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Abstract—MCTS (Monte Carlo Tree Search) is a well-known
and efficient process to cover and evaluate a large range of states
for combinatorial problems. We choose to study MCTS for the
Computer Go problem, which is one of the most challenging
problem in the field in Artificial Intelligence. For this game, a
single combinatorial approach does not always lead to a reliable
evaluation of the game states. In order to enhance MCTS ability
to tackle such problems, one can benefit from game specific
knowledge in order to increase the accuracy of the game state
evaluation. Such a knowledge is not easy to acquire. It is the result
of a constructivist learning mechanism based on the experience
of the player. That is why we explore the idea to endow the
MCTS with a process inspired by constructivist learning, to
self-acquire knowledge from playing experience. In this paper,
we propose a complementary process for MCTS called BHRF
(Background History Reply Forest), which allows to memorize
efficient patterns in order to promote their use through the MCTS
process. Our experimental results lead to promising results and
underline how self-acquired data can be useful for MCTS based
algorithms.

Index Terms—Monte Carlo Tree Search; Computer-Game;
Reinforcement Learning; Knowledge Engineering

I. INTRODUCTION

In this paper, we propose a self-acquiring knowledge

process to deal with the resolution of hard combinatorial

problems. The generic MCTS enhancement is applied to a

difficult combinatorial game: the game of Go. We observe

that MCTS is a very efficient process to cover a huge set

of states. Nevertheless it does not take full advantage of its

experience. This statement motivates us to explore a new

approach to increase the ability for such a process to capitalize

its experience, which lead us to consider the formed system

as a cognitive system.

The game of Go is a good testbed for Artificial Intelli-

gence [1]. The rules are simple but capturing the underlying

explanations for an efficient sequence of moves remains an

open problem. The human players acquire an advanced repre-

sentation of the game by an extensive practice. This explains

why the best players still defeat computer programs. Indeed

a better representation allows to focus on the most relevant

parts of the game, unlike to the default tree search which

considers all the possible evolutions of the game. In order

to cope with the combinatorial hardness of the problem, a

recurrent approach has been to endow the programs with a

large amount of encoded expert knowledge (rules, patterns,

etc.).

MCTS led to a major breakthrough for the game of Go [2]

and is now applied to a wide set of problems [3]. Contrary to

the former approaches, the evaluations of possible evolutions

are learnt on-line, through random simulations. The program

acquires hence some knowledge about the current situation by

a self-play simulated experience. Nevertheless, MCTS does

not suffice to overcome the combinatorial complexity of the

game of Go yet. The performance of the programs stagnate

for an increasing number of simulations, even combined with

expert knowledge [4]. In our understanding, past a certain

threshold, the pure computational approach cannot be a sub-

stitute for a better cognitive integration of the experience.

A promising way to increase the efficiency of a program

would be to enhance its ability to accumulate knowledge

about its simulated experience. The general idea consists in

a better assimilation of the inherent knowledge associated

with the states covered by MCTS. This approach has been

partially considered in the literature but we claim and argue

that this kind of process can be improved in many ways. With

our approach BHRF (Background History Reply Forest), we

choose to endow the program with the ability to memorize

patterns learnt on-line and adapt their estimated value during

the game. These patterns will influence back the simulations

in order to enrich the simulated experience. This paper give

insights about the potential of such an approach. Note that our

results mainly focus on the quality of the learning rather than

the effective performance in a competitive setting.

More details about BHRF will be provided in Section III.

The MCTS baseline and the main knowledge endowment will

be presented in Section II. Experimental results are given and

analyzed in Section IV. A conclusion and some perspectives

are drawn in Section V.

II. HOW TO COMPLEMENT MCTS ?

MCTS progressively weights by self-play several possible

evolutions of the game. However, additional knowledge can

substantially enhance the learning process. A brief presentation

of the MCTS process along with its dynamic is presented in

Section II-A. Section II-B reviewed the main enhancement in

the current programs based on MCTS and Section II-C details

the underlying data structure.



Figure 1: Monte Carlo Tree Search process
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Figure 2: Generalized policy iteration process for MCTS

An extensive presentation of MCTS and its enhancements

is beyond the scope of this paper, we invite the reader to refer

to [3] for more details.

