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Abstract. Initially, the use of pairings did not involve any secret entry.
However in an Identity Based Cryptographic protocol, one of the two
entries of the pairing is secret, so fault attack can be applied to Pairing
Based Cryptography to �nd it. In [18], the author shows that Pairing
Based Cryptography in Weierstrass coordinates is vulnerable to a fault
attack. The addition law in Edwards coordinates is such that the expo-
nentiation in Edwards coordinates is naturally protected to Side Channel
attacks. We study here if this property protects Pairing Based cryptog-
raphy in Edwards coordinates against fault attacks.
Key words: Pairing Based Cryptography, Edwards coordinates, fault
attack.

1 Introduction

Originally, pairings were used in a destructive way. Pairings convert the discrete
logarithm problem from an elliptic curve subgroup to the discrete logarithm
problem in a �nite �eld. This property was used in the MOV [29] and Frey Ruck
attack [19] . This pairing property permits the construction of new protocols. The
�rst constructive use of pairings was the tripartite key exchange of A. Joux [22]. It
was followed by original protocols like Identity Based Cryptography (IBC), which
was introduced by D. Boneh and M. Franklin in 2001 [10], or short signature
schemes [20].

The use of pairings in IBC involves a secret entry during the pairing
calculation. Several pairing implementations exist, for example [32] and [5]. Side
Channel Attacks (SCA) against pairing based cryptography were �rst developed
three years ago ([30], [33] and [24]).

In [30], D. Page and F. Vercauteren introduce a fault attack against the
particular case of the Duursma and Lee algorithm. The fault attack consists in
modifying the number of iterations of the algorithm. This idea was complete
in [18] in application to the Miller algorithm in Weierstrass coordinates. In [33]
the authors conclude that if the secret is used as the �rst argument of the
pairing computation, then it can not be found. This countermeasure is not one, as
concluded in [18]. This three articles consider the case of Weierstrass coordinates.
Recently, Edwards coordinates were introduced for computing pairings [6, 8, 23,
3].



Edwards curves became interesting for elliptic curve cryptography when it
was proved by Bernstein and Lange in [7] that they provide addition and dou-
bling formulas faster than all addition formulas known at that time. The advan-
tage of Edwards coordinates is that the addition law can be complete and thus
the exponentiation in Edwards coordinates is naturally protected against Side
Channel Attacks.

Our contribution is to �nd out if Pairing Based Cryptography in Edwards
coordinates is protected against fault attack. We show that a fault attack against
the Miller algorithm in Edwards coordinates can be done through the resolution
of a non linear system.

The outline of this article is as follow.
First we will give a short introduction to pairings in SectionMiller. After that

we recall the background of Edwards coordinates in Section and to pairing in
Edwards coordinates in Section 3 and to pairing based Cryptography in Section
4. Section 5 presents our fault attack against Pairing Based Cryptography in
Edwards coordinates, �nally, we conclude in Section 6.

2 Pairings and the Miller algorithm

First, we recall the de�nition and property of pairings, before introducing the
property of Edwards curves and Pairing Based Cryptography over Edwards
curves.

2.1 A short introduction to pairings

In this section we give a brief overview of the de�nitions of pairings on elliptic
curves and of Miller's algorithm [28] used in pairing computation. Let q be a
prime power not divisible by 2, E an elliptic curve over Fq and r a prime factor
of #(E(Fq)). Suppose r2 does not divide #(E(Fq)) and k be the embedding

degree with respect to r, i.e. the smallest integer such that r divides qk − 1. We
denote O the point at in�nity of the elliptic curve.

De�nition 1. A pairing is a bilinear and non degenerate function:

e : G1 ×G2 → G3

(P,Q)→ e(P,Q)

where G1 and G2 are subgroups of order r on the elliptic curve and G3 is generally
µr, the subgroup of the r-th roots of unity in Fqk . In general we take G1 =
E(Fq)[r] and G2 ⊂ E(Fqk)[r], where we denote by E(K)[r] the subgroup of
K-rational points of order r of the elliptic curve E. We also denote E[r] the
subgroup of points of order r de�ned over the algebraic closure of Fq.

Let P ∈ G1, Q ∈ G2. The goal of Miller's algorithm is to construct a rational
function fs,P associated to the point P and to some integer s and to evaluate



this function at the point Q (in fact at a divisor associated to this point). The
function fs,P is such that the divisor associated to it is:

div(fs,P ) = s(P )− (sP )− (s− 1)(O).

