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Abstract. Miller’s algorithm is at the heart of all pairing-based cryp-
tosystems since it is used in the computation of pairing such as that of
Weil or Tate and their variants. Most of the optimizations of this al-
gorithm involve elliptic curves of particular forms, or curves with even
embedding degree, or having an equation of a special form. Other im-
provements involve a reduction of the number of iterations.
In this article, we propose a variant of Miller’s formula which gives rise to
a generically faster algorithm for any pairing friendly curve. Concretely,
it provides an improvement in cases little studied until now, in particular
when denominator elimination is not available. It allows for instance the
use of elliptic curve with embedding degree not of the form 2i3j , and
is suitable for the computation of optimal pairings. We also present a
version with denominator elimination for even embedding degree. In our
implementations, our variant saves between 10% and 40% in running
time in comparison with the usual version of Miller’s algorithm without
any optimization.

1 Introduction

Pairings were first introduced into cryptography in Joux’ seminal paper describ-
ing a tripartite (bilinear) Diffie-Hellman key exchange [20]. Since then, the use
of cryptosystems based on bilinear maps has had a huge success with some
notable breakthroughs such as the first identity-based encryption scheme [10].
Nevertheless, pairing-based cryptography has a reputation of being inefficient,
because it is computationally more expensive than cryptography based on mod-
ular arithmetic. On the other hand, the use of pairings seems to be essential in
the definition of protocols with specific security properties and also allows one
to reduce bandwidth in certain protocols.
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Ever since it was first described, Miller’s algorithm [24] has been the central
ingredient in the calculation of pairings on elliptic curves. Many papers are
devoted to improvements in its efficiency. For example, it can run faster when the
elliptic curves are chosen to belong to specific families (see for example [4, 6, 12]),
or different coordinate systems (see for example [18, 13, 7]). Another standard
method of improving the algorithm is to reduce the number of iterations by
introducing pairings of special type, for example particular optimal pairings [26,
17, 16] or using addition chains (see for example [8]).

In this paper we study a variant of Miller’s algorithm for elliptic curves
which is generically faster than the usual version. Instead of using the formula
fs+t = fsft

`s,t
vs+t

(see Subsection 2.2 for notation and Lemma 1) on which the

usual Miller algorithm is based, our variant is inspired by the formula
fs+t = 1

f−sf−t`−s,−t
(see Lemma 2 for a proof). An important feature is that

the only vertical line that appears is f−1, in other words the vertical line passing
through P , and even this does not appear explicitly except at initialization. We
shall see in § 3.1 why it does not appear in the addition step. Our algorithm is
of particular interest to compute the Ate-style pairings [3, 17] on elliptic curves
with small embedding degrees k, and in situations where denominator elimina-
tion using a twist is not possible (for example on curves with embedding degree
prime to 6). A typical example is the case of optimal pairings [26], which by def-
inition only require about log2(r)/ϕ(k) (where r is the group order) iterations of

the basic loop. If k is prime, then ϕ(k ± 1) ≤ k+1
2 which is roughly ϕ(k)

2 = k−1
2 ,

so that at least twice as many iterations are necessary if curves with embedding
degrees k ± 1 are used instead of curves of embedding degree k.

The paper is organized as follows. In Section 2 we recall some background on
pairings, and recall the usual Miller algorithm (Figure 1). In Section 3 we explain
and analyze generically our version of Miller’s algorithm, which is resumed by the
pseudocode in Figure 2 when the elliptic curve is given in Jacobian coordinates.
Section 4 discusses a variant without denominators applicable when k is even (see
Figure 5). Section 5 describes some numerical experiments and running times;
in an example with k = 18 and r having 192 bits, the algorithm of Figure 5 is
roughly 40% faster than the usual Miller algorithm, and about as fast as the
algorithm of [4].

Further work is needed to see whether many of the recent ideas used to
improve the usual Miller algorithm can be adapted to the variant presented
here. We believe that doing so should lead to further optimizations.

2 Background on Pairings

2.1 Basics on Pairings

We briefly recall the basic definitions and some examples of pairings used in
cryptography. For further information, see for example [9, 11].

We let r ≥ 2 denote an integer which, unless otherwise stated, is supposed to
be prime. We let (G1,+), (G2,+) and (GT , ·) denote three finite abelian groups,



which are supposed to be of order r unless otherwise indicated. A pairing is
a map e : G1 × G2 → GT such that e(P1 + P2, Q) = e(P1, Q)e(P2, Q) and
e(P,Q1 + Q2) = e(P,Q1)e(P,Q2) for all P , P1, P2 ∈ G1 and for all Q, Q1,
Q2 ∈ G2. We say that the pairing e is left non degenerate if, given P ∈ G1 with
P 6= 1, there exists Q ∈ G2 with e(P,Q) 6= 1. The notion of a right degenerate
pairing is defined similarly and e is said to be non degenerate if it is both left
and right non degenerate