A. Monte Carlo Tree Search

The standard MCTS algorithm gradually expands a search

tree starting from the current state. The four steps descent,

growth, roll-out and update (see Figure 1) are iteratively

applied until we meet some restraining constraints (time,

memory or iteration number). The descent policy covers the

tree and selects a new node to sample. The growth phase adds

a node to the tree search. From this node, the roll-out policy

generates the remaining moves until the simulation reaches

a final state. The update phase finally propagates back the

outcome in the tree search.

The value learnt in the search tree are tightened with the

underlying policies. On the one hand, the descent policy

considers the node’s values to reach the most promising node

to deepen. On the other hand, the outcome of the simulated

end game adjusts the values of the node selected during

the descent and influence back the next descent policy. The

interaction between the policy and the learnt values refers to

the generalized policy iteration process [5].

In MCTS, the policy iteration involves also a roll-out policy.

This policy generates the last moves leading to the final state

and therefore contributes to the learning process. However the

roll-out policy does not benefit from the learnt weights. The

purpose of the presented method is to influence back the roll-

out policy as presented in Figure 2.

B. Enhanced policy iteration process

As pointed out by the generalized policy iteration, the

policies play a major role in the learning. The descent and roll-

out policies have been progressively enhanced to cope with

the issues addressed by each phase. In this section, the main

enhancements for each policy are reviewed from a Go-specific

and a more general perspective.

Over the iterations, the node’s weights are progressively

refined and the descent policy has to focus quickly on the

most promising parts of the tree. For the game of Go, expert

off-line knowledge may efficiently promote states consequent

to interesting moves and avoid silly ones. This knowledge may

enhance the search by biasing the values or pruning the tree

[6]. From a broader perspective, the Upper Confidence bound

applied to Tree [7] considers the number of updates to achieve

a good balance between the exploration of current sub-optimal

states and the exploitation of the current best states.

A pure random roll-out policy generates many non-

representative final states whose outcome slows the learning

of the system. Thus, the roll-out policies generally involve

additional knowledge to enhance the relevance of the final

states. For the game of Go, the sequence-like policies suc-

cessfully consider expert or off-line knowledge to guide the

simulations [8]. However such a roll-out policy is difficult to

improve because it has to balance carefully the distribution

of the final states to cover [9]. A promising way consists in

designing adaptive (rather than static) roll-out policies.

General-game approaches such as N-Grams [10] propose

more adaptive kind of knowledge. They enhance the roll-

out policy with move sequences evaluated on-line. However

the move sequences considered come from the roll-out itself

rather from the search tree. To the best of our knowledge, the

Pool-RAVE enhancement [11] is the only attempt to exploit

knowledge coming from the tree but considers single moves

rather than sequences. A pool of potential best moves are

picked up during the descent and re-exploited in the roll-out.

This method achieves good results for the roll-out policies

without expert knowledge but does not intend to learn explicit

knowledge from the tree. Such a learning requires the adequate

underlying data-structure as presented in Section II-C.

The search tree actually stores the outcomes of the sim-

ulations. Following this perspective, MCTS becomes then a

cognitive problem: how to capitalize the simulated experience

of the system ? This is a long-term issue and, in our approach,

we will focus on the memorization of raw moves sequences

coming from the tree.

C. Knowledge data structure

The policies select the action to perform based on the

knowledge available for the system. The data-structure sup-

porting this knowledge has an high influence on how this

knowledge may be re-exploited. Current programs based on

MCTS handle different kinds of knowledge. In the present

paper, we differentiate the knowledge learnt in the search tree

from the additional knowledge considered in the enhanced

policies. The latter shall be applied to different situations
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Figure 3: Additional knowledge for MCTS

contrary to the node’s knowledge which is specific to a single

game state. In this section, the main knowledge data-structures

are reviewed for both kind of knowledge.

In the best Go-program, the expert knowledge involved

in descent and roll-out policies considers immediate reply

to small spatial context. For each pattern, the surrounding

positions stand for the context and the middle move corre-

sponds to an appropriated reply (Figure 3a). This knowledge

successfully simulate local fights in sequence-like policies but

is insufficiently expressive to evaluate states with multiple

independent sub-problems. Indeed spatial patterns alone are

not able to express the diversity of a sequential decision

process [12].

