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1.1 Introduction

Cell migration is a fundamental biological phenomenon involved for example
in development, wound healing, cancer and immune response. Understanding
its key features is therefore a burning issue.

Some cells can move on an adherent substrate by a crawling process, where
motion comes from the formation of finger-like extensions named filopodia that
adhere to the substrate for some time. When the cell contracts, non-adherent
filopodia retract, whereas adherent ones exert forces that induce motion. We
refer to [AnEh07] for a complete description of cell crawling.

When a cell is set on a flat homogenous substrate, it performs a random-
like motion. However, it can also become polarized and move in a preferen-
tial direction. How this direction is chosen is a question that is still driving
many experimental and modeling efforts. In [CaVoRi14], a non-homogenous
substrate impose geometrical constraints that are sufficient to direct 1D cell
motion. This paper focuses on the 1D motion brought forth by the filopodial
activity.

We introduce a simplified model of 1D cell migration relying on the filopo-
dial activity. In what follows, the substrate is supposed to be flat and homoge-
nous, but more complex settings could also be described. Let us consider the
center of mass of the cell, whose position at time t is denoted x(t) ∈ R. Force
equilibrium leads to

C
dx

dt
(t) = −Fℓ(t) + Fr(t), (1.1)

where Fr ≥ 0 (resp. Fℓ ≥ 0) is the force exerted by filopodia located on the
right (resp. on the left) of the cell and C is the friction parameter, that can
be set equal to 1nN.h.µm−1 [WoTa11].
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Fig. 1.1. Illustration of a moving cell, and picture of a fibroblast [MaSiBrYeMe08].

We can now focus on the forces Fr,ℓ. Following biological knowledge, we
assume that the forces exerted by filopodia on the cell at time t depend on:

• densities of filopodia sent to the right and left, denoted by ψr,ℓ > 0,
• their existence time, fixed by the lifetime function P : R+ → R

+,
• the force fr,ℓ exerted by one filopodium on the cell, related to its orien-

tation. Moreover, we assume that fr,ℓ = fr,ℓ(x(t
′), x(t)) depends on the

positions of both the tip of the filopodium, related to the cell position at
creation time t′, and the actual cell position.

Consequently, equation (1.1) rewrites as an integro-differential equation

dx

dt
(t) =

∫ t

0

P(a)
(

ψrfr(x(t − a), x(t))− ψℓfℓ(x(t − a), x(t))
)

da, (1.2)

x(0) = x0,

where ψr,ℓ are positive constants, x : R+ → R, and fr,ℓ : R2 → R. Let us
assume for simplicity that x0 = 0.

Problem (1.2) can be treated more or less easily depending on the force
functions fr,ℓ. In this work, we shall first investigate one case of non-linear
elastic force, where only existence and uniqueness of a solution can be proved.
Then, we shall consider a simplified case of linear force functions, where a
linear Volterra equation can be obtained. We shall see how this formalism
allows us to get more information on the sign, boundedness and asymptotic
behaviour of the solution in general, as well as explicit solutions for some
special cases.

1.2 Non-linear force functions

Let us start with the force functions

fr(y, x) = k [ℓ− (x − y)]+ , and fℓ(y, x) = k [ℓ− (y − x)]+ ,
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where [.]+ denotes the positive part function and k, ℓ ∈ R
+ are two constants.

Taking fr(x(t−a), x(t)) and fℓ(x(t−a), x(t)), it corresponds to the hypothesis
of filopodia having a constant size ℓ, and exerting elastic forces as long as the
cell at position x(t) has not reached their tips x(t−a)± ℓ. Equation (1.2) now
writes

dx

dt
(t) = k

∫ t

0

P(a)
(

ψr[ℓ+ x(t − a)− x(t)]+

− ψℓ [ℓ+ x(t)− x(t− a)]+

)

da.

(1.3)

1.2.1 Existence and uniqueness

We prove the following result :

Theorem 1. For P ∈ L1(R+), there exists a unique solution x ∈ C1(R+,R)
of (1.3).

Proof. After integration, equation (1.3) writes

x(t) = k

∫ t

0

∫ s

0

P(a)
(

ψr
[

x(s− a) + ℓ− x(s)
]

+

− ψℓ
[

x(s)− x(s− a) + ℓ
]

+

)

dads =: Φ(x)(t)

with

Φ :
(

C([0, T ],R), ‖ ‖∞
)

−→
(

C([0, T ],R), ‖ ‖∞
)

x 7−→ Φ(x) = (t 7→ Φ(x)(t)),

for some T ≥ 0. We are looking for existence and uniqueness of a fixed point
for Φ. Let us construct a sequence (xn)n≥0 in C([0, T ],R) such that

x0 ≡ x0, xn+1 = Φ(xn) ∀n ≥ 0.