We recall briefly one of the most frequent choices for the groups G1, G2 and
GT in pairing-based cryptography. Here, G1 is the group generated by a point
P of order r on an elliptic curve E defined over a finite field Fq of characteristic
different to r. Thus, G1 ⊆ E(Fq) is cyclic of order r but, in general, the whole
group E[r] of points of order dividing r of E is not rational over E(Fq). Recall
that the embedding degree of E (with respect to r) is the smallest integer k ≥ 1
such that r divides qk − 1. A result of Balasubramanian and Koblitz [2] asserts
that, when k > 1, all the points of E[r] are rational over the extension Fqk of
degree k of Fq. The group G2 is chosen as another subgroup of E[r] of order r.
Finally, GT is the subgroup of order r in F×

qk
; it exists and is unique, since r

divides qk − 1 and F×
qk

is a cyclic group.

Let P ∈ E(Fq) be an r-torsion point, let DP be a degree zero divisor with
DP ∼ [P ]− [OE ], and let fr,DP

be such that div fr,DP
= rDP . Let Q be a point

of E(Fqk) (not necessarily r-torsion) and DQ ∼ [Q] − [OE ] of support disjoint
with DP . Consider

eTr (P,Q) = fr,DP
(DQ). (1)

Weil reciprocity shows that if DQ is replaced by D′Q = DQ + div h ∼ DQ, then
(1) is multiplied by h(DP )r. So the value is only defined up to r-th powers.
Replacing DP by D′P = DP + div h changes fr,DP

to fr,D′P = fr,DP
hr, and the

value is well-defined modulo multiplication by r-th powers. If then Q is replaced
by Q + rR, the value changes again by an r-th power. This leads to adapting
the range and domain of eTr as follows.

Theorem 1. The Tate pairing is a map

eTr : E(Fq)[r]× E(Fqk)/rE(Fqk)→ F×
qk
/(F×

qk
)r

satisfying the following properties:

1. Bilinearity,
2. Non-degeneracy,
3. Compatibility with isogenies.

The reduced Tate pairing computes the unique rth root of unity belong-

ing to the class of fr,DP
(DQ) modulo (F×

qk
)r as fr,DP

(DQ)(qk−1)/r. In practice,

we take Q to lie in some subgroup G2 of order r of E(Fqk) that injects into
E(Fqk)/rE(Fqk) via the canonical map. The more popular Ate pairing [3] and
its variants (see [23] for instance) are optimized versions of the Tate pairing when
restricted to Frobenius eigenspaces. Besides its use in cryptographic protocols,



the Tate pairing is also useful in other applications, such as walking on isogeny
volcanoes [19], which can be used in the computation of endomorphism rings of
elliptic curves.

However, in this article we concentrate on the computation of fn,DP
(DQ)

(which we write as fn,P (Q) in the sequel). This is done using Miller’s algorithm
described in the next subsection.

2.2 Computation of Pairings and Miller’s Algorithm

In order to emphasize that our improvement can be applied in a very general
context, we explain briefly in this subsection how pairings are computed. In what
follows, F denotes a field (not necessarily finite), E an elliptic curve over F and
r an integer not divisible by the characteristic of F. We suppose that the group
E(F) of F-rational points of E contains a point P of order r. Since r is prime to
the characteristic of F, the group E[r] of points of order r of E is isomorphic to
a direct sum of two cyclic groups of order r. In general, a point Q ∈ E[r] that is
not a multiple of P will be defined over some extension F′ of F of finite degree.

If P , P ′ are two points in E(F), we denote by `P,P ′ a function with divisor
[P ] + [P ′] + [−(P + P ′)] − 3[OE ] and by vP a function with divisor
[P ]+[−P ]−2[OE ]. Clearly these functions are only defined up to a multiplicative
constant; we recall at the end of this section how to normalize functions so that
they are uniquely determined by their divisor. Note that vP is just the same as
`P,−P .

If s and t are two integers, we denote by fs,P (or simply fs if there is no
possibility of confusion) a function whose divisor is s[P ]− [sP ]− (s−1)[OE ]. We
abbreviate `sP,tP to `s,t and vsP to vs. As understood in this paper, the purpose
of Miller’s algorithm is to calculate fs,P (Q) when Q ∈ E[r] is not a multiple
of P . All pairings can be expressed in terms of these functions for appropriate
values of s.

Miller’s algorithm is based on the following Lemma describing the so-called
Miller’s formula, which is proved by considering divisors.

Lemma 1. For s and t two integers, up to a multiplicative constant, we have
fs+t = fsft

`s,t
vs+t

.