The general-game approach considers immediate reply to

small temporal context (or pattern). For each pattern, the first

moves stand for the context and the last move stands for

an appropriated reply (Figure 3b). This context is generally

small. One of the most relevant approach is detailed in [13]

and considers up to two moves for the context. However this

short term perimeter for the contexts may raise a short-sighted

phenomenon, i.e., the so formed sequences can be applied to

many different states but are not relevant for each of them.

Previous attempts such as the move answer tree in [14] or the

local tree in [15] propose to specialize the temporal pattern

but does not provide effective results yet.

The values learnt in the search tree corresponds to the

estimated win probability of the specific game states covered

during the descent phase. This knowledge is not prone to be re-

exploited in similar states (except for the very same game state

see [16]). As pointed out in [17], if a branch of the tree learns

a sequence of actions that solves a local sub-problem, this

sequence has to be rediscovered in the other branches where

this sub-problem occurs. Moreover each time the opponent has

played his move, one has to prune the tree to keep only the

subtree associated with the moves that are effectively played.

As a result, the knowledge accumulated in the other branches

is also lost.

The purpose of our approach is to design temporal pattern

in order to extract the knowledge inside the search tree. We

choose to extend the size of the patterns so that they can

specialize to more specific contexts, as for the search tree.

Figure 4: Background History Reply Forest process

III. A TRANSVERSAL DATA STRUCTURE TO COMPLETE

MCTS

Our proposal is generic, and can be applied to MCTS

whatever the considered problem. The purpose of our approach

is to increase the system ability to memorize data, and also its

ability to adapt it to close applicative contexts. The overall idea

of BHRF is presented in Section III-A and an implementation

in detailed in Section III-B.

A. Background History Reply Forest

We propose to build up an independent data-structure to

complement the Monte Carlo tree and allow transversal know-

ledge memorizing. In order to improve the roll-out reliability,

we choose to exploit the self-acquired and long-term data to

influence the roll-out policy. Moreover the purpose of this

contribution is to produce a policy that improves the learning

process using knowledge that is already gathered. Therefore,

the sequence estimation process is fed by the current sequence

played during the descent phase, according to the simulation

outcome (Winning, Undefined, Loosing).

We then extract from the considered contexts small sub-

sequences giving rise to many local contexts to learn. Pro-

gressively, the contexts are refined, i.e., their sizes increase.

As presented in Figure 4, the accumulated knowledge is stored

inside a forest. The root of each tree stands for a reply while

considering a context formed by a path between a leaf and the

root. The set of all reply trees defines the Background History

Reply Forest (BHRF).

B. Knowledge accumulation and exploitation

During the update phase, MCTS and BHRF are indepen-

dently updated using the same simulation outcomes. The

BHRF update is detailed through two algorithms.

First, considering knowledge acquiring, we cover each move

of the descent sequence and launch a reply tree update

(Algorithm 1). Indeed, the whole descent sequence contains



Algorithm 1 update algorithm - Reply Forest

procedure UPDATEREPLYFOREST(

descentSequence: Array<Move>,

outcome: Result {Win, Undefined, Lost})
//descentSequence: moves selected in the last tree descent

//outcome: result of the simulation following the descent

for i ← descentSequence.size −1 to 0 do

rt: ReplyTree

rt ← self.getReplyTree(descentSequence[i])

// the reply tree leading to move i is considered

if opponentMove(i) then

rt.updateTree(i,descentSequence,inv(outcome))

else

rt.updateTree(i,descentSequence,outcome)

end if

end for

end procedure

Algorithm 2 update algorithm - Reply Tree

procedure UPDATETREE(i: int,

descentSequence: Array<Move>,

outcome: Result {Win, Undefined, Lost})
//i: position of the reply move in the descentSequence

nodeCreated: Boolean

mv: Move

nodeCreated ← false

childNode, lastNode: Node

lastNode ← self.getRoot()

// the root node of the tree corresponds to the reply

while i > 0 && ¬ nodeCreated do

i ← i −1
mv ← descentSequence[i]

childNode ← lastNode.getDirectChild(mv)

if childMove == null then

childMove ← lastNode.createChild(mv)

childMove.updateMean(outcome)

nodeCreated ← true

else

childMove.updateMean(outcome)

lastNode ← childNode

end if

end while

end procedure

many different context-move associations to memorize. The

details of the tree update process is presented in Algorithm 2.

As for MCTS, the node estimates are updated each time a

stored sequence matches with the current one. For each reply

tree, new nodes are regularly added and the whole structure

is kept over the turns. We do not restrain accumulation and

gather as much data as possible to refine contexts.

