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Negative values of the Casimir entropy occur quite frequently at low temperatures in arrangements
of metallic objects. The physical reason lies either in the dissipative nature of the metals as is the
case for the plane-plane geometry or in the geometric form of the objects involved. Examples for
the latter are the sphere-plane and the sphere-sphere geometry, where negative Casimir entropies
can occur already for perfect metal objects. After appropriately scaling out the size of the objects,
negative Casimir entropies of geometric origin are particularly pronounced in the limit of large
distances between the objects. We analyze this limit in terms of the different scattering channels
and demonstrate how the negativity of the Casimir entropy is related to the polarization mixing
arising in the scattering process. If all involved objects have a finite zero-frequency conductivity,
the channels involving transverse electric modes are suppressed and the Casimir entropy within the
large-distance limit is found to be positive.

PACS numbers: 42.50.Lc, 32.10.Dk, 03.65.Yz, 03.70.+k

I. INTRODUCTION

The renewed interest in the Casimir effect [1] in the last
15 years has fueled numerous complementary studies on
different aspects of this long-range interaction. During
the last decade or so various papers have focused on the
entropy related to the Casimir interactions between two
solid bodies [2–17]. An important reason for this inter-
est lies in the fact that the Casimir entropy can reach
negative values. This effect has first been theoretically
discussed for two plates modelled by Drude-type metals
[2]. Its origin lies in the suppression of the reflectivity
of the transverse electric mode at low frequencies due to
a finite zero-frequency conductivity [3]. If the conduc-
tivity diverges in the low-frequency limit, as is the case
for perfect metals or metals within the plasma model,
the entropy in the plane-plane configuration will remain
positive for all temperatures [4, 6]. The existence of a
negative Casimir entropy in this geometry is therefore
related to the dissipation inside the metal.

However dissipation is not the only mechanism giv-
ing rise to negative Casimir entropies. For the Casimir-
Polder interaction between an atom and a perfect-metal
plate, negative values of the entropy were found at low
temperatures [9]. Studies of the sphere-plane configu-
ration [13] and the sphere-sphere configuration [17] for
perfect reflectors demonstrated that negative Casimir en-
tropies can be of purely geometric origin. Considering
the large-distance limit, we shall see that in these ge-
ometries the Casimir entropy can become negative for
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perfect metals, but it remains positive if both objects
involved are described by the Drude model implying a
finite zero-frequency conductivity.

Another indication of a negative Casimir entropy is
given by the non-monotonic behavior of the thermal
Casimir force. Such a behavior has been found in the
electromagnetic case in the sphere-plane geometry [15]
as well as for a scalar field satisfying Dirichlet boundary
conditions in the sphere-plane and the cylinder-plane ge-
ometries [16].

In the present paper we will study in more detail the
geometrical origin of negative Casimir entropies. Be-
fore doing so, we emphasize that negative values of the
Casimir entropy are not in conflict with well established
thermodynamic principles. While entropies should be
positive, the Casimir entropy actually is a difference of
entropies and can therefore well be negative [12]. How-
ever, even the Casimir entropy has to tend towards zero
in the zero-temperature limit. This is indeed the case
for the Drude model for any nonvanishing value of the
zero-frequency conductivity [5, 11].

Furthermore, close inspection reveals that strictly pos-
itive Casimir entropies over the whole temperature range
are rather the exception than the rule. In order to explore
the geometric origin of the negative Casimir entropy, a
recent study considered the retarded Casimir-Polder in-
teraction between a nanoobject and a plane or between
two nanoobjects [18]. The properties of the nanoobjects
were described in terms of their electric and magnetic
polarizabilities. By allowing also for anisotropic polariz-
abilities, a variety of scenarios could be generated, thus
providing insight into the conditions under which nega-
tive Casimir entropies can occur.

Here, we start from a scattering approach for the elec-
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tromagnetic field and emphasize the contributions of dif-
ferent scattering channels. First, we observe that the neg-
ativity of the Casimir entropy becomes most pronounced
when the distance between sphere and plane or between
the two spheres is large compared to the radius of the
spheres. This observation holds despite the fact that the
entropy scales with the third power of the radius for small
radii so that its overall value will be strongly suppressed.
As a consequence, the large-distance limit is appropriate
to identify the physical mechanism responsible for the
negative Casimir entropy. In particular, this limit per-
mits us to restrict the reflection at the spheres to the
dipole modes, ` = 1.

The large-distance limit considerably simplifies the ex-
pression for the Casimir free energy within the scattering
approach as we shall see in Sect. III. Firstly, the values
of the quantum number m of the z-component of the an-
gular momentum, which is conserved for geometries of
interest here, are constrained to |m| = 0 and 1. Sec-
ondly, it is sufficient to account for one single scattering
roundtrip between the two objects involved. In total,
we are left with three distinct types of channels. Two
of these channels leave the polarization type unchanged
and are only distinguished by the value of |m|. The third
channel involves a change of polarization and occurs only
for |m| = 1.

The most relevant channel for the negative Casimir
entropy is the last one. As we shall see, this scattering
channel is characterized by a Casimir free energy which
increases monotonically with temperature. Its contribu-
tion to the Casimir entropy vanishes at zero temperature
as well as in the high-temperature limit, but is nega-
tive for any temperatures in between. This result points
towards the importance of polarization mixing in the ap-
pearance of a negative Casimir entropy.

The scenarios of different geometries and zero-
frequency conductivity sketched in the beginning of this
section fit nicely into this picture. In the plane-plane
configuration, the polarization is conserved at each reflec-
tion. Therefore, the negative Casimir entropy appearing
for Drude-type damping in that case cannot be of geo-
metric origin. On the other hand, for the sphere-plane
and sphere-sphere configurations, Drude-type metals will
suppress polarization mixing. Therefore, it is to be ex-
pected that at least one of the two scatterers should have
a divergent zero-frequency conductivity in order to allow
for a negative Casimir entropy in the large-distance limit.