The usual Miller algorithm makes use of Lemma 1 with t = s in a doubling
step and t = 1 in an addition step. It is described by the pseudocode in Figure 1,
which presents the algorithm updating numerators and denominators separately,
so that just one inversion is needed at the end. We write the functions ` and
v as quotients (N`)/(D`) and (Nv)/(Dv), where each of the terms (N`), (D`),
(Nv), (Dv) is computed using only additions and multiplications, and no inver-
sions. Here the precise definitions of (N`), (D`), (Nv), (Dv) will depend on the
representations that are used; in Section 3.2 we indicate one such choice when
short Weierstrass coordinates and the associated Jacobian coordinates are used.
In the algorithm, T is always a multiple of P , so that the hypothesis that Q
is not a multiple of P implies that at the functions `T,T , `T,P , v2T and vT+P



cannot vanish at Q. It follows that f and g never vanish at Q so that the final
quotient f/g is well-defined and non-zero.

Algorithm 1: Miller(P,Q, s) usual

Data: s =
∑l−1

i=0 si2
i (radix 2), si ∈ {0, 1}, Q ∈ E(F′) not a multiple of P .

Result: fs,P (Q).
T ← P , f ← 1, g ← 1,
for i = l − 2 to 0 do

f ← f2(N`)T,T (Dv)2T ,
g ← g2(D`)T,T (Nv)2T ,
T ← 2T
if si = 1 then

f ← f(N`)T,P (Dv)T+P ,
g ← g(D`)T,P (Nv)T+P ,
T ← T + P

end

end
return f/g

Fig. 1. The usual Miller algorithm

Obviously in any implementation it is essential for the functions appearing in
the programs to be uniquely determined, and so we end this section by recalling
briefly how this can be done in our context. If w is a uniformizer at OE , we say
that the non-zero rational function f on E is normalized (or monic) with respect
to w if the Laurent expansion of f at OE is of the form

f = wn + cn+1w
n+1 + cn+2w

n+2 + · · · , ci ∈ F,

(i. e. if the first non-zero coefficient is 1). Any non-zero rational function on E can
be written in a unique way as a product of a constant and a normalized function,
and the normalized rational functions form a group under multiplication that is
isomorphic to the group of principal divisors.

As a typical example, when E is in short Weierstrass form

y2 = x3 + ax+ b, a, b ∈ F (2)

one can take w = x
y . Any rational function on E can be written as a quotient of

two functions whose polar divisors are supported at the origin OE of E. If f is
a function whose only pole is at OE , then there exist two polynomials U(x) and
V (x) such that f = U(x) + V (x)y: here U and V are uniquely determined by f .
Furthermore, if the order of the pole of f is n, then n ≥ 2 and U(x) is of degree
n
2 and V (x) of degree at most n−4

2 if n is even and V (x) is of degree n−3
2 and

U(x) of degree at most n−1
2 when n is odd. Then f is normalized if and only if,



when f is written in the form U(x) + V (x)y, U(x) is monic when n is even and
V (x) is monic when n is odd. In general, a rational function on E is normalized
if and only if it is a quotient of two normalized functions whose polar divisors
are supported by the origin.

For example, when E is given by the equation (2), the functions

`T,P (x, y) =

{
y − yP − yT−yP

xT−xP
(x− xP ), T 6= OE , ±P,

y − yP − 3x2
P +a

2yP
(x− xP ), T = P, 2P 6= OE .

and
vP (x, y) = x− xP

are normalized, so that if they are used in implementations of the algorithms
given in Figures 1 and 2, then these algorithms output fs,P (Q) with fs,P the
normalized function with divisor s[P ]− [sP ]− (s− 1)[OE ].

3 Our Variant of Miller’s Algorithm

In this section, we describe our variant of Miller’s formula and algorithm and
analyze the cost of the latter in terms of basic operations.

3.1 The Algorithm

The main improvement comes from the following Lemma.

Lemma 2. For s and t two integers, up to a multiplicative constant, we have

fs+t =
1

f−sf−t`−s,−t
.

Proof. This lemma is again proved by considering divisors. Indeed,

div(f−sf−t`−s,−t) = (−s)[P ]− [(−s)P ] + (s+ 1)[OE ]

+(−t)[P ]− [(−t)P ] + (t+ 1)[OE ]

+[−sP ] + [−tP ] + [(s+ t)P ]− 3[OE ]

= −(s+ t)[P ] + [(s+ t)P ] + (s+ t− 1)[OE ]

= −div(fs+t),

which concludes the proof. ut

We shall seek to exploit the fact that here the right hand member has only
three terms whereas that of Lemma 1 has four.

Our variant of Miller’s algorithm is described by the pseudocode in Figure 2.
It was inspired by the idea of applying Lemma 2 with t = s or t ∈ {±1}. However,
the scalar input is given in binary representation. It updates numerators and
denominators separately, so that only one final inversion appears at the end. As



in Figure 1, the hypothesis that Q is not a multiple of P implies that at no stage
do f and g vanish, so that the final quotient f/g makes sense. Note that T is
always a positive multiple of P . We use the notation `′−T,−P for the function
f−1`−T,−P , since in many situations it can be computed faster than simply by
computing f−1 and `−T,−P and taking the product. For example, when E is
given in short Weierstrass coordinates by the equation y2 = x3 + ax + b, a,
b ∈ F, we have

`′−T,−P = f−1`−T,−P =
1

xQ − xP
(
yQ + yP + λ(xQ − xP )

)
=
yQ + yP
xQ − xP

+ λ, (3)

where
yQ+yP
xQ−xP

can be precomputed (at the cost of one inversion and one mul-

tiplication in the big field) and λ denotes the slope of the line joining T to
P .

