . . ,bn)
of L and a bound R ≤ ‖b1‖, their pruned enumeration performs on the aver-
age only O(n22p) arithmetic steps to output a lattice vector v ∈ L such that
‖v‖ ≤ R if R ≥ λ1(L), or nothing if R < λ1(L). However, no proof is provided,
and the claim looks suspicious: indeed, by taking p = dlog2 ne, it would imply
polynomial-time algorithms for the shortest vector problem (which is NP-hard
under randomized reductions), because n22p is polynomial in n.

There are further problems in the analysis of [33]. First of all, the assumption
in Thm. 2 that the µi,j ’s of a random reduced basis are uniformly distributed is
not supported by experiments: the experiments of [24] show that the distribution
of the coefficients µi,i−1 of a random LLL-reduced basis is far from being uniform.
More importantly, the use of Thm. 2 in [33] to analyze the success probability
of pruned enumeration is improper: if one selects (xn+2−k, . . . , xn) as the last
k− 1 coordinates of a fixed lattice vector, then these coordinates depend on the
random basis, and therefore Thm. 2 cannot be applied. Similarly, the expectation
E cannot be viewed as the number of leaves in the enumeration tree which derive
from the node πn+2−k(t) at depth k− 1, because when the random basis varies,
the tree varies too, so for any choice of xn+2−k, . . . , xn ∈ Z, the node πn+2−k(t)
may appear in one tree, but not in other trees, so this expectation of the number
of leaves cannot be properly defined.

B Pseudo-code of the pruned enumeration code

Here we provide the pseudo-code used to implement the enumeration algorithm
in our experiments (see Algorithm 2): a detailed explanation appears in the
full version. The code is based on the original Schnorr-Euchner enumeration
algorithm [32], with several minor modifications. The first easy modification
(see Line 10) is that we support a general bounding function R1 ≤ · · · ≤ Rn.
The second modification (see Lines 1, 15-17, and 25) is a certain optimization
that seems to give in practice a speedup by about 40%. To the best of our
knowledge, this improvement has not appeared yet in the literature nor in any
software package. Finally, another very minor modification is that we abort the
procedure as soon as a vector shorter than R = Rn is found.



Algorithm 2 Pruned Enumeration
Input: A basis B = (b1, . . . ,bn)

A bounding function R2
1 ≤ · · · ≤ R2

n

The Gram-Schmidt coefficient matrix µ (a lower-triangular matrix with ones on the
diagonal), together with the norms of the Gram-Schmidt vectors ‖b∗1‖2, . . . , ‖b∗n‖2.

Output: The coefficients of a lattice vector satisfying the bounds (if it exists)
1: σ ← (0)(n+1)×n; r0 = 0; r1 = 1; · · · ; rn = n
2: ρ1 = ρ2 = · · · = ρn+1 = 0; // partial norm
3: v1 = 1; v2 = · · · = vn = 0 // current combination
4: c1 = · · · = cn = 0 // centers
5: w1 = · · · = wn = 0 // jumps
6: last nonzero = 1; // largest i for which vi 6= 0; zero if all vi = 0
7: k = 1;
8: while true do
9: ρk = ρk+1 + (vk − ck)2 · ‖b∗k‖2 // compute norm squared of current node

10: if ρk ≤ R2
n+1−k (we are below the bound) then

11: if k = 1 then
12: return (v1, . . . , vn); (solution found; program ends)
13: else
14: k ← k − 1 // going down the tree
15: rk−1 ← max(rk−1, rk) // to maintain the invariant for j < k
16: for i = rk downto k + 1 do σi,k ← σi+1,k + viµi,k endfor
17: ck ← −σk+1,k // ck ← −

Pn
i=k+1 viµi,k

18: vk ← bcke; wk = 1
19: end if
20: else
21: k ← k + 1 // going up the tree
22: if k = n+ 1 then
23: return ∅ (there is no solution)
24: end if
25: rk−1 ← k // since vk is about to change, indicate that (i, j) for j < k and

i ≤ k are not synchronized
26: // update vk

27: if k ≥ last nonzero then
28: last nonzero← k
29: vk ← vk + 1;
30: else
31: if vk > ck then vk ← vk − wk else vk ← vk + wk

32: wk ← wk + 1
33: end if
34: end if
35: end while