II. NEGATIVE CASIMIR ENTROPY IN THE
SPHERE-PLANE AND THE SPHERE-SPHERE

GEOMETRIES

In our analysis of the negative Casimir entropy, we will
concentrate on the sphere-plane configuration and the
sphere-sphere configuration depicted in Figs. 1a and b,
respectively, together with the corresponding geometric
parameters. The distance between the surfaces of the two
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FIG. 1. (a) Plane-sphere and (b) sphere-sphere geometry
with the geometric parametrization used in this paper. The
surface-to-surface distance is always referred to as L while L
denotes the distance between the plane and the center of the
sphere and d denotes the distance between the centers of the
spheres.

objects will always be denoted by L. For the plane-sphere
geometry, the natural length scale within our analysis will
turn out to be L = L + R, which measures the distance
between the surface of the plane and the center of the
sphere of radius R. In the sphere-sphere geometry, the
natural length scale d = L+R1+R2 refers to the distance
between the centers of the two spheres with radii R1 and
R2.

Whenever we refer to the two geometries at the same
time, we will denote the natural length scales as D. For
example, as a dimensionless temperature we will use

ν =
2πDkBT

~c
, (1)

which implies ν = 2πLkBT/~c in the plane-sphere ge-
ometry and ν = 2πdkBT/~c in the sphere-sphere geome-
try. Here, kB , ~, and c are the Boltzmann constant, the
Planck constant and the speed of light, respectively. In
this paper, we make use of a formalism based on imag-
inary frequencies ξ. The corresponding dimensionless
imaginary frequency is defined by

ξ̃ =
ξD

c
. (2)

The negative Casimir entropy for the sphere-plane ge-
ometry with perfect metals is shown in Fig. 2 as a func-
tion of the ratio of the distance L between the sphere’s
surface and the plane to the radius R of the sphere, and of
the temperature T . The Casimir entropy vanishes along
the dashed line. Below this line, the Casimir entropy is
negative while it is positive above. The grey area indi-
cates parameter regions where the Casimir entropy has
not been evaluated.

According to Fig. 2, the Casimir entropy becomes min-
imal at L/R ≈ 0.27 and 2πLkBT/~c ≈ 0.93. At a fixed
temperature, the Casimir entropy becomes positive if the
radius R is sufficiently large. In contrast, for small radii,
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FIG. 2. The Casimir entropy in the sphere-plane geometry is
depicted for perfect metals as a function of the distance L be-
tween sphere and plane and the temperature T . The entropy
vanishes along the dashed line. Below this line, the entropy
is negative and changes in steps of 0.0005. The minimum of
the entropy is marked by a dot. Above the dashed line, the
entropy is positive and changes in steps of 0.001. No data
have been calculated in the grey region.

the Casimir entropy will always be negative for temper-
atures below a threshold value to be specified in the dis-
cussion of the free energy (4), see below.

It would be expected that the sphere-plane configura-
tion can be obtained from the sphere-sphere configura-
tion by letting the radius of one of the two spheres go to
infinity. To illustrate this transition, we show in Fig. 3
the position of the minimum of the Casimir entropy for
perfect metals as a function of the geometric parame-
ters and the temperature for two spheres with radii R<

and R> for the smaller and larger sphere, respectively.
For the filled circles, the corresponding values of the ra-
tio R>/R< are indicated, ranging from R>/R< = 1 for
spheres of equal radius to the extreme case R>/R< =∞
for which the position of the entropy minimum for the
plane-sphere geometry is shown. The data clearly indi-
cate a smooth transition between the sphere-sphere and
the plane-sphere configuration.

As far as the physical origin of the negative Casimir en-
tropy is concerned, the presentation of the data in Fig. 2
is somewhat misleading because for small sphere radius,
the entropy decreases with the volume of the sphere. It is
thus appropriate to scale the entropy with (L/R)3. The
result is depicted in Fig. 4 where the dashed line again in-
dicates a vanishing Casimir entropy and negative values
of the Casimir entropy are found below the dashed line.
Note that in this plot, in contrast to Fig. 2, small sphere
radii are on the left side. The minimum of the scaled
Casimir entropy lies at R = 0. We can thus conclude
that the large-distance limit L,L � R is well suited for
an analysis of the negative Casimir entropy.
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FIG. 3. The transition from perfect-metal sphere-sphere to
sphere-plane configurations is illustrated by the position of
the minimum of the entropy as a function of the surface-to-
surface distance L and the temperature T . The points refer
to different ratios of the radii R> and R< of the larger and
smaller sphere, respectively. For the filled circles, the ratio
of radii is indicated in the plot. The point marked by ∞
corresponds to the position of the minimum of the Casimir
entropy in Fig. 2.
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FIG. 4. The Casimir entropy in the sphere-plane geometry
multiplied by a factor (L/R)3 is displayed for perfect metals as
a function of the inverse of the distance L between sphere’s
center and the plane and the temperature T . The entropy
vanishes along the dashed line. Below this line, the entropy is
negative and changes in steps of 0.00125. Above the dashed
line, the entropy is positive and changes in steps of 0.0025.
No data have been calculated in the grey region.