The tables in Figures 3 and 4 show that our variant is more efficient than the
classical Miller’s algorithm as we save a product in the big field at each doubling
and each addition step. We also save some multiplications and squarings in
F. The following subsection discusses all this in more detail. In Section 4 we
describe a version without denominators that works for elliptic curves with even
embedding degree.

3.2 Generic Analysis

In this subsection, we compare the number of operations needed to compute
fs,P (Q) using the algorithms in Figures 1 and 2. In order to fix ideas, we make
our counts using Jacobian coordinates (X,Y, Z) associated to a short Weierstrass
model y2 = x3 + ax + b, a, b ∈ F, so that x = X/Z2 and y = Y/Z3. We
suppose that the Jacobian coordinates of P lie in F and that those of Q lie in
some extension F′ of F of whose degree is denoted by k. We denote by ma the
multiplication by the curve coefficient a and we denote respectively by m and
s multiplications and squares in F, while the same operations in F′ are denoted
respectively by Mk and Sk if k is the degree of the extension F′. We assume
that F′ is given by a basis as a F-vector space one of whose elements is 1, so that
multiplication of an element of F′ by an element of F counts as k multiplications
in F. We ignore additions and multiplications by small integers.

If S is any point of E, then XS , YS and ZS denote the Jacobian coordinates
of S, so that when S 6= OE , the Weierstrass coordinates of S are xS = XS/Z

2
S

and yS = YS/Z
3
S . As before, T is a multiple of P , so that XT , YT and ZT all lie in

F. Since P and Q are part of the input, we assume they are given in Weierstrass
coordinates and that ZP = ZQ = 1.

We need to define the numerators and the denominators of the quantities
appearing in the algorithms of Figures 1 and 2. The cost of computing these
quantities and the total cost of these algorithms are analyzed in Figures 3 and
4.



Algorithm 2: Miller(P,Q, r) modified

Data: s =
∑l−1

i=0 si2
i, si ∈ {0, 1}, sl−1 = 1, h Hamming weight of s, Q ∈ E(F′)

not a multiple of P
Result: fs,P (Q);
f ← 1, T ← P ,
if l + h is odd then

δ ← 1, g ← f−1

end
else

δ ← 0, g ← 1
end
for i = l − 2 to 0 do

if δ = 0 then1

f ← f2(N`)T,T ,
g ← g2(D`)T,T ,
T ← 2T , δ ← 1
if si = 1 then2

g ← g(N`′)−T,−P ,
f ← f(D`′)−T,−P ,
T ← T + P , δ ← 0

end

end
else3

g ← g2(N`)−T,−T ,
f ← f2(D`)−T,−T ,
T ← 2T , δ ← 0
if si = 1 then4

f ← f(N`)T,P ,
g ← g(D`)T,P ,
T ← T + P , δ ← 1

end

end

end
return f/g

Fig. 2. Our modified Miller algorithm



The doubling step. We first deal with doubling. Suppose that 2T 6= OE ,
which will always be the case if r is odd. Then yT 6= 0 and the slope of the
tangent to E at T is

µT =
3x2

T + a

2yT
=

(Nµ)T
(Dµ)T

,

where (Nµ)T = 3X2
T + aZ4

T and (Dµ)T = 2YTZT = (YT + ZT )2 − Y 2
T − Z2

T .
Hence the value of `T,T at Q can be written

`T,T (Q) = yQ − yT − µT (xQ − xT ) =
(N`)T,T
(D`)T,T

,

where now

(N`)T,T = (Dµ)TZ
2
T yQ − (Nµ)TZ

2
TxQ − 2Y 2

T − (Nµ)TXT

and
(D`)T,T = (Dµ)TZ

2
T .

The coordinates X2T , Y2T and Z2T of 2T are given by
X2T = (Nµ)2

T − 8XTY
2
T ,

Y2T = (Nµ)T (4XTY
2
T −X2T )− 8Y 4

T ,

Z2T = (Dµ)T .

Hence the value of v2T at Q can be calculated as

v2T (Q) = xQ − x2T =
(Nv)2T

(Dv)2T
,

where (Dv)2T = Z2
2T and (Nv)2T = Z2

2TxQ −X2T .
In the modified algorithm, we also need to compute `−T,−T at Q. But the

coordinates of −T are (xT ,−yT ), so that we can write

`−T,−T (Q) = yQ + yT + µT (xQ − xT ) =
(N`)−T,−T
(D`)−T,−T

,

with
(N`)−T,−T = (Dµ)TZ

2
T yQ + (Nµ)TZ

2
TxQ + 2Y 2

T − (Nµ)TXT

and
(D`)−T,−T = (Dµ)TZ

2
T .

All the operations needed in the doubling steps of the algorithms in Figures 1
and 2 are shown in detail in Figure 3. The quantities are to be computed in the
order shown in the table, a blank entry indicating that the corresponding quan-
tity need not be computed in the case indicated at the top of the corresponding
column. The costs of the computations are calculated assuming that the results
of intermediate steps are kept in memory. An entry 0 indicated that the quantity
has already been calculated at a previous stage.