As [0, T ] is compact,
(

C([0, T ],R), ‖ ‖∞
)

is a Banach space and we can
use the Banach fixed-point theorem. All we need to show now is that Φ is a

contraction mapping. Considering (y, z) ∈
(

C([0, T ],R), ‖ ‖∞
)2

and denoting

gs,a(y) = y(s− a) + ℓ− y(s), and hs,a(y) = y(s)− y(s− a) + ℓ,

we have

‖Φ(y)− Φ(z)‖∞ = sup
t∈[0,T ]

∣

∣

∣

∣

∣

k

∫ t

0

∫ s

0

P(a)
(

ψr
(

[gs,a(y)]+ − [gs,a(z)]+
)

− ψℓ
(

[hs,a(y)]+ − [hs,a(z)]+
)

)

dads

∣

∣

∣

∣

∣

≤ kT sup
s∈[0,T ]

∫ s

0

|P(a)| ×
(

ψr
∣

∣[gs,a(y)]+ − [gs,a(z)]+
∣

∣

+ ψℓ
∣

∣[hs,a(y)]+ − [hs,a(z)]+
∣

∣

)

da,



4 C. Etchegaray et al.

since ψr,ℓ ≥ 0. Denote ψ := ψr + ψℓ. Now, for (A,B) ∈ R
2, the inequality

∣

∣[A]+ − [B]+
∣

∣ ≤
∣

∣A−B
∣

∣ holds, leading to

‖ Φ(y)− Φ(z) ‖∞ ≤ kT sup
s∈[0,T ]

∫ s

0

ψ |P(a)|
∣

∣(y − z)(s− a)− (y − z)(s)
∣

∣da,

≤ 2kTψ ‖ P ‖L1(R+)‖ y − z ‖∞ .

For T small enough such that 2kψ ‖ P ‖L1(R+) T < 1, we deduce that Φ is
a contraction mapping. As a consequence of the Banach fixed-point theorem,
there exists a unique x ∈ C([0, T ],R) which is solution of (1.3).

Iterating the same reasoning on time intervals of size T , one can extend
this result to prove that (1.3) admits a unique solution x ∈ C(R+,R). Finally,
using (1.3), it is clear that x ∈ C1(R+,R), and this concludes the proof.

1.2.2 Numerical simulations

We consider the lifetime function P : a 7→ e−a. This means that a density of
filopodia will exponentially decrease with time, as more and more filopodia
will have disappeared. For the filopodia’s length, we use an experimental value
from [CaVoRi14]. Moreover, we impose a bias on the densities of filopodia
(ψr > ψℓ).

Figure 1.2 represents the cell position and velocity over time computed
with an explicit Euler time discretization and a rectangle integration method
of equation (1.3). What can be observed is that the bias in the produced forces
seems to lead to a non-zero asymptotic velocity. Further simulations with
different parameter values and/or lifetime functions confirm this tendency.

Fig. 1.2. Numerical simulation of a particle speed and trajectory during T = 10h,
for dt = 10−2h, C = 1nN.h.µm−1, k = 1nN.µm−1, ℓ = 20.5µm, and (ψr, ψℓ) =
(1.5, 1).
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1.3 Linear forces

The presence of the positive part function in the previous case prevents getting
analytical properties of the solution. In this section, we will take the following
linearized forces functions:

fr(x(t− a), x(t)) = k (x(t− a) + ℓ− x(t)) ,

fℓ(x(t− a), x(t)) = k (x(t) − x(t− a) + ℓ) ,

with k, ℓ ∈ R
+. This assumption is less relevant from the modelling point of

vue, since if the cell overtakes the tip of a filopodium, then it will experience
a force in the opposite direction. However, for k small enough, and an appro-
priate lifetime function, we can assume that the cell is slow enough so that it
does not reach any existing filopodium tip.

Equation (1.2) can be written as a linear Volterra equation, which will
lead to more analytical results.