By means of the thermodynamic relation

S = −∂F
∂T

, (3)

the Casimir entropy S for the sphere-plane configuration
with perfect metals in the large-distance limit can eas-
ily be obtained from the expression for the Casimir free
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FIG. 5. The Casimir entropy in the sphere-sphere geome-
try multiplied with (d/R)6 is depicted for perfect metals as a
function of the inverse of the distance d between the centers
of the spheres and of the temperature T for spheres of equal
radii, R1 = R2 = R. The entropy vanishes along the dashed
line. Inside the region bounded by the dashed line, the en-
tropy is negative and changes in steps of 0.025. Outside of
the dashed line, the entropy is positive and changes in steps
of 0.005. The density of the contour lines has been decreased
at higher temperatures to improve the clarity of the plot.

energy F in this limit [13]

F =
3~c
16π

R3

L4

[
g(ν) cosh(ν) + g(ν)2 + g(ν)3 cosh(ν)

]
,

(4)
where we introduced the abbreviation

g(ν) =
ν

sinh(ν)
. (5)

Taking the derivative with respect to temperature, one
finds negative values for the Casimir entropy for temper-
atures satisfying 0 < ν / 1.486 in agreement with the
data shown in Fig. 4 for small values of R. In order to
obtain information about the physical origin of the neg-
ative Casimir entropy, in Sect. IV A we will decompose
the free energy (4) and the entropy derived from it into
contributions arising from different scattering channels.

For the sphere-sphere geometry, the region of negative
Casimir entropy for perfect-metal spheres of equal radii is
displayed in Fig. 5 where the entropy is scaled by (d/R)6.
The dashed line separates the regions of negative and
positive Casimir entropies with negative values appear-
ing inside the region delimited by the dashed line. As an
obvious difference to the sphere-plane geometry shown in
Fig. 4 we observe that while in the latter case negative
values of the Casimir entropy are found down to the low-
est temperatures, this is not the case in the sphere-sphere
geometry. This fact has already been noted in [17]. Fur-
thermore, the region of negative Casimir entropies ends
before R/d reaches its maximum value of 1/2.

Despite these differences, Fig. 5 suggests that again in-
teresting insights into the physics of the negative Casimir

entropy can be obtained from the large-distance limit
d � R. The free energy for perfect-metal spheres in
this limit is given by [17]

F = − ~c
16π

R6

d7
[
30g(ν) cosh(ν) + 30g(ν)2

+ 29g(ν)3 cosh(ν) + 9g(ν)4
(
2 cosh(ν)2 + 1

)
. +9g(ν)5 cosh(ν)

(
cosh(ν)2 + 2

)]
,

(6)
where g(ν) was defined in (5). A decomposition of this
result and the corresponding entropy in terms of the scat-
tering channels will be carried out in Sect. IV B.

III. LARGE-DISTANCE APPROXIMATION

Within the scattering approach, the Casimir free en-
ergy can be expressed as

F = 2kBT

∞∑
n=0

′
∞∑

m=0

′ ln
(

det
[
1−M(m)(ξn)

])
. (7)

The first sum runs over the Matsubara frequencies ξn =
2πn/~β with β = 1/kBT . The prime indicates that only
one half of the n = 0-term should be taken. The geome-
tries depicted in Fig. 1 are symmetric under rotations
around the z-axis, thus allowing us to decompose the
scattering problem into subspaces of fixed eigenvalues m
of the z-component of the angular momentum. Since the
sign of m is irrelevant for the scattering process, we sum
only over positive values of m, leading to a prefactor 2
except for m = 0 as again indicated by a prime.

The matrixM(m)(ξn) describes a roundtrip scattering
process between the two scattering objects at imaginary
frequency iξn in the subspace of the z-component of the
angular momentum characterized by m. The roundtrip
scattering operator

M(m) = R(m)
1 T (m)

12 R
(m)
2 T (m)

21 (8)

contains four building blocks, namely the translation op-
erator T21 from the reference frame of object 1 to that
of object 2, the reflection operator R2 on object 2, the
reverse translation operator T12, and finally the reflec-
tion operator R1 on object 1. While keeping the quan-
tum number m unchanged, these operators will in general
modify the other parameters of the scattered modes like
their polarization and, for spherical waves, their angular
momentum quantum number ` or, for plane waves, their
wave vector k.

We argued in the previous section that the limit of
large distances between the scattering objects is appro-
priate to analyze the origin of negative Casimir entropies.
To be specific, we assume that the distance D is much
larger than the sphere radius R. In the case of two
spheres, R refers to the larger of the two radii. As we
shall see now, this limit allows us to quantify the contri-
bution of each scattering channel to the Casimir entropy.
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Since the matrix elements of the translation operators
for imaginary frequencies decay exponentially with D,
the highest relevant frequencies are of the order of c/D.
The reflection on a sphere will then contribute a fac-
tor (R/D)2`+1 where ` denotes the order of the multi-
pole wave scattered at the sphere. As a consequence,
we may restrict the scattering at a sphere to ` = 1.
In the large-distance limit, the Casimir entropy for the
sphere-plane geometry and the sphere-sphere geometry
thus scales with (R/L)3 and (R/d)6, respectively. These
factors are at the origin of the scaling employed in the
previous section.

Furthermore, in the large-distance limit the matrix el-
ements of the roundtrip operator are very small and we
may expand the logarithm in (7). In view of tr(A) =
log[det(exp(A))] with tr denoting the trace, we then ob-
tain

F = −kBT
∞∑

n=0

′∑
P,P ′

[
M(0)

P,P (ξn)δP,P ′ + 2M(1)
P,P ′(ξn)

]
,

(9)
where P and P ′ denote the polarizations on the two scat-
tering objects. Even though we restrict our considera-
tions to ` = 1 on each sphere, the translation operators

T present in the matrix elements M(m)
P,P ′ implicitly give

rise to a sum over other multipole moments `′ or, in the
sphere-plane geometry, to an integral over the projection
k‖ of the wave vector onto the plane.