Second, considering knowledge exploitation presented in

Algorithm 3, the roll-out policy controls the involvement

of BHRF during the simulation process. Within the set of

Algorithm 3 roll-out policy

procedure ROLLOUTPOLICY(lastMoves: Array<Move>) :

Move

//lastMoves: moves previously selected (temporal context)

candidate: Move

lstCandidate: List<Move>

//Probability ǫ to use BHRF

if randomValue() < ǫ then

for m: Move ∈ legalMoves() do

// Gets the best estimated candidate matching the context

candidate =

getReplyTree(m).BestCandidate(lastMoves)

if candidate 6= null then

lstCandidate.add(candidate)

end if

end for

// Selects the reply according to Equation 1

candidate =

BestCandidateSoftMaxUct(lstCandidate)

if randomValue() < candidate.uctEstimate() then

return candidate

else

return defaultRandomMove()

end if

end if

end procedure

legal replies, the process can select a move among the ones

matching a memorized context.

Since a richer context defines a more accurate knowledge,

we promote the use of the longest context sequences. A

softMax policy picks up one sequence among the selected ones

based on their UCT estimates as follows1:

P (r|c) =

x̄r|c + b×

√

ln
∑

i∈C
ni|c

nr|c

∑

i∈C
P (i|c)

, (1)

where

r : legal reply

c : context

C : set of legal replies for context c

x̄r|c : average result of r in c

b : UCT bias term

nr|c : selection number of r in c

The associated reply is finally selected according to its

estimate value. If no sequence matches, the default policy is

applied. The ǫ parameter sets the using rate for BHRF in the

simulation process.

1the bias term b has been set to 0.7 empyrically



IV. EXPERIMENTAL RESULTS

In this section, we study the influence of this self-acquired

knowledge over the learning process. The experiments proto-

col is exposed in Section IV-A. The results presented in Sec-

tion IV-B show that BHRF successfully catches the knowledge

of the tree search and Section IV-C highlights that this tree

knowledge may successfully complement an expert roll-out

policy.

A. Experimental setup

The BHRF heuristic has been implemented using the open

source framework Fuego (version 1.1) [18]. This framework

offers the main enhancements for MCTS computer-go pro-

grams such as UCT and expert knowledge. In this program,

the expert knowledge is used to initialize the new node of the

tree search and also for the roll-out policy.

In the following experiments, the program with the BHRF

heuristic competes against the same baseline program without

BHRF2. The common settings of both programs are the same

(if not mentioned). The settings we will further consider in

the experiments are the following:

• Board size (△): 9x9,19x19: determines the difficulty of

the game played. The search space is huge on 19x19 and

the program has to focus even more on game state of

interest. Moreover games on wider boards produce more

complex situations which may not be covered by expert

knowledge.

• roll-out simulations (H): 1k, ..., 10k, 30k: corre-

sponds to the maximum number of simulations granted.

A larger value generates a more accurate tree knowledge

and therefore a better descent policy.

• roll-out expert knowledge (�): True, False: defines

whether the roll-out policy involves expert knowledge or

not.

• BHRF: ǫ = 0 .. 100% (�): tunes the rate of exploita-

tion of the self-acquired knowledge in the roll-out phase.

In this article we mainly focus on the potential for using

such a knowledge, rather than on the next-step optimisation.

That is why we considers both programs with equal number

of simulations rather than equal time. Considering our lightly

optimized BHRF algorithms and a middle range hardware

configuration (Intel(R) Core(TM) i7-2600 CPU 3.40 GHz

with 8GB memory), the BHRF module tends to slow down

the computing time from 4 to 12 times, according to the

game size and the roll-out simulation number. The present

implementation is not competitive on equal time settings but

provides a substantial improvement in the learning quality.

B. Increasing efficiency due to Self-acquired knowledge

For these experiments, competing programs are both set

without expert roll-out knowledge but both programs initialize

the node value using prior expert knowledge. In Table I, we

report the values of BHRF knowledge for 9x9 and 19x19

game sizes with the maximum number of roll-out simulations

allowed.