Suppose we want to compute the sum of iP and jP . Take h1 the line going
through iP and jP and h2 the vertical line through (i+ j)P . Miller's idea was
to make use of the following relation

fi+j,P = fi,P fj,P
h1

h2
, (1)

in order to compute fs,P iteratively. Moreover, Miller's algorithm uses the double-
and-add method to compute fs,P in log2(s) operations [28].

The reduced Tate pairing

The reduced Tate pairing, denoted êTate, is de�ned by:

G1 ×G2 7→ G3

(P,Q) 7→ êTate(P,Q) = fr,P (Q)
pk−1
r .

3 Background on Edwards curves

De�nition and properties Edwards showed in [16] that every elliptic curve
E de�ned over an algebraic number �eld is birationally equivalent over some
extension of that �eld to a curve given by the equation:

x2 + y2 = c2(1 + x2y2). (2)

In this paper, we use the notion of Twisted Edwards curves denoted Ea,d and
de�ned over a �eld Fq, where q is a power of prime di�erent from 2 :

Ea,d := {(x, y) ∈ F2
q such that ax2 + y2 = 1 + dx2y2}

They were introduced by Bernstein et al in [8] as a generalization of Edwards
curves.

On a twisted Edwards curve, we consider the following addition law:

(x1, y1), (x2, y2)→
(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
. (3)

The neutral element of this addition law is O = (0, 1). For every point P =
(x, y) the opposite element is −P = (−x, y).

In [7], it was shown that this addition law is complete when d is not a square.
This means it is de�ned for all pairs of input points on the Edwards curve with
no exceptions for doubling, neutral element etc.

In the following sections we use projective coordinates. A projective point
(X,Y, Z) satisfying (aX2 + Y 2)Z2 = Z4 + dX2Y 2 and Z 6= 0 corresponds to
the a�ne point (X/Z, Y/Z) on the curve ax2 + y2 = 1 + dx2y2. The Edwards
curve has two points at in�nity (0 : 1 : 0) and (1 : 0 : 0). The fastest formulas
for computing pairings over Edwards curves are given in [3].



3.1 Pairings over Edwards curves

For e�ciency reasons, we restrict the domain of the Tate pairing to a product
of cyclic subgroups of order r on the elliptic curve. In general, the point P can
be chosen such that 〈P 〉 is the unique subgroup of order r in E(Fq). In order to
get a non-degenerate pairing, we take Q a point of order r, Q ∈ E(Fqk)\E(Fq).
Moreover, if the embedding degree is even, it was shown that the subgroup
〈Q〉 ⊂ E(Fqk) can be taken so that the x-coordinates of all its points lie in Fqk/2
and the y-coordinates are products of elements of Fqk/2 with

√
α, where α is a

non square in Fqk/2 and
√
α is in Fqk (see [25, 3] for details).

The same kind of considerations apply to Edwards curves and Twisted Ed-
wards curves [3]. Using the trick of [25] the pointQ ∈ E(Fqk) is written (XQ

√
α;YQ;ZQ)

using a twist of degree 2. The element XQ, YQ, ZQ and α are in Fqk/2 and√
α ∈ Fqk . The point P is written (X,Y, Z) with X, Y and Z ∈ Fq. In the

following algorithm we used the denominator elimination trick [25].

Algorithm 1: Miller (P,Q, s)
Data: s = (sn . . . s0)(binary decomposition), P ∈ G1 Q ∈ G2;
Result: fs,P (Q) ∈ G3;
T ← P , f ← 1,
for i = n− 1 to 0 do

T ← [2]T and f ←− f2 × gd(Q)
if si = 1 then

T ← T + P and f ←− f × ga(Q)
end

end

return f = fs,P (Q) ∈ F∗
qk

Fig. 1. Miller's algorithm

The equation of the function gd and ga are described in the following Sections.

Doubling step We now take a look into the details of the computation of
a Miller iteration. The doubling step is done for each iteration of the Miller's
algorithm. We note T = (X1, Y1, Z1). Following [3] the doubling formulas for
2T = (X3, Y3, Z3) are:

X3 = (2X1Y1)(2Z2
1 − aX2

1 − Y 2
1 ),

Y3 = Y 4
1 − a2X4

1 ,

Z3 = (aA2
1 + Y 2

1 )(2Z2
1 − aA2

1 − Y 2
1 ).