The polarizations P and P ′ in (9) can be either trans-
verse electric (TE) or transverse magnetic (TM) and cor-
respond to the mode polarizations on the two scatterers.
Note that on a sphere, the TE and TM polarizations are
sometimes referred to as H and E polarizations, respec-
tively. While in general, the polarization may change in
the course of the scattering process, this is not the case
for m = 0. In this case, for a TE (TM) mode on the
sphere the electric (magnetic) field will only have a com-
ponent in the plane perpendicular to the z direction. As
a consequence, the expansion of this mode on the other
sphere or the plane will contain exclusively TE (TM)
modes and no polarization change ensues.

We thus have to account for three essentially different
scattering channels. The channels where the polarization
is conserved contribute for m = 0 and m = 1. A third
channel involves a change of polarization and is restricted
to m = 1. The latter channel is of particular interest for
our discussion for the following reason.

Focussing on the contribution of the translation opera-
tor, it is clear that in the absence of a shift, the polariza-
tion of the mode cannot change. In (9), for dimensional
reasons, the shift can only appear in the combination
ξnD/c. As a consequence, the n = 0 term will vanish if
the polarizations P and P ′ differ, implying in turn that
the free energy contribution of this channel will vanish at
high temperatures. Since the contribution to the Casimir
free energy of the polarization-changing channel at zero
temperature is negative and turns out to be monotoni-
cally increasing, its contribution to the Casimir entropy

in view of (3) will always be negative.
While the differences between the scattering channels

discussed so far were mainly due to the translation op-
erators T , the reflection properties of the sphere(s) offer
an interesting way to select channels. The reflection at a
perfectly conducting (PC) sphere of radius R to leading
order in ξR/c is dominated by the Mie coefficients with
` = 1. For the TM mode, the Mie coefficient is then given
by

aPC
1 (ξ) = −2

3

(
ξR

c

)3

+O(ξ5) (10)

and for the TE mode it reads

bPC
1 (ξ) =

1

3

(
ξR

c

)3

+O(ξ5) . (11)

We thus have aPC
1 = −2bPC

1 , leading to simple numerical
relations between the contributions of the polarization-
conserving scattering channels.

In contrast, for spheres made of a metal described by
the Drude model (D), one finds

aD1 (ξ) = −2

3

(
ξR

c

)3

+O(ξ4) , (12)

while bD1 (ξ) is of order (ξR/c)4 and therefore negligible
within the large-distance approximation. Switching from
a perfectly conducting sphere to a Drude metal sphere
allows us to suppress the reflection of TE modes on the
sphere. In particular, the polarization-changing channel
will become irrelevant as we will explain in more detail
in Sect. V.

These general considerations and their consequences
for the Casimir entropy will be worked out more explic-
itly in the following section dealing with the specific ge-
ometries shown in Fig. 1.

IV. CASIMIR FREE ENERGY AND ENTROPY
FOR PERFECT CONDUCTORS

A. Sphere-plane geometry

Within the large-distance approximation, we only need
the matrix elements of the roundtrip operator for m = 0
and 1 to obtain the free energy by means of (9). We then
can make use of (3) to obtain the entropy. For the sphere-
plane geometry, the matrix element of the roundtrip op-
erator can easily be obtained from the expressions given
in Ref. [13]. For m = 0, we obtain

M(0)
TM,TM =

1

4

(
R

L

)3

(1 + 2ξ̃) exp(−2ξ̃) (13)

and

M(0)
TE,TE =

1

2
M(0)

TM,TM (14)
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with the dimensionless frequency ξ̃ introduced in (2).
For m = 1, the matrix elements for the roundtrips

where polarization is conserved are

M(1)
TM,TM =

1

8

(
R

L

)3

(1 + 2ξ̃ + 2ξ̃2) exp(−2ξ̃) (15)

and

M(1)
TE,TE =

1

2
M(1)

TM,TM . (16)

For roundtrips involving a change of polarization, one
finds

M(1)
TM,TE =

1

4

(
R

L

)3

ξ̃2 exp(−2ξ̃) (17)

and

M(1)
TE,TM =

1

2
M(1)

TM,TE . (18)

Here, the first subscript of the roundtrip operator M
refers to the polarization on the sphere while the second
subscript indicates the polarization on the plane. The
matrix elements (17) and (18) for scattering processes
involving a change of polarization vanish in the limit of
vanishing frequency ξ̃ as discussed in the previous sec-
tion.

Making use of (9), we can decompose the Casimir free
energy for perfect metal sphere and plane into contribu-
tions from the different scattering channels according to

F = − ~c
2πL

(
R

L

)3 [
f
(0)
TM,TM + f

(0)
TE,TE

+f
(1)
TM,TM + f

(1)
TE,TE + f

(1)
TM,TE + f

(1)
TE,TM

]
.

(19)
Evaluating the corresponding Matsubara sums, we find
for m = 0 from (13)

f
(0)
TM,TM =

1

8

[
g(ν) cosh(ν) + g(ν)2

]
. (20)

Here, we have made use of the dimensionless temperature
(1) and the function g defined in (5). For m = 1, we
obtain from (15) and (17)

f
(1)
TM,TM =

1

8

[
g(ν) cosh(ν) + g(ν)2 + g(ν)3 cosh(ν)

]
(21)

and

f
(1)
TM,TE =

1

8
g(ν)3 cosh(ν) , (22)

respectively. The remaining three contributions in (19)
are related to the expressions just given by a factor of
1/2 according to the relations (14), (16), and (18). Sum-
ming up all terms, we recover the free energy (4) for
sphere and plane made of perfect conductors obtained

earlier in Ref. [13]. The decomposition in terms of the
different scattering channels is found to be in agreement
with the expressions obtained in Ref. [18]. In order to
make the connection, one sets the electric and magnetic
polarizability equal to R3 and −R3/2, respectively. For
vanishing polarizability in the transverse direction, one
finds the contribution for m = 0 while an isotropic polar-
izability yields the sum of the contributions from m = 0
and 1.