Quantity Formula Classical Miller Modified Miller Modified Miller

(Fig. 1) (Fig. 2, loop 1) (Fig. 2, loop 3)

(Nµ)T 3X2
T + aZ4

T ma + 3s ma + 3s ma + 3s

(Dµ)T 2YTZT = (YT + ZT )2 − Y 2
T − Z

2
T 2s 2s 2s

(N`)T,T (Dµ)TZ
2
T yQ − (Nµ)TZ

2
T xQ

−2Y 2
T − (Nµ)TXT (3 + 2k)m (3 + 2k)m

(D`)T,T (Dµ)TZ
2
T 0 0

X2T (Nµ)2T − 8XTY
2
T s + m s + m s + m

Y2T (Nµ)T (4XTY
2
T −X2T )− 8Y 4

T s + m s + m s + m

Z2T (Dµ)T 0 0 0

(Dv)2T Z2
2T s

(Nv)2T Z2
2T xQ −X2T km

(N`)−T,−T (Dµ)TZ
2
T yQ + (Nµ)TZ

2
T xQ

+2Y 2
T − (Nµ)TXT (3 + 2k)m

(D`)−T,−T (Dµ)TZ
2
T 0

f ← f2(N`)T,T (Dv)T,T km + Sk + Mk

g ← g2(D`)T,T (Nv)T,T km + Sk + Mk

f ← f2(N`)T,T Sk + Mk

g ← g2(D`)T,T km + Sk

f ← f2(D`)−T,−T km + Sk

g ← g2(N`)−T,−T Sk + Mk

TOTAL ma + 8s ma + 7s ma + 7s

+(5 + 5k)m +(5 + 3k)m +(5 + 3k)m

+2Sk + 2Mk +2Sk + Mk +2Sk + Mk

Fig. 3. Analysis of the cost of generic doubling

The addition step. Next we deal with addition. When T 6= ±P , the slope of
the line joining T and P is

λT,P =
yT − yP
xT − xP

=
(Nλ)T,P
(Dλ)T,P

,

where (Nλ)T,P = YT − yPZ3
T and (Dλ)T,P = XTZT − xPZ3

T .
It follows that the value of `T,P at the point Q is given by

yQ − yP − λ(xQ − xP ) =
(N`)T,P
(D`)T,P

,

where we precompute yQ−yP and xQ−xP , and the numerator and denominator
are given by

(N`)T,P = (Dλ)T,P (yQ − yP )− (Nλ)T,P (xQ − xP )

and
(D`)T,P = (Dλ)T,P .

The coordinates XT+P , YT+P and ZT+P of T + P are then given by
XT+P = (Nλ)2

T,P − (XT + xPZ
2
T )(XT − xPZ2

T )2,

YT+P = −(Dλ)3
T,P yP + (Nλ)T,P (xP (Dλ)2

T,P −XT+P ),

ZT+P = (Dλ)T,P .



It follows that we can write the value of vT+P at Q as

vT+P (Q) = xQ − xT+P =
(Nv)T+P

(Dv)T+P
,

with (Nv)T+P = xQZ
2
T+P −XT+P and (Dv)T+P = Z2

T+P .
When the loop beginning with line 2 of Figure 2 is used, we need to calculate

`′−T,−P at Q. In fact, using equation (3), we can write

`′−T,−P (Q) =
yQ + yP
xQ − xP

+
(Nλ)T,P
(Dλ)T,P

.

If
yQ+yP
xQ−xP

has been precomputed and has value αQ,P , we can write

`′−T,−P (Q) =
(N`′)−T,−P
(D`′)−T,−P

,

with (N`′)−T,−P = (Dλ)T,PαQ,P + (Nλ)T,P and (D`′)−T,−P = (Dλ)T,P .
All the operations needed in the addition steps of the algorithms in Figures 1

and 2 are shown in detail in Figure 4. As with the doubling step, the quantities
are to be computed in the order shown in the table, a blank entry indicating that
the corresponding quantity need not be computed in the case indicated at the
top of the corresponding column. The costs of the computations are calculated
assuming that the results of intermediate steps are kept in memory. An entry 0
indicated that the quantity has already been calculated at a previous stage.

3.3 The main result

The following theorem recapitulates the number of operations in our variant of
Miller’s algorithm.

Theorem 2. Suppose E is given in short Weierstrass form y2 = x3 + ax + b
with coefficients a, b ∈ F. Let P ∈ E(F) be a point of odd order r ≥ 2 and let Q
be a point of E of order r with coordinates in an extension field F′ of F of degree
k. We assume P and Q given in Weierstrass coordinates (xP , yP ) and (xQ, yQ).