The function gd has the following equations:

gd(Q) = cZ2η′
√
α+ cXY y0 + cXZ



where

η′ =
ZQ + YQ
XQ

and y0 =
YQ
ZQ

,

cZ2 = X1(2Y 2
1 − 2Y1Z1),

cXY = 2Z1(Z2
1 − aX2

1 − Y1Z1),
cXZ = Y1(2aX2

1 − 2Y1Z1).

Addition step This step is done only when the current bit of s is equal to
1. We note T = (X1, Y1, Z1) and P = (XP , YP , ZP ). Following [3] the addition
formulas for T + P = (X3, Y3, Z3) in extended Edwards form are:

T1 =
X1Y1

Z1
and TP =

XPYP
ZP

,

X3 = (T1ZP + TPZ1)(X1YP −XPY1),
Y3 = (T1ZP + TPZ1)(Y1YP + aX1XP ),
Z3 = (X1YP −XPY1)(Y1YP + aX1XP ).

The function ga has the following equations:

ga(Q) = cZ2η′
√
α+ cXY y0 + cXZ

where

η′ =
ZQ + YQ
XQ

and y0 =
YQ
ZQ

,

cZ2 = X1XP (Y1ZP − YPZ1),
cXY = Z1ZP (X1ZP − Z1XP +X1YP − Y1XP )
cXZ = XPYPZ

2
1 −X1Y1Z

2
P + Y1YP (XPZ1 −X1ZP ).

4 Identity based cryptography

The aim of identity based encryption is that the users public key are their iden-
tity, and a trusted authority sends them their private key. This trusted authority
creates all the private keys related to an identity based protocol. The general
scheme of identity based encryption is described in [10].

The most useful property in pairing based cryptography is bilinearity:

∀(n,m) ∈ Z2, e([n]P, [m]Q) = e(P,Q)nm.

Pairings permit several protocol simpli�cations and original scheme creation,
for example Identity Based Cryptography (IBC) protocols. A nice survey of
protocols using pairings is done in [15]. A recent book [17] is dedicated to IBC.



The general scheme of an identity based encryption is described in [10], we
brie�y recall it. We describe an exchange between Alice and Bob using the Boneh
and Franklin scheme [10].

The public data are an elliptic curve E de�ned over Fq, for q a power of
a prime p, G1 a sub-group of E and G3 a sub-group of Fqk , where k is the
embedding degree of E relatively to r = #G1, a pairing e : G1 ×G1 → G3, and
Ppub a generator of G1. Let H1 : {0, 1}? → G1, H2 : G1 → {0, 1}n, be two hash
functions, with n the bitlenght of the message.

The public key of Bob is QB = H1(IdB) ∈ G1, where IdB is the identity
of Bob. His private key is constructed by a trusted authority denoted TA. TA
chooses an integer s kept secret and computes Kpub = [s]Ppub ∈ G1 the public
key of the protocol, and the private key of Bob by PB = [s]QB ∈ G1.

With the public data Alice can compute QB = H1(IdB), and the pairing
gB = e(QB ,Kpub).

She chooses an integer m and sends to Bob C = 〈[m]Ppub,M ⊕H2(gmB )〉,
which we denote C = 〈U, V 〉.

To decipher the message C, Bob recover his private key and compute V ⊕
H2(e(PB , U)).

Considering the property of bilinearity :

e(PB , U) = e([s]QB , [m]Ppub) = e(QB , [s]P )m = e(QB ,Kpub)m = gmB .

Consequently, Bob can read the message by computing V ⊕H2(gmB ).

The important point is that to decipher a message using an Identity Based
Protocol, a computation of a pairing involving the private key and the message
is done. Side Channel Attacks can be therefore applied to �nd this secret. The
particularity of Identity Based Protocol is that an attacker can know the algo-
rithm used, the number of iterations and the exponent. The secret is only one
of the arguments of the pairing. The secret key in�uences neither the execution
time nor the number of iterations of the algorithm.

5 Fault Attack against Pairing Based Cryptography

The goal of a fault injection attack is to provoke mistakes during the calcula-
tion of an algorithm, for example by modifying the internal memory, in order to
reveal sensitive date. This attack needs very precise timing, position and expen-
sive apparatus to be performed. Nevertheless, new technologies could allow this
attack [21].



5.1 Description of the fault attack

The goal of a fault injection attack is to provoke mistakes during the calculation
of an algorithm, for example by modifying the internal memory, in order to reveal
sensitive data. This attack needs a very precise positioning and an expensive
apparatus to be performed. Nevertheless, new technologies could allow for this
attack [21].