It is now straightforward to obtain the contributions
of the various scattering channels to the Casimir entropy.
Expressing the Casimir entropy in terms of a rescaled
Casimir entropy s according to

S = kB

(
R

L

)3

s , (23)

the definition of the entropy (3) turns into

s =
∂f

∂ν
. (24)

We then obtain from (20), (21), and (22)

s
(0)
TM,TM =

1

8ν

[
g(ν) cosh(ν) + g(ν)2 − 2g(ν)3 cosh(ν)

]
(25)

s
(1)
TM,TM =

1

8ν

[
g(ν) cosh(ν) + g(ν)2 + g(ν)3 cosh(ν)

−g(ν)4
(
2 cosh2(ν) + 1

)]
(26)

s
(1)
TM,TE =

1

8ν

[
3g(ν)3 cosh(ν)− g(ν)4

(
2 cosh2(ν) + 1

)]
.

(27)
The remaining three contributions to the Casimir entropy
can be obtained by simple multiplication with a factor
1/2 as before for the free energy and the matrix elements
of the roundtrip operator.

In Fig. 6, the temperature dependence of the con-
tributions (25), (26), and (27) from the channels with
TM polarization on the sphere to the Casimir entropy
are shown. Among the polarization-conserving channels,
the m = 0 contribution is positive for all temperatures.
The m = 1 contribution, while being slightly negative
at sufficiently small temperatures, in combination with
the m = 0 contribution will still always lead to positive
values of the entropy. In order to arrive at a negative en-
tropy, one needs the polarization-changing mode. In fact,

S
(1)
TM,TE is negative for all temperatures as was already

conjectured in Sect. III.

The negative contribution of the polarization-changing
channel is indeed sufficiently large to render the sum of all
contributions negative. This can clearly be seen from the
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FIG. 6. The contributions (25), (26), and (27) to the Casimir
entropy in the plane-sphere geometry arising from the scatter-
ing channels with TM polarization on the sphere are shown as

a function of the dimensionless temperature. While S
(0)
TM,TM

is always positive and S
(1)
TM,TM becomes only slightly negative

for small temperatures, S
(1)
TM,TE is negative for all tempera-

tures.

low-temperature expansions of the entropies (25)–(27)

s
(0)
TM,TM =

1

45
ν3 − 2

315
ν5 +O(ν7) (28)

s
(1)
TM,TM = − 1

90
ν3 +

1

105
ν5 +O(ν7) (29)

s
(1)
TM,TE = − 1

30
ν3 +

1

63
ν5 +O(ν7) . (30)

Taking all six channels between perfect conductor
plane and sphere into account, we obtain for the low-
temperature expansion of the Casimir entropy

s = − 1

30
ν3 +

1

35
ν5 +O(ν7) . (31)

In the large-distance limit, we thus obtain negative values
for the Casimir entropy at sufficiently low temperatures.
In the limit of vanishing temperature, the Casimir en-
tropy goes to zero in agreement with the third law of
thermodynamics.

B. Sphere-sphere geometry

We now turn to the discussion of the Casimir free en-
ergy and entropy of the sphere-sphere configuration de-
picted in Fig. 1b. In order to determine the Casimir free
energy in the limit of large distance, d � R1, R2, from
the expression (9), we first need to determine the matrix

elements M(m)
P,P ′ of the round-trip operator with m = 0

and 1.
As discussed in Sect. III, the large-distance approxima-

tion implies that on the spheres, we can restrict the field
modes to dipole spherical waves, ` = 1. For the spheres,

the matrix elements of the reflection operators are thus
simply given by the Mie coefficients (10) and (11), and
we have

R(m)
TM,TM = −2

3

(
R

d

)3

ξ̃3 (32)

and

R(m)
TE,TE =

1

3

(
R

d

)3

ξ̃3 , (33)

where R is the sphere radius and ξ̃ is the dimensionless
imaginary frequency (2). In contrast to the reflection on
a plane in the preceding subsection, the polarization of a
spherical wave remains unchanged by the reflection at a
sphere.

However, the translation operator for spherical waves
with wave vector k from the center of one sphere to the
center of the other sphere leads to a mixing of polariza-
tions. The general expressions for the matrix elements
of the translation operator [19] can be simplified if the
translation is performed along the z-axis [20, 21] as is
the case in the setup displayed in Fig. 1b. Within the
large-distance approximation, we find for the channels
conserving the polarization

T (m)
P,P = (−1)m

3

4

∑
`′=0,2

i−`
′
[4− `′(`′ + 1)](2`′ + 1)

×
(

1 1 `′

0 0 0

)(
1 1 `′

m −m 0

)
h
(1)
`′ (kd) .

(34)

For a change of polarization, P 6= P ′, the matrix element
vanishes for m = 0 in agreement with the argument given
in Sect. III, while for m = 1 we have

T (1)
P,P ′ = ±3

2
ikd

∑
`′=0,2

i−`
′
(2`′ + 1)

×
(

1 1 `′

0 0 0

)(
1 1 `′

1 −1 0

)
h
(1)
`′ (kd) .

(35)

The first two factors in the second lines of (34) and (35)

denote Wigner 3j symbols while h
(1)
` is a spherical Bessel

function of the third kind. The overall sign in (35) is pos-
itive or negative depending on whether the translation
is performed in positive or negative z-direction, respec-
tively.