1.3.1 Linear Volterra equation formalism

Let us rewrite equation (1.2):

v(t) = k

∫ t

0

P(a)
(

ψr(x(t− a) + l − x(t)) − ψℓ(x(t) − x(t− a) + ℓ)
)

da

= kl(ψr − ψℓ)

∫ t

0

P(a)da+ kψ

∫ t

0

P(a) (x(t − a)− x(t)) da. (1.4)

Denoting Q : t 7→

∫ t

0

P(a)da and integrating by parts, we obtain

v(t) = kℓ(ψr − ψℓ)Q(t) + kψ

(
∫ t

0

Q(a)v(t− a)da−Q(t)x(t)

)

,

since Q(0) = 0 and x(0) = 0. After the change of variable s = t− a, we get

v(t) = f(t)− kψ

∫ t

0

(Q(t)−Q(t− s))v(s)ds, (1.5)

with f(t) = kℓ(ψr − ψℓ)Q(t). (1.6)

which is a linear Volterra integro-differential equation on v.

1.3.2 Existence and uniqueness of a solution

With similar arguments to Theorem 1, we can prove the following property:

Theorem 2. For P ∈ L1(R+), equation (1.5) admits a unique solution v ∈
C(R+,R).
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Remark 3 (The resolvent formalism) Let us define the operator

h ⋆ v : t 7→

∫ +∞

0

h(t, s)v(s)ds.

Equation (1.5) can then be written as a convolution-like equation:

v(t) + (h ⋆ v)(t) = f(t), with

h(t, s) = kψ(Q(t)−Q(t− s))1[0,t](s).

Existence and uniqueness of a solution can be proved by showing that h is a
Volterra kernel of L∞ type. For more details, we refer to [GrLoSt90].

1.3.3 Sign and boundedness property

We now prove a result showing how important the function f is in controlling
the migration. Indeed, it captures no less than the range of forces exerted with
k, aging, and the potential asymmetry ψr − ψℓ in the formation of filopodia.

Theorem 4. If P is positive and decreasing, then the solution to equation
(1.5) satisfies

ψr ≥ ψℓ ⇒ ∀t ≥ 0, v(t) ∈ [0, f(t)],

ψr ≤ ψℓ ⇒ ∀t ≥ 0, v(t) ∈ [f(t), 0].

Proof. First, let us assume that ψr ≥ ψℓ. As a consequence, ∀t ≥ 0, f(t) ≥
0 and f ′(t) ≥ 0. By derivation of (1.5), we obtain

v′(t) = f ′(t)− kψ(Q(t)−Q(0))v(t)− kψ

∫ t

0

(P(t)− P(t− s))v(s)ds,

with f ′(t) = kℓ(ψr−ψℓ)P(t). Suppose there exists t∗ such that ∀t < t∗, v(t) >
0 and v(t∗) = 0, then

v′(t∗) = f ′(t∗)− kψQ(t∗)v(t∗)− kψ

∫ t∗

0

(P(t∗)− P(t∗ − s))v(s)ds

is positive (since all the terms are positive). Consequently, ∀t ≥ 0, v(t) ≥ 0.
This implies that x(t−a)−x(t) ≤ 0, ∀t ≥ a ≥ 0. Going back to the equivalent
equation (1.4), this shows that ∀t ≥ 0, v(t) ≤ f(t). Now, let us assume that
ψℓ ≥ ψr, which means that ∀t ≥ 0, f(t) ≤ 0 and f ′(t) ≤ 0. In a similar
way, if there exists t∗ such that ∀t < t∗, v(t) < 0 and v(t∗) = 0, then v′(t∗) is
negative. And considering again (1.4), we easily show that ∀t ≥ 0, v(t) ≥ f(t),
which concludes the proof.
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1.3.4 Asymptotic velocity

We now give an expression for the asymptotic velocity of the cell. Here again,
f has a crucial importance. The proof of the following result is similar to the
one done in a forthcoming work [GrMaMeNa], and we do not repeat it here.

Theorem 5. Let v be the solution of (1.5), and denote γ = limt→+∞ f(t).
Assume that v is uniformly continuous on R

+. Then,

v(t) −→
t→+∞

v∞ =











γ

1+kψ
∫

+∞

0
aP(a)da

if a 7→ aP(a) ∈ L1(R+),

0 if a 7→ aP(a) /∈ L1(R+).

Having two different cases can be interpreted as follows: if the mean lifetime
of filopodia is finite, then the cell is permanently escaping from the action of
older forces. As a consequence, if ψr−ψℓ 6= 0, it can get off its position all the
time. However, if the mean lifetime of filopodia is infinite, all of them exert
elastic forces on the cell, which will be stabilized in finite time.

1.3.5 Particular cases

Some choices of function P can give more explicit information on the solution.

Infinite existence time of forces (P ≡ 1).