We follow the scheme of attack described in [30] and completed in [18]. We
assume that the pairing is used during an Identity Based Protocol, the secret
point is introduced in a smart card or an electronic device and is a parameter
of the pairing. In order to �nd the secret, we modify the number of iterations in
the Miller's algorithm by the following way.

First of all, we have to �nd the �ip-�ops belonging to the counter of the
number of iterations (i.e. log2(s)) in the Miller's algorithm. This step can be
done by using reverse engineering procedures. Once we found it, we provoke
disturbances in order to modify it and consequently the number of iterations of
the Miller's algorithm. For example the disturbance can be induced by a laser [2].
Lasers are nowadays thin enough to make this attack realistic [21]. Counting the
clock cycles, we are able to know how many iterations the Miller loop has done.
Each time, we record the value of the Miller loop and the number of iterations
we made. The aim is to obtain a couple (τ, τ + 1) of two consecutive values,
corresponding to τ and τ + 1 iterations during the Miller's algorithm.

We denote the two results by Fτ,P (Q) and Fτ+1,P (Q). To conclude the attack,
we consider the ratio

Fτ+1,P (Q)
Fτ,P (Q)2 . By identi�cation in the basis of Fqk , we are lead

to a system which can reveal the secret point, which is described in Section 5.4.
The probability for obtaining two consecutive numbers is su�ciently large to

make the attack possible [18]. In fact, for an 8-bits architecture only 15 tests are
needed to obtain a probability larger than one half, P (15, 28) = 0.56, and only
28 for a probability larger than 0.9.

5.2 The τ th step

We execute the Miller algorithm several times. For each execution we provoke
disturbance in order to modify the value of log2(s), until we �nd the result of
the algorithm execution for two consecutive iterations, the τ th and (τ + 1)th

iterations of algorithm 1. We denote the two results by Fτ,P (Q) and Fτ+1,P (Q).
After τ iterations, the algorithm 1 will have calculated [j]P . During the (τ+1)th

iteration, it calculates [2j]P and considering the value of the (τ + 1)th bit of
log2(s), it either stops at this moment, or it calculates [2j + 1]P . In order to
simplify the equations, we consider k = 4, but the method described can be
generalised for k ≥ 4. We denote B = {1, γ,

√
α, γ
√
α} the basis used for written

the elements of Fqk , this basis is constructed by a tower extensions [4].

5.3 Finding j

We know log2(s), the order of the point Q,( as P and Q have the same order). By
counting the number of clock cycles during the pairing calculation, we can �nd



the number τ of iterations. Then reading the binary decomposition of log2(s)
gives us directly j. We consider that at the beginning j = 1, if sn−1 = 0 then
j ← 2j, else j ← 2j+1, and we go on, until we arrive to the (n−1−τ)th bit of s.
For example, let s = 1000010000101 in basis 2, and τ = 5, at the �rst iteration
we compute [2]P , at the second, as sn−1 = 0 we only make the doubling, so we
calculate [4]P , it is the same thing for the second, third and fourth step so we
have [32]P in T .

At the �fth iteration, sn−6 = 1, then we make the doubling and the addition,
so j = 2× 32 + 1, i.e. j = 65.

5.4 Curve and equations

In [30, 34, 18], only the a�ne coordinates case is treated. In [30, 34], a simple
identi�cation of the element in the basis of Fqk gives the result. Here, the di�er-
ence between these cases and Edwards coordinates is that we solve a nonlinear
system.

Using the equation of the pairing calculation proposed in Section 3.1, we
�nd a nonlinear system of k equations using the equality g(Q) = R, where g(Q)
de�nes the equation of update of f during the Miller's algorithm. This system is
solvable with the resultant method. To solve the system in Edwards coordinates
we need k to be greater than 2.

The embedding degree. In order to simplify the equations, we consider case
k = 4. As the important point of the method is the identi�cation of the de-
composition in the basis of Fqk , it is easily applicable when k is larger than
2.

We denote B = {1, γ,
√
α, γ
√
α} the basis of Fqk , constructed by a tower ex-

tensions. The point P ∈ E(Fq) is given in Jacobian coordinates, P = (XP , YP , ZP )
and the point Q ∈ E(Fqk) also. As k is even, we can use a classical optimisation
in pairing based cryptography which consists in using the twisted elliptic curve
to write Q = (XQ

√
α;YQ;ZQ), with XQ, YQ, ZQ and α ∈ Fq2 and

√
α ∈ Fq4 ,

as described in Section 3.1.