Employing the relation

h
(1)
` (ix) = − 2

π
i−`k`(x) (36)

between the spherical Bessel function of the third kind
and the modified spherical Bessel function k`, it is
straightforward to express the matrix elements of the
translation operator in imaginary frequency ξ needed in
order to evaluate the Matsubara sum (9). With the ex-
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plicit expressions for the modified spherical Bessel func-
tions

k0(x) =
π

2

exp(−x)

x

k2(x) =
π

2

(
1

x
+

3

x2
+

3

x3

)
exp(−x)

(37)

the matrix elements needed in the following are then
found to read

T (0)
P,P = 3

(
1

ξ̃3
+

1

ξ̃2

)
exp(−ξ̃) (38)

and

T (1)
P,P = −3

2

(
1

ξ̃3
+

1

ξ̃2
+

1

ξ̃

)
exp(−ξ̃) (39)

for P = TE, TM while for differing polarizations P and
P ′ one finds

T (1)
P,P ′ = ±3

2

(
1

ξ̃2
+

1

ξ̃

)
exp(−ξ̃) . (40)

In the last equation, the sign depends on the direction of
translation with respect to the z-axis as discussed in the
context of (35).

We note that even though these matrix elements di-
verge for vanishing frequency ξ̃, their products with the
matrix elements (32) and (33) of the reflection operator
remain finite. While the combination of the two ma-
trix elements yields a nonzero value if the polarization
is conserved, the product of the matrix element (40) for
changing polarization with one of the reflection matrix el-
ements (32) and (33) goes to zero for vanishing frequency

ξ̃.

As a consequence, the contribution of the polarization-
changing channels to the Casimir free energy and en-
tropy vanishes at high temperatures where the Matsub-
ara sum (9) is dominated by the n = 0 term. Already
at this point, we can therefore expect the same qual-
itative temperature dependence of the contributions of
the polarization-changing channels as in the plane-sphere
geometry. These channels will thus play the same cru-
cial role for an overall negative Casimir entropy also for
the sphere-sphere geometry. The difference between the
polarization-conserving and polarization-changing chan-
nels can be traced back to an extra factor kd appearing
in the front of the right-hand side of (35) compared to
(34). This factor ensures that for vanishing translation,
d = 0, no change of polarization occurs as was argued in
Sect. III.

With the matrix elements listed above, it is straightfor-
ward to evaluate the contributions of the various channels
to the Casimir free energy by means of (8) and (9). We
decompose the Casimir free energy into the contributions

from the various scattering channels

F = − ~c
2πd

(
R1R2

d2

)3 [
f
(0)
TM,TM + f

(0)
TE,TE

+f
(1)
TM,TM + f

(1)
TE,TE + f

(1)
TM,TE + f

(1)
TE,TM

]
.

(41)
The contributions to (41) arising from polarization-
conserving channels are given by

f
(0)
TM,TM = 2g(ν) cosh(ν) + 2g(ν)2 + g(ν)3 cosh(ν) (42)

and

f
(1)
TM,TM =

1

2

[
2g(ν) cosh(ν) + 2g(ν)2 + 3g(ν)3 cosh(ν)

+ g(ν)4
(
2 cosh2(ν) + 1

)
+g(ν)5 cosh(ν)

(
cosh2(ν) + 2

)]
(43)

together with

f
(m)
TE,TE =

1

4
f
(m)
TM,TM . (44)

The contributions of the polarization-changing channels
are

f
(1)
TM,TE =

1

4

[
g(ν)3 cosh(ν) + g(ν)4

(
2 cosh2(ν) + 1)

+g(ν)5 cosh(ν)
(

cosh2(ν) + 2
)]

(45)
and

f
(1)
TE,TM = f

(1)
TM,TE . (46)

In these results, we make use of the dimensionless tem-
perature (1) and the function g defined in (5). The
total Casimir free energy obtained from these expres-
sions agrees with the result (6) and was already given
in Ref. [17]. As in the sphere-plane geometry, the con-
tributions from the different scattering channels are in
agreement with the results presented in Ref. [18] if the
identifications explained above are made.

In the high-temperature limit, ν → ∞, the
polarization-conserving channels yield a contribution to
the Casimir free energy linear in temperature while the
contributions of the polarization-changing channels van-
ish. On the other hand, all channels give rise to a nega-
tive Casimir free energy at zero temperature. As a conse-
quence, the contribution to the Casimir entropy arising
from the polarization-changing channels is negative for
all temperatures as already expected above on the basis
of the matrix elements of the translation operator.

From the expressions listed for the contributions to the
Casimir free energy, the corresponding contributions to
the Casimir entropy can be obtained from its definition
(3). Introducing a rescaled Casimir entropy s by means
of

S = kB

(
R1R2

d2

)3

s , (47)
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one finds together with the abbreviation (5)

s
(0)
TM,TM =

1

ν

[
2g(ν) cosh(ν) + 2g(ν)2 − g(ν)3 cosh(ν)

−g(ν)4
(
2 cosh2(ν) + 1

)]
= 4s

(0)
TE,TE

(48)

s
(1)
TM,TM =

1

2ν

[
2g(ν) cosh(ν) + 2g(ν)2 + 5g(ν)3 cosh(ν)

+ g(ν)4
(
2 cosh2(ν) + 1

)
+ g(ν)5 cosh(ν)

(
cosh2(ν) + 2

)
−g(ν)6

(
2 cosh4(ν) + 11 cosh2(ν) + 2

)]
= 4s

(1)
TE,TE

(49)

s
(1)
TM,TE =

1

4ν

[
3g(ν)3 cosh(ν) + 3g(ν)4

(
2 cosh2(ν) + 1

)
+ g(ν)5 cosh(ν)

(
cosh2(ν) + 2

)
−g(ν)6

(
2 cosh4(ν) + 11 cosh2(ν) + 2

)]
= s

(0)
TE,TM .