Taking P ≡ 1, we are considering elastic forces that never disappear. Here, P
does not fulfill the hypothesis of Theorem 2, but Theorem 5 applies. Equation
(1.5) writes

v(t) = kℓ(ψr − ψℓ)t− kψ

∫ t

0

sv(s)ds,

and can be solved after derivation with the variation of constants method, to
give

v(t) = v(0)e−kψt
2/2 + ℓ

√

kπ

2
(ψr − ψℓ)

√

e−
kψt2

2

(

1− e−
kψt2

2

)

. (1.7)

Figure 1.3 represents the solution v as well as the corresponding forcing func-
tion f . As expected, the cell is stabilized in finite time. Moreover, we can
observe numerically the sign and boundedness property (given in Theorem
4), where in this case the f(t) bound is optimal.

It is easy to check analytically the convergence of v to v∞ = 0 since we
have the following equivalence:

v(t) ∼
t→+∞

ℓ

√

kπ

2
(ψr − ψℓ)e

−kψt2/4.
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Fig. 1.3. Graph of t 7→ v(t) and t 7→ f(t) for P ≡ 1, with C = 1nN.h.µm−1,
ℓ = 20.5µm, k = 5nN.µm−1, (ψr, ψℓ) = (6, 4) and v(0) = 0.

Exponential decay (P(a) = e
−a)

We assume now that P(a) = e−a, which was the function chosen in Section
1.2.2. All the results demonstrated before apply. However, we can actually
directly solve the equation. Noting thatQ(t) = 1−e−t, equation (1.5) becomes

v(t) = kℓ(ψr − ψℓ)(1− e−t)− k(ψr + ψℓ)e
−tA(t), (1.8)

with A(t) =

∫ t

0

(es − 1)v(s)ds.

Proposition 1. The solution to (1.8) is given by:

v(t) = kℓ(ψr − ψℓ)
(

1− e−t
)

− k2l(ψr − ψℓ)ψe
−(kψ+1)t+kψ−kψe−tJ(t), (1.9)

with J(t) =

∫ t

0

(es + e−s − 2)ekψ(s−1+e−s)ds.

Proof. Deriving A with respect to time leads to:

A′(t) = kℓ(ψr − ψℓ)(e
t + e−t − 2)− kψ(1− e−t)A(t).

Now, by the variation of constant method, we find

A(t) = kℓ(ψr − ψℓ)e
−kψ(t−1+e−t)

∫ t

0

(es + e−s − 2)ekψ(s−1+e−s)ds,

leading to expression (1.9).

As a consequence, an asymptotic equivalent of the solution can be given.
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Theorem 6. The following equivalence holds:

v(t) ∼
t→+∞

kℓ(ψr − ψℓ)

(

1−
kψ

kψ + 1
−

kψ

kψ − 1
e−2t + 2e−t

)

, (1.10)

and v converges to the asymptotic velocity

v∞ := kℓ(ψr − ψℓ)

(

1−
kψ

kψ + 1

)

.

Proof. Using the following equivalence
∫ t

0

eαsds ∼
t→+∞

eαt

α
,

we easily obtain

J(t) ∼
t→+∞

e−kψ
(

e(kψ+1)t

kψ + 1
+
e(kψ−1)t

kψ − 1
− 2

ekψt

kψ

)

.

Considering expression (1.9), we have :

v(t) ∼
t→+∞

kl(ψr − ψℓ)

[

1− kψe−(kψ+1)t

(

e(kψ+1)t

kψ + 1
+
e(kψ−1)t

kψ − 1
− 2

ekψt

kψ

)]

,

which leads to the result.

We can then deduce that the asymptotic behaviour of the cell depends on
the range of filopodial forces k, on the global filopodial activity ψ, and on
the asymmetry ψr − ψℓ. Moreover, the bigger k and ψ are, the faster the cell
velocity reaches equilibrium. The non-trivial equilibrium is a consequence of
the lifetime function that lets newer forces lead motion, whereas the older
ones are "silenced". The initial asymmetry is then maintained over time. On
Figure 1.4, a numerical simulation illustrates this behaviour.

Constant existence time (P(a) = 1[0,τ ](a))

Now, let us look at P(a) = 1[0,τ ](a) with τ > 0, meaning that all filopodia
exert forces during the same finite amount of time. For t ≥ 0, we have

Q(t) =

{

t if t < τ,

τ if t ≥ τ.

Existence and uniqueness of a continuous solution to (1.5) comes from The-
orem 2. Moreover, we can find an explicit solution for t ≤ τ, and bounds for
the solution for t ≥ τ . Equation (1.5) then writes

v(t) = kℓ(ψr − ψℓ)t− kψ

∫ t

0

sv(s)ds, for t ≤ τ, (1.11)

v(t) = kℓτ(ψr − ψℓ)− kψ

∫ t

t−τ

v(s)(τ − (t− s))ds, for t ≥ τ. (1.12)
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Fig. 1.4. Numerical simulation of the exact solution, its equivalent at infinity and
the asymptotic velocity for C = 1nN.h.µm−1, k = 1nN.µm−1, ℓ = 20.5µm and
(ψr, ψℓ) = (1.5, 1).