1. Using the associated Jacobian coordinates, the algorithms of Figures 1 and
2 can be implemented in such a way that all the denominators (D`)T,T ,
(D`)T,P , (Dv)2T , (Dv)T+P and (D`′)−T,−P belong to F.

2. When this is the case:
(a) Each doubling step of the generic usual Miller algorithm takes ma+8s+

(5 + 5k)m + 2Sk + 2Mk operations while in the generic modified Miller
algorithm it requires only ma + 7s + (5 + 3k)m + 2Sk + Mk operations.

(b) Each addition step of the generic usual Miller algorithm takes 4s + (8 +
5k)m+ 2Mk operations. On the other hand, the generic modified Miller
algorithm requires only 3s + (8 + 2k)m + Mk operations when line 2 is
needed and 3s + (8 + 3k)m + Mk operations when line 4 is needed.



Quantity Formula Classical Miller Modified Miller Modified Miller

(Fig. 1) (Fig. 2, loop 2) (Fig. 2, loop 4)

(Dλ)T,P (XT − xPZ
2
T )ZT s + 2m s + 2m s + 2m

(Nλ)T,P YT − yPZ3
T 2m 2m 2m

(N`)T,P (Dλ)T,P (yQ − yP )

−(Nλ)T,P (xQ − xP ) 2km 2km

(D`)T,P (Dλ)T,P 0 0

XT+P (Nλ)2T,P −XT (XT − xPZ
2
T )2

−xPZ
2
T (XT − xPZ

2
T )2 2s + 2m 2s + 2m 2s + 2m

YT+P −yPZ3
T (XT (XT − xPZ

2
T )2

−xPZ
2
T (XT − xPZ

2
T )2)

+(Nλ)T,P (xPZ
2
T (XT − xPZ

2
T )2

−XT+P ) 2m 2m 2m

ZT+P (Dλ)T,P 0 0 0

(Nv)T+P xQZ
2
T+P −XT+P s + km

(Dv)T+P Z2
T+P 0

(N`′)−T,−P αQ,P (Dλ)T,P + (Nλ)T,P km

(D`′)−T,−P (Dλ)T,P 0

f ← f(N`)T,P (Dv)T+P km + Mk

g ← g(D`)T,P (Nv)T+P km + Mk

f ← f(D`′)−T,−P km

g ← g(N`′)−T,−P Mk

f ← f(N`)T,P Mk

g ← g(D`)T,P km

TOTAL 4s + (8 + 5k)m 3s + (8 + 2k)m 3s + (8 + 3k)m

+2Mk +Mk +Mk

Fig. 4. Analysis of the cost of generic addition

We have made no serious attempt to minimize the number of operations, for
example by using formulas similar to those in [1].

Since the first part of Theorem 2 implies that, when F is a finite field with q
elements, we have

(D`)q−1
T,T = (D`)q−1

T,P = (Dv)q−1
2T = (Dv)q−1

T+P = (D`′)q−1
−T,−P = 1,

denominator elimination is possible when we only need to calculate fs,P (Q) to
some power divisible by q − 1. Such an algorithm saves at least km operations
both in the classical version and our variant.

Our new version of Miller’s algorithm works perfectly well for arbitrary em-
bedding degree. For example, using Theorem 2 of [16], it should be possible
to find an elliptic curve with a prime embedding degree minimizing the num-
ber of iterations. Optimal pairings [26] involve in their computation a product∏`
i=0 f

qi

ci,Q
(P ) whose terms can be computed with our algorithm. Note that

switching P and Q will lead to more computations in the extension field, but it
is shown in [23] that optimized versions of the Ate and the twisted Ate pairing
can be computed at least as fast as the Tate pairing. Note that Heß [16] §5,
also mentions pairings of potential interest when k is odd and the elliptic curve
has discriminant −4 and when k is not divisible by 3 and the elliptic curve has
discriminant −3.



4 Curves with even embedding degree

Currently, most implementations (where F is a finite field) are adapted to curves
with embedding degree 2i3j , since the usual version of Miller’s algorithm can
be implemented more efficiently. Indeed, such curves admit an even twist which
allows denominator elimination [4, 5]. In the case of a cubic twist, denominator
elimination is also possible [22]. Another advantage of embedding degrees of the
form 2i3j is that the corresponding extensions of F can be written as composite
extensions of degree 2 or 3, which allows faster basic arithmetic operations [21].

In what follows, we discuss a version with denominator elimination of our
variant adapted to even embedding degrees. Similar ideas have been used before,
for example in [22] or [13]. We suppose that F is a finite field of odd cardinality
q which we denote by Fq. We consider an elliptic curve E with short Weierstrass
model y2 = x3 +ax+b with a, b ∈ Fq. We suppose that E(Fq) contains a point P
with affine coordinates (xP , yP ) of order an odd prime r and embedding degree
k. If n ≥ 1 is an integer, we denote by Fqn the extension of degree n of Fq in a
fixed algebraic closure of Fq.