(50)
The temperature dependence of the contributions

(48)–(50) to the Casimir entropy is shown in Fig. 7. At
first sight, the curves resemble those presented in Fig. 6.
In both cases, the contribution form = 0 is positive for all
temperatures while the polarization-conserving contribu-
tion for m = 1 starts out negative and becomes positive
at higher temperatures. The polarization-changing chan-
nels always yield a negative contribution to the Casimir
entropy. A closer look reveals that, in contrast to the
plane-sphere configuration, the negative contribution of
the polarization-conserving channel with m = 1 at low
temperatures is much bigger than the contribution of the
polarization-changing channel. However, as the dashed
curve in Fig. 7 shows, the sum of the Casimir entropies
of the polarization-conserving channels remains positive
at all temperatures.

In order to analyze in more detail the negative con-
tributions to the Casimir entropy, we consider the low-
temperature expansions of the expressions (48)–(50)
which are given by

s
(0)
TM,TM =

4

45
ν3 +

8

315
ν5 − 8

525
ν7 +O(ν9) (51)

s
(1)
TM,TM = − 4

45
ν3 +

2

45
ν5 − 68

1575
ν7 +O(ν9) (52)

s
(1)
TM,TE = − 1

63
ν5 − 2

225
ν7 +O(ν9) . (53)

The dominant low-temperature contributions of order T 3

arise in the polarization-conserving channels. However,
they cancel each other. In view of the fact that according
to (31), the Casimir entropy in the plane-sphere config-
uration contains a leading term of order T 3, this may
come as a surprise. Indeed, a leading cubic term in the

0 2 4 6 8

−0.5

0

0.5

1

1.5

2

2πdkBT/h̄c

(d
2
/R

1
R

2
)3
S
/
k
B

s
(0)
TM,TM

s
(1)
TM,TM

s
(0)
TM,TM + s

(1)
TM,TM

s
(1)
TM,TE

FIG. 7. The contributions (48), (49), and (50) to the Casimir
entropy of a sphere-sphere configuration are depicted as a

function of the dimensionless temperature. While S
(0)
TM,TM

is positive for all temperatures and S
(1)
TM,TM can be posi-

tive or negative depending on temperature, S
(1)
TM,TE always

yields a negative contribution to the Casimir entropy. The
dashed line represents the sum of the contributions of the two
polarization-conserving transverse magnetic channels.

temperature can be obtained for anisotropic objects [18].
For the isotropic case considered here, it can be shown
that terms of order ξ5 in the Mie coefficients (10) and
(11) lead to such a T 3 term in the sphere-sphere config-
uration. However, this term is suppressed by a factor of
(R/d)3 relative to the terms discussed here and therefore
negligible in the large-distance limit.

With the order T 3 not contributing to the entropy, the
appearance of a negative Casimir entropy is a nonper-
turbative effect [18]. In the next order, T 5, the negative
contribution of the polarization-changing channel is not
sufficiently strong as compared to the positive contribu-
tions of that order. Therefore, at very low temperatures,
the Casimir entropy of two perfectly conducting spheres
will be positive. On the other hand, it turns out that the
terms of order T 7, which in (51)–(53) are all negative,
lead indeed to a negative Casimir entropy in an inter-
mediate temperature range. This was already shown in
Ref. [17] and is also visible in Fig. 5.

It is now interesting to study how the different chan-
nels can contribute in various ways to obtain either a
positive Casimir entropy for all temperatures or a nega-
tive Casimir entropy in a certain temperature regime. To
this end, in the next section we will also allow for spheres
made of Drude-type metals.

V. PERFECTLY CONDUCTING VS.
DRUDE-TYPE METAL SPHERES

So far, we have studied the behavior of the various
scattering channels and pointed out the relevance of the
polarization-changing channels for the appearance of a
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negative Casimir entropy. The weight with which the
scattering channels contribute can be modified by the
physical properties of the objects involved. In Ref. [18]
this was done by choosing objects with anisotropic po-
larizabilities and by varying their electric and magnetic
properties. Here, we will do the latter by allowing the
objects to be either made of perfectly conducting metals
or Drude-type metals which have a finite zero-frequency
conductivity. The results will further underline the rele-
vance of the polarization-changing channels.

For simplicity, we will restrict ourselves in the following
to setups consisting of two spheres as depicted in Fig. 1b.
Then, as pointed out in Sect. IV B, the matrix elements of
the reflection operator are given by the Mie coefficients
for ` = 1. While for perfectly conducting spheres, the
Mie coefficients are the same up to a factor -2, for Drude
metal spheres with a dc conductivity σ0, the reflection
of the TE mode can be neglected in the large-distance
limit where in addition to the conditions stated earlier,
d� σ0R

2/30c should hold.
These properties of the Mie coefficients allow us to con-

struct three different scenarios by choosing two spheres
both made of perfect conductors, both made of Drude
metals, or one made of a perfect conductor and the
other of a Drude metal. In the first case, polarization-
conserving as well as polarization-changing channels con-
tribute as discussed in Sect. IV B. In contrast, in the sec-
ond case, only modes with TM polarization can com-
plete roundtrips between the two spheres. Therefore,
in this case, the polarization-changing channel is com-
pletely suppressed. In the third case, only one of the
two polarization-changing channels and its weight rela-
tive to the polarization-conserving channels is modified
with respect to two perfectly conducting spheres.