Case 1: sτ+1 = 0. We know the results of the τ th and (τ + 1)th iterations
of the Miller's algorithm, Fτ,P (Q) and Fτ+1,P (Q). We examine what happens
during the (τ + 1)th iteration.

The doubling step gives:

Fτ+1,P (Q) = (Fτ,P (Q))2 × gd(Q)

As we suppose that sτ+1 = 0, the additional step is not done. The return result of
the Miller's algorithm is Fτ+1,P (Q) = (Fτ,P (Q))2 gd(Q). We dispose of Fτ,P (Q),
Fτ+1,P (Q) and the point Q = (XQ

√
α;YQ;ZQ), with XQ, YQ and ZQ ∈ Fq2 .

Recall that the coordinates of Q can be freely chosen and that we describe the



attack for k = 4, this can easily be generalised for k > 4.
We can calculate the value R ∈ F∗qk of the ratio

Fτ+1,P (Q)

(Fτ,P (Q))2
,

R = R3γ
√
α+R2

√
α+R1γ +R0,

where R3, R2, R1, R0 ∈ Fq.
Moreover, we know the theoretical form ofR in the basisB = {1, γ,

√
α, γ
√
α}

which depends of coordinates of jP and Q:

R = gd(Q) = cZ2η′
√
α+ cXY y0 + cXZ ,

where the cZ2 , CXY , cXZ are in Fq and η′, y0 ∈ Fq2 .

When the secret is the �rst argument

This position was presented as a counter measure to SCA in [33]. We know
the point Q, thus the value of η′ and y0 ∈ Fq2 and their decomposition in Fq2 ,
η′ = η′0 +η′1γ, y0 = y00 +y01γ, where (1, γ) de�nes the basis of Fq2 . The elements
cZ2 , cXY and cXZ are in Fq. Using the equality :

cZ2(η′0 + η′1γ)
√
α+ cXY (y00 + y01γ) + cXZ = R0 +R1γ +R2

√
α+R3γ

√
α

by identi�cation in the basis of Fqk , we obtain, after simpli�cation, the fol-
lowing system of equations in Fq :

cXZ = λ2

cXY = λ1

cZ2 = λ0

The value λ0, λ1 and λ2 are known. With the resultant method we recover
the coordinates of the secret point P . An example is given in the appendix.
When the secret is the second argument

We know the point P , thus the value of cZ2 , cXY and cXZ ∈ Fq. Using the
equality :

cZ2(η′0 + η′1γ)
√
α+ cXY (y00 + y01γ) + cXZ = R0 +R1γ +R2

√
α+R3γ

√
α

By identi�cation in the basis of Fqk , we can recover the value η′ and y0, and
thus the coordinate of the point Q.{

η′0 = R2
cZ2

and η′1 = R3
cZ2

,

y00 = R0−cXZ
cXY

and y01 = R1
cXY

Indeed, once we have y0

(
= YQ

ZQ

)
, using the elliptic curve we can �nd the

value of x0

(
= XQ

ZQ

)
, and the coordinates of point Q.



Case 2: sτ+1 = 1. In this case, the (τ + 1)th iteration involves the addition
in the Miller's algorithm.

Thus, at the (τ + 1)th iteration, Miller's algorithm compute Fτ+1,P (Q) =
(Fτ,P (Q))2 gd(Q)ga(Q). We could repeat the scheme of the previous case, and
thanks the resolution of a non linear system, we can recover the secret point,
whatever its position is. TO obtain the system, we juste have to develop the
product gd(Q)ga(Q). Using the polynomial reduction for the base of Fpk/2 and
Fpk , we �nd the system by identi�cation in this basis.

6 Conclusion

We have study if the Miller algorithm in Edwards coordinates is vulnerable to a
fault attack. We demonstrate that it is the case, whatever is the position of the
secret. Consequently, the property of Edwards curves does not protect Pairing
Based Cryptography in Edwards coordinates toward fault attack. A discussion
about weakness to this fault attack of pairings based on this algorithm was done
in [18]. The authors shows that the Weil pairing is directly sensitive to the fault
attack described, and presents some methods to override the �nal exponentiation
are given; and then, for a motivated attacker, the �nal exponentiation will no
longer be a natural counter measure for the Tate and Ate pairings [12]. Thus
implementation of Pairing Based Cryptography in Edwards coordinates must be
protected. A possible protection could be to use an asynchrone clock to confuse
the attack and physical shield to protect the counter.
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A The probability for the fault attack.