Theorem 7. The unique solution to equations (1.11)-(1.12) satisfies

v(t) = ℓ(ψr − ψℓ)

√

kπ

2ψ

√

(1− e
−kψ

2
t2) for t ≤ τ, (1.13)

v(τ) exp

(

−kψ
(t2 − τ2)

2

)

≤ v(t) ≤ kℓ(ψr − ψℓ) for t ≥ τ. (1.14)

Proof. Let us first study the case where t ≤ τ . By derivation of (1.11), we
have:

v′(t) = kℓ(ψr − ψℓ)− kψtv(t),

and the variation of constant method leads to expression (1.11).
Let us now consider the case where t ≥ τ . After a change of variable,

equation (1.12) becomes

v(t) = kℓτ(ψr − ψℓ)− kψ

∫ τ

0

(τ − s)v(t − s)ds, (1.15)

= kℓτ(ψr − ψℓ)− kψ

∫ t

0

(t− s)v(t − s)ds+ h(t), (1.16)

with

h(t) = kψ

∫ t

τ

(t− s)v(t− s)ds+ kψ

∫ τ

0

(t− τ)v(t − s)ds.

Since P is positive and decreasing, we deduce from Theorem 4 that ∀t ≥
0, v(t) ≥ 0. Hence, we know that h ≥ 0 on [τ,+∞[. Moreover, derivating h in
t, we obtain
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h′(t) = kψ

(
∫ t

τ

d

dt
((t− s)v(t− s))ds+

∫ τ

0

d

dt
((t− τ)v(t− s))ds

)

,

= kψ ((t− τ)v(t) + (x(t)− x(t − τ))) ≥ 0,

as v ≥ 0. Then, derivating equation (1.16) leads to

v′(t) ≥ −kψtv(t),

from which we deduce

v(t) ≥ v(τ) exp

(

−kψ
(t2 − τ2)

2

)

,

leading to the first inequality. Moreover, as v ≥ 0, the second one is obtained
from equation (1.15), and this concludes the proof.

1.4 Conclusions and perspectives

In this paper, we have introduced a simple deterministic model of 1D cell mi-
gration, based on the filopodial activity of the cell. It describes the formation
of antagonist elastic forces by filopodia on each side of the cell.

This model is not able to describe realistic trajectories, as the filopodial
activity is taken constant, but it relates explicitly filopodial statistics to the
cell velocity and asymptotic behavior, and hence represents a first step in the
global description of cell trajectories from filopodial activity.

In this work, we have studied a realistic case where filopodia stop exerting
a force as soon as the cell has overtook their tips. In this case, the highly non-
linear force prevent us from getting more than an existence and uniqueness
result.

The case of linear elastic forces is richer, as it gave more information about
the sign, boundedness and asymptotic behaviour of the solution. It is impor-
tant to keep in mind that the linear model is realistic only in a particular
setting: if the cell is slow enough, and filopodia’s lifetime short enough, then
they won’t be reached by the cell. Typical velocity and filopodium lifetime are
closely related to the cell type and experimental setting. Indeed, considering
the force kℓ exerted by a filopodium of length ℓ on the substrate, it is known
that ℓ is variable among cell types. Moreover, k highly depends on the rigidity
of the substrate: the more it is rigid, the larger the forces are [LoWaDeWa00].
Another key-player in the filopodial forces is the adhesiveness of the substrate,
that scales how strong it is coupled to filopodia, hence how large forces will
be. However, a very adherent substrate is also less likely to let go of filopo-
dia during the contraction of the cell, leading to a longer lifetime for them.
This results in a bell-shaped curve relating velocity and adhesiveness, as de-
scribed in [PaLoHo97]. As a consequence, it is likely that for a substrate of
low (or very large) adhesiveness and low rigidity, cells velocity would be low
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enough so that the linear model fits with experimental conditions. This first-
step model describing filopodial activity and trajectories is simple enough to
give analytical information about the cell velocity, but still rich enough to be
compared to different kinds of experimental 1D migration assays. In future
works, it will be crucial to consider non constant densities of filopodia, to take
into account the effect of motion itself on the filopodial activity. This would
probably lead to much more realistic trajectories, where changes of direction
would be described.
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