We suppose for the rest of this section that k is even. Let γ be a non-square
element of Fqk/2 and fix a square root β in Fqk of γ, so that every element of
Fqk can be written in a unique way in the form x+ yβ with x, y ∈ Fqk/2 . Then
one knows that E[r] contains non zero points Q = (xQ, yQ) that satisfy xQ,
yQ/β ∈ Fqk/2 . In fact, if π denotes the Frobenius endomorphism of E over Fq
given by π(x, y) = (xq, yq), then π restricts to an endomorphism of E[r] viewed
as a vector space over the field with r elements, and a point Q ∈ E[r] \ {OE}
has the desired property if and only if Q belongs to the eigenspace V of π with
eigenvector q. We can easily construct such points Q as follows: if R ∈ E[r], then
the point

Q := [k](R)−
k−1∑
i=0

πi(R)

lies in V and, when r is large, the probability that it is non zero when R is
selected at random is overwhelming.

As is well-known, this leads to speed-ups in the calculation of fs,P (Q) when-
ever Q ∈ V . For example, the calculation of (N`)T,P (see Figure 4) takes only
(2k2 )m = km operations. On the other hand, in general neither αQ,P nor αQ,P /β
belongs to Fqk/2 , so that the calculation of (N`′)−T,−P also requires km opera-
tions. So, the improvement obtained in the generic case is lost.

When P ∈ E[r](Fq) and Q ∈ V , it is well-known that the Tate pairing

eTr (P,Q) is given by eTr (P,Q) = fr,P (Q)
qk−1

r . Denominator elimination is possi-

ble since qk/2 − 1 divides qk−1
r , as follows from the fact that r is prime and the

definition of the embedding degree k.
Let v = x + yβ with x, y ∈ Fqk/2 be an element of Fqk . The conjugate of v

over Fqk/2 is then v̄ = x− yβ. It follows that, if v 6= 0, then

1

v
=

v

x2 − γy2
(4)



where x2 − γy2 ∈ Fqk/2 . Thus, in a situation where elements of Fqk/2 can be

ignored, 1
v can be replaced by v, thereby saving an inversion in Fqk .

We exploit all this in the algorithm in Figure 5, where we use the same nota-
tion as in Figure 2. It outputs an element f of Fqk such that

fq
k
2 −1 = fs,P (Q)q

k
2 −1. Thus, when s = r, we find, since q

k
2 − 1 divides qk−1

r ,

that eTr (P,Q) = f
qk−1

r .
We replace the denominators `−T,−T and `−T,−P (updated in the function

g) by their conjugates `−T,−T and `−T,−P . In Jacobian coordinates, one has

(N`′)−T,−P = αQ,P (Dλ)T,P + (Nλ)T,P , and (5)

(N`)−T,−T = 2YT (−yQZ3
T + YT ) + (Nµ)T (xQZ

2
T −XT ). (6)

Cost analysis of the doubling and addition steps in this algorithm can be
found in Figures 6 and 7. We summarize our conclusions in the following result.

Theorem 3. Let β be a non-square element of Fqk whose square lies in Fqk/2 .
Suppose E is given in short Weierstrass form y2 = x3+ax+b with coefficients a,
b ∈ Fq. Let P ∈ E(Fq) be a point of odd prime order r with even embedding degree
k. Let Q be a point of E of order r with coordinates in the extension field Fqk of Fq
of degree k. We assume P and Q given in Weierstrass coordinates (xP , yP ) and
(xQ, yQ) with xQ, yQ/β ∈ Fqk/2 . Using the associated Jacobian coordinates, every
doubling step of the algorithm of Figure 5 requires ma+7s+(5+k)m+Sk+Mk

operations and every addition step requires 3s + (8 + k)m + Mk.

As before, we have made no serious attempt to minimize the number of
operations, for example by using formulas similar to those in [1]. Moreover, we
believe that there is scope for further improvement in the case of curves in special
families or curves with efficient arithmetic (see for example [14]).

5 Experiments

We ran some experiments comparing usual Miller (Figure 1) with the variant of
Figure 2 when k = 17 and k = 19. When k = 18, we compared the performance
of the algorithms of Figures 1 and 5 and also the algorithm proposed in 2003 by
[4]. In each case, the group order r has 192 bits and the rho-value ρ = log q

log r is a
little under 1.95, q being the cardinality of the base field. In the example with
k = 17, the big field Fqk was generated as Fq[x]/(x17 +x+12) while when k = 18
and k = 19, Fqk was generated as Fq[x]/(xk + 2). Our curves were constructed
using the Cocks-Pinch method (see [15]).