The important point of this fault attack is that we can obtain two consecutive
couples of iterations, after a realistic number of tests. The number of picks with
two consecutive number is the complementary of the number of picks with no
consecutive numbers. The number B(n,N) of possible picks of n numbers among
N integers with no consecutive number is given by the following recurrence
formula: 

N ≤ 0, n > 0, B(n,N) = 0,
∀N,n = 0B(n,N) = 1

B(n,N) =
∑N
j=1

∑n
k=1B(n− k, j − 2).

With this formula, we can compute the probability to obtain two consecutive
numbers after n picks among N integers. This probability P (n,N) is

P (n,N) = 1− B(n,N)
Cnn+N

B Example of resolution of a system

We consider the Edwards elliptic curves given in [6]: E1,−1 over Fq
with q = 2520 + 2363− 2360− 1.

We consider that after a di�erential attack, we obtain the following values
for cZ2 and cXY :





cZ2 = 34048376154121925359113429375521510393131211202148147144793425
34029342793292985388461167229695405257330782051548185233985909
779032338455011920894108938681807,

cXY = 17520806845701679087874508433242642859361996080064213725858540
91707452190313544768238501361334785917437694094417592638973798
599912880388265119459167942503698

To solve the system
X(2Y 2 − 2Y Z) = cZ2 ,

2Z(Z2 − aX2 − Y Z) = cXZ ,

(aX2 + Y 2)Z2 = Z4 + dX2Y 2,

we use the following Pari-GP [31] code:

q = 2^520 + 2^363 - 2^360 - 1;

a=Mod(1,q);

d=Mod(-1,q);

cZZ = 34048376154121925359113429375521510393131211202148147144793425\

34029342793292985388461167229695405257330782051548185233985909\

779032338455011920894108938681807;

cXY = 17520806845701679087874508433242642859361996080064213725858540\

91707452190313544768238501361334785917437694094417592638973798\

599912880388265119459167942503698;

We construct the polynomial corresponding to each line of the system:

x = X*(2*Y^2-2*Y*Z) - cZZ;

y = - cXY + 2*Z*(Z^2-a*X^2-Y*Z);

z = (a*X^2+Y^2)*Z^2 - Z^4 - d*X^2*Y^2;

We apply the resultant method to obtain one equation in one unknown value:

Z1 = polresultant(x,y,X);

Z2 = polresultant(x,z,X);



Z3 = polresultant(Z1,Z2,Y);

Z3 is the �nal equation in Z, it is an equation of degree 16. We can �nd the
solution of this equation:

polrootsmod(Z3,p)

We �nd 4 solutions in Z.
We are looking for points on the elliptic curve, thus Z must be di�erent from

0. So we have 3 possible values.

[Mod(0, q),

Mod(901525105405827680078932099881135208347014760557116161414786496\

6898087582081014331390758210475534342660764975515278975723117752716\

4343816634597476491061913,q),

Mod(943029634660650213489325189263739902235878374981732742513043934\

8268937376183411243681855740333148594089845464209933234063573499498\

86909641710082304101633132,q),

Mod(239921668486407187599373200028884318556413779905064814412212597\

7692123342437202117570816442035015313748006996320319779030774725627\

052961436635715286188378362, q)]~

To each of the 3 non zero value, using equation Z2 we �nd one value for Y :

Z = Mod(901525105405827680078932099881135208347014760557116161414786496\

6898087582081014331390758210475534342660764975515278975723117752716\

4343816634597476491061913,q)

Y = [Mod(2616647236923767714125198006192101918016786492107325345575050999892\

174925093897971705778547452808016256451379938199954909912375542916450574\

500329476293105973,q)]~

Z = Mod(943029634660650213489325189263739902235878374981732742513043934\

8268937376183411243681855740333148594089845464209933234063573499498\

86909641710082304101633132,q)

Y = [Mod(56777,q)]~

Z = Mod(239921668486407187599373200028884318556413779905064814412212597\

7692123342437202117570816442035015313748006996320319779030774725627\

052961436635715286188378362, q)]



Y = Mod(8157515931415371433657523933485946906179311579807671572015975622958\

230307824554135471310507202775003271478125582659372844508775611877643204\

80065590487910657,q)

Using these 3 couples of values, we �nd 6 triplets and an exhaustive research
gives us the correct secret point.