Indicating in the superscript on the left-hand side the
material of which the two spheres are made, we obtain for
the three situations just described the rescaled entropy
introduced in (47) with

sPC/PC =
5

4

(
s
(0)
TM,TM + s

(1)
TM,TM

)
+ 2s

(1)
TM,TE (54)

sPC/D = s
(0)
TM,TM + s

(1)
TM,TM + s

(1)
TM,TE (55)

sD/D = s
(0)
TM,TM + s

(1)
TM,TM , (56)

where the components are given in (48)–(50). These re-
sults are consistent with those obtained in Ref. [18].

The temperature dependence of the Casimir entropies
(54)–(56) is displayed in Fig. 8. At high tempera-
tures, only the polarization-conserving channels con-
tribute. The difference between the case of perfectly con-
ducting spheres and the other two cases shows the sup-
pression of the polarization-conserving TE channel due
to a Drude metal sphere.

The inset puts a special emphasis on the low-
temperature behavior and shows clearly that in all three
cases, the Casimir entropy takes on positive values for
very low temperatures. However, only when all spheres

0

1

2

3

4

0 2 4 6 8

(d
2
/R

1
R

2
)3
S
/k

B

2πdkBT/h̄c

PC/PC

PC/D

D/D

−0.02

0

0.02

0 0.5 1 1.5

FIG. 8. Temperature dependence of the Casimir entropies
(54)–(56) for a sphere-sphere setup where the spheres are ei-
ther made of perfect conductors (PC) or Drude metals (D).
The inset shows the low-temperature behavior where a pos-
itive Casimir entropy is found for all three cases. The curve
for D/D corresponds to the dashed curve in Fig. 7.

are made of a Drude metal does the Casimir entropy re-
main positive for all temperatures. This is the case where
no polarization-changing channels contribute.

It is sufficient to allow for one polarization-changing
channel by making one of the spheres perfectly conduct-
ing in order to obtain a temperature window in which the
Casimir entropy becomes negative. The effect becomes
even more pronounced if both spheres are perfectly con-
ducting as the weight of the polarization-changing chan-
nels is doubled while the contribution of the polarization-
conserving channels is only increased by a quarter.

VI. CONCLUSIONS

The origin of the negative Casimir entropy in the
plane-sphere and sphere-sphere configuration has been
analyzed in the limit where the distance between the ob-
jects is much larger than the radius of the sphere(s). In
this limit, the Casimir free energy and the Casimir en-
tropy can easily be decomposed into the contributions
from various channels describing a roundtrip between the
objects. Three kinds of channels have been identified,
differing significantly in the temperature dependence of
their contribution to the Casimir entropy.

The first kind of channels always makes a positive con-
tribution to the Casimir entropy. This was found to be
the case for polarization-conserving channels describing
spherical waves with m = 0.

The second kind of channels also conserves polarization
but involves spherical waves with m = 1. While these
channels yield a positive contribution to the Casimir en-
tropy at high temperatures, their contribution at suffi-
ciently low temperatures is negative. However, this neg-
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ative part is compensated by the polarization-conserving
channels with m = 0.

The third kind of channels is the most interesting
one, because its contribution to the Casimir entropy is
negative for all temperatures. This behavior is associ-
ated with polarization-changing channels which exist for
m = 1 but not for m = 0. These channels are special,
because their Casimir free energy vanishes in the high-
temperature limit. This fact and the ensuing negative
contribution to the Casimir entropy has been traced back
to the polarization-changing nature of the channels. It
can thus be concluded that polarization mixing in a scat-
tering process is a crucial ingredient for the appearance
of a negative Casimir entropy, at least in the plane-sphere
and sphere-sphere configuration.

Which of the various channels contribute to the
Casimir entropy can be influenced by appropriately
choosing the material out of which the scattering objects
are made. One can use the fact that in the long-distance

limit the reflection of transverse electric modes at spheres
made of a Drude metal becomes negligible. We have
shown that for two Drude metal spheres, the Casimir
entropy is positive for all temperatures. In this situa-
tion, only roundtrip scattering processes involving trans-
verse magnetic modes are relevant. As soon as at least
one of the spheres is perfectly conducting, polarization-
changing processes occur and the Casimir entropy is
found to become negative in a certain temperature win-
dow.

ACKNOWLEDGMENTS

KAM and GLI thank the Laboratoire Kastler Brossel
for their hospitality during the period of this work and
CNRS and ENS for financial support. KAM’s work was
further supported in part by grants from the Simons
Foundation and the Julian Schwinger Foundation.

[1] H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793
(1948).

[2] V. B. Bezerra, G. L. Klimchitskaya, and V. M. Mostepa-
nenko, Phys. Rev. A 66, 062112 (2002).

[3] M. Boström and B. E. Sernelius, Physica A 339, 33
(2004).

[4] V. B. Bezerra, G. L. Klimchitskaya, V. M. Mostepanenko,
and C. Romero, Phys. Rev. A 69, 022119 (2004).

[5] I. Brevik, J. B. Aarseth, J. S. Høye, and K. A. Mil-
ton, in Proceedings of the Sixth Workshop on Quantum
Field Theory Under the Influence of External Conditions,
edited by K. A. Milton (Rinton Press, Princeton, 2004),
pp. 54–65.

[6] I. Brevik, J. B. Aarseth, J. S. Høye, and K. A. Milton,
Phys. Rev. E 71, 056101 (2005).

[7] V. B. Svetovoy and R. Esquivel, Phys. Rev. E 72, 036113
(2005).

[8] I. Brevik, J. B. Aarseth, J. S. Høye, and K. A. Milton,
Phys. Rev. E 71, 056101 (2005).

[9] V. B. Bezerra, G. L. Klimchitskaya, V. M. Mostepanenko,
and C. Romero, Phys. Rev. A 78, 042901 (2008).
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