– For k = 17, the curve is E : y2 = x3 + 6 and

r = 6277101735386680763835789423207666416102355444464039939857

q = 220522060437535156222191257592633526736200793713321924733

07847627831759233301534795727680900605364912261884382771



Algorithm 3: Miller(P,Q, s) modified with even embedding degree

Data: s =
∑l−1

i=0 si2
i, si ∈ {0, 1}, sl−1 = 1, h Hamming weight of s, Q ∈ E[r] a

non-zero element with xQ, yQ/β ∈ Fqk/2 .

Result: An element f of Fqk satisfying fqk/2−1 = fs,P (Q)q
k/2−1

f ← 1, T ← P ,
if l + h is odd then

δ ← 1
end
else

δ ← 0
end
for i = l − 2 to 0 do

if δ = 0 then1

f ← f2(N`)T,T , T ← 2T , δ ← 1
if si = 1 then2

f ← f(N`′)−T,−P , T ← T + P , δ ← 0
end

end
else3

f ← f2(N`)−T,−T , T ← 2T , δ ← 0
if si = 1 then4

f ← f(N`)T,P , T ← T + P , δ ← 1
end

end

end
return f

Fig. 5. The modified Miller algorithm for even embedding degree

Quantity Formula Modified Miller Modified Miller

(Fig. 5, loop 1) (Fig. 5, loop 3)

(Nµ)T 3X2
T + aZ4

T ma + 3s ma + 3s

(Dµ)T 2YTZT = (YT + ZT )2 − Y 2
T − Z

2
T 2s 2s

(N`)T,T (Dµ)TZ
2
T yQ − (Nµ)TZ

2
T xQ − 2Y 2

T − (Nµ)TXT (3 + 2(k/2))m

X2T (Nµ)2T − 8XTY
2
T s + m s + m

Y2T (Nµ)T (4XTY
2
T −X2T )− 8Y 4

T s + m s + m

Z2T (Dµ)T 0 0

(N`)−T,−T (Dµ)TZ
2
T yQ + (Nµ)TZ

2
T xQ + 2Y 2

T − (Nµ)TXT (3 + 2(k/2))m

f ← f2(N`)T,T Sk + Mk

f ← f2(N`)−T,−T Sk + Mk

TOTAL ma + 7s ma + 7s

+(5 + k)m +(5 + k)m

+Sk + Mk +Sk + Mk

Fig. 6. Analysis of doubling for even embedding degree



Quantity Formula Modified Miller Modified Miller

(Fig. 5, loop 2) (Fig. 5, loop 4)

(Dλ)T,P (XT − xPZ
2
T )ZT s + 2m s + 2m

(Nλ)T,P YT − yPZ3
T 2m 2m

(N`)T,P (Dλ)T,P (yQ − yP )− (Nλ)T,P (xQ − xP ) 2(k/2)m

XT+P (Nλ)2T,P −XT (XT − xPZ
2
T )2

−xPZ
2
T (XT − xPZ

2
T )2 2s + 2m 2s + 2m

YT+P −yPZ3
T (XT (XT − xPZ

2
T )2

−xPZ
2
T (XT − xPZ

2
T )2)

+(Nλ)T,P (xPZ
2
T (XT − xPZ

2
T )2

−XT+P ) 2m 2m

ZT+P (Dλ)T,P 0 0

(N`′)−T,−P αQ,P (Dλ)T,P + (Nλ)T,P km

f ← f(N`′)−T,−P Mk

f ← f(N`)T,P Mk

TOTAL 3s + (8 + k)m 3s + (8 + k)m

+Mk +Mk

Fig. 7. Cost analysis of addition for even embedding degree

– For k = 18, the curve is E : y2 = x3 + 3 and

r = 6277101735386680763835789423207666416102355444464046918739

q = 352868453926302204292551351775152292482424484549774231757

09690337313725164646870411526771707409116652544029681389

– For k = 19, the curve is E : y2 = x3 + 2 and

r = 6277101735386680763835789423207666416102355444464038231927

q = 3283317304958250802561369083603001259755349697426976567975

2651677037684673416288844142247623389652333826612345637

For the computations, we used the NTL library [25] and implemented the
algorithms without any optimization on an Intel(R) Core(TM)2 Duo CPU E8500
@ 3.16Ghz using Ubuntu Operating System 9.04. The computations of the Miller
function (without any final exponentiation) were executed on 100 random inputs.
The experimental average results are summarized in Figure 8.

k Usual Miller Our variant Our variant with k even Miller without

(Fig. 1) (Fig. 2) (Fig. 5) denominators [4]

17 0.0664s 0.0499s - -

18 0.0709s - 0.0392s 0.0393s

19 0.0769s 0.0683s - -

Fig. 8. Timings



6 Conclusion

In this paper we presented a variant of Miller’s formula and algorithm. Generi-
cally, it is more efficient than the usual Miller algorithm as in Figure 1, calcula-
tion suggest that it can lead to a real improvement in cases where denominator
elimination is not available. Consequently, we believe it will have applications in
pairing-based cryptography using elliptic curves with embedding degree not be-
ing on the form 2i3j , for example when the optimal Ate or Twisted Ate pairing
is used. Further work is needed to clarify such questions.
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