2All game results are provided with 95% confidence interval

-10

-5

 0

 5

 10

-10 -5  0  5  10

Board size = 9x9/19x19 Simulations = 10k/30k/100k

Expert roll-out = FALSE ε = 100

Simulations 10000 30000 100000

goban 9x9 +17.3%± 1.6 +16.9%± 2 +18%± 2.6

goban 19x19 +24.3%± 3.5 +26.6%± 2.5 +27.7%± 3.4

Table I: Success rate for the BHRF approach (opposed to the

same configuration without BHRF)

The program that considers self-acquired knowledge, signif-

icantly outperforms the baseline program in all the configura-

tions and whatever is the number of allowed simulations. Pool-

RAVE [11] provides similar results for the game of Go without

expert roll-out knowledge3. These results confirm further the

interest of using knowledge from the search tree in the roll-out.

One can note that for 19x19 game size, BHRF slightly

stresses its advance while the roll-out simulation increases. As

the 19x19 game size involves a huge combinatorial space, it is

suitable to enhance the difference between different programs’

efficiency. Whatever the considered settings, BHRF highly

outperform the baseline program.

In order to appreciate the BHRF ability to manage and

benefit from complementary knowledge, we choose to vary the

available number of roll-out simulations available for BHRF,

while keeping it constant (fixed to 10k) for the baseline pro-

gram. As shown in Figure 5, BHRF outperforms the baseline

program as soon as it reaches the half of the available number

of roll-out simulations of the baseline program. However, as

mentioned previously, the process of real-time self-acquiring

knowledge is time-consuming and a further optimization is

required before being time-competitive with the current pro-

grams.

These results are very encouraging, and show that BHRF

successfully embeds the knowledge of the tree. The knowledge

used to initialize the tree node is the same that the one

normally used in expert roll-out policies. Therefore BHRF

integrates these knowledge along with the knowledge acquired

by the simulation outcomes.

C. Competition with full expert knowledge programs

The knowledge accumulated by BHRF is exploited during

roll-out, but how does this knowledge face expert roll-out rules

used by professional-level computer-go programs ?

In this section, we choose to involve expert knowledge

heuristics for BHRF roll-out as a second choice. When no

move is selected by the BHRF roll-out policy, the standard

rules originating from Fuego roll-out policy are applied. BHRF

competes then with Fuego set to the best of its ability.

In Figure 6, we show that BHRF outperforms Fuego when

we use BHRF data moderately (ǫ around 15). The number of

simulation was set to 30k in order to accumulate substantial

data about the game. A low ǫ value involves more exploration

through the general MCTS process. BHRF nevertheless allows

3Their results are provided only for the 9x9 game size.
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to significantly increase the global performance while memo-

rizing efficient situated patterns.

The expert knowledge involved in the roll-out policy plays

locally, around the last move generated. On 9x9 board local

fights cover quickly the whole board but on 19x19 board, local

fights have to consider also the situation in other area of the

board. As mentioned before, our data-structure embeds the

expert and the self-acquired knowledge of the tree. BHRF

knowledge may adjust this locality according to the state

covered in the tree. Therefore the enhanced roll-out policy

benefits from knowledge adapted to the real situation.

V. CONCLUSION

This paper proposes new enhancements to complete the

well-known MCTS search process in the context of combi-

natorial games. We show that a better assimilation of the

knowledge learnt by MCTS may enhance the performance

of the system. As presented in this paper, the knowledge

stored in the search tree is not prone to be re-exploited. A

promising way is to consider MCTS as a cognitive system.

Indeed, a better assimilation of this knowledge allows to adapt

it to different situations and may avoid to learn redundant

patterns among the branches [17] for instance. Moreover, such

an approach may provide better insights on how the system

considers its simulated experience and therefore the underlying

mechanisms of MCTS.

The data-structure detailed in this paper, is a raw manner

to memorize adaptive knowledge coming form the search tree.

The presented results show that this data-structure successfully

catches such a knowledge (Section IV-B) and this knowledge

may actually complement expert knowledge (Section IV-C).

In particular, a professional program combined with BHRF

achieves up to a 11% increase in performance. These results

points out the potential of such an approach though the

slow down of the learning process prevents from experiments

with constant time yet. We decided to apply our algorithm

to the game of Go because this problem is demanding in

terms of knowledge, nevertheless the current implementation is

designed for a general-game perspective. A more time-efficient

implementation may consider characteristics of the game such

as the locality of the reply but this was beyond the scope of

the present paper.
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