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Exponential mixing properties for time inhomogeneous
diffusion processes with killing

Pierre Del Moral∗, Denis Villemonais †

March 19, 2016

Abstract

We consider an elliptic and time-inhomogeneous diffusion process with time-
periodic coefficients evolving in a bounded domain of Rd with a smooth boundary.
The process is killed when it hits the boundary of the domain (hard killing) or after
an exponential time (soft killing) associated with some bounded rate function. The
branching particle interpretation of the non absorbed diffusion again behaves as a
set of interacting particles evolving in an absorbing medium. Between absorption
times, the particles evolve independently one from each other according to the diffu-
sion evolution operator; when a particle is absorbed, another selected particle splits
into two offsprings. This article is concerned with the stability properties of these
non absorbed processes. Under some classical ellipticity properties on the diffusion
process and some mild regularity properties of the hard obstacle boundaries, we
prove an uniform exponential strong mixing property of the process conditioned to
not be killed. We also provide uniform estimates w.r.t. the time horizon for the
interacting particle interpretation of these non-absorbed processes, yielding what
seems to be the first result of this type for this class of diffusion processes evolv-
ing in soft and hard obstacles, both in homogeneous and non-homogeneous time
settings.

Keywords: process with absorption; uniform mixing property; time-inhomogeneous dif-
fusion process.
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1 Introduction

Let D be a bounded open subset of Rd (d ≥ 1) whose boundary ∂D is of class C2 and
consider the stochastic differential equation

dZt = σ(t,Zt)dBt + b(t,Zt)dt, Z0 ∈ D, (1)
∗School of Maths and Stats, UNSW Sydney, Australia
†TOSCA project-team, INRIA Nancy – Grand Est, IECL – UMR 7502, Université de Lorraine B.P.

70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
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where B is a standard d dimensional Brownian motion. We assume that the functions

σ :
[0,+∞[×Rd → Rd ×Rd
(t,x) 7→ σ(t,x)

and b :
[0,+∞[×Rd → Rd

(t,x) 7→ b(t,x)

are continuous on [0, +∞[×Rd. Moreover, we assume that they are time-periodic and
Lipschitz in x ∈ D uniformly in t ∈ [0,+∞[. This means that there exist two constants
Π > 0 and C0 > 0 such that, for all x,y ∈ D and t ≥ 0,

σ(t+ Π,x) = σ(t,x) and b(t+ Π,x) = b(t,x),

‖σ(t,x)− σ(t,y)‖+ |b(t,x)− b(t,y)| ≤ k0|x− y|. (2)

In particular, there exists a solution to the stochastic differential equation (1) (see [15,
Theorem 3.10, Chapter 5]). Moreover, the solution is path-wise unique up to time τD =
inf{t ≥ 0, Zt /∈ D} (see [15, Theorem 3.7, Chapter 5]). Note that, since σ,b are continuous
in the compact set [0,Π] × D and since they are time-periodic, both functions σ and b
are uniformly bounded.

For all s > 0 and any probability distribution µ on D, we denote by (Zµs,t)t≥s the unique
solution to this stochastic differential equation starting at time s > 0 with distribution
µ, killed when it hits the boundary and killed with a rate κ(t,Zxs,t) ≥ 0, where

κ : [0,+∞[×D → R+

is a uniformly bounded non-negative measurable function which is also time-periodic
(with period Π). By “the process is killed”, we mean that the process is sent to a cemetery
point ∂ /∈ D, so that the killed process is càdlàg almost surely. If there exists x ∈ D
such that µ = δx, we set (Zxs,t)t≥s = (Zδxs,t)t≥s. When the process is killed by hitting
the boundary, we say that it undergoes a hard killing; when the process is killed strictly
before reaching the boundary (because of the killing rate κ), we say that it undergoes a
soft killing. We denote the killing time by τ∂ = inf{t ≥ s,Zxs,t = ∂}.
Let (Qs,t)0≤s≤t be the evolution operator of the diffusion process with killing. It is
defined, for all 0 ≤ s ≤ t, x ∈ D and for any bounded measurable function f : Rd∪{∂} 7→
R which vanishes outside D, by

Qs,tf(x) = E
(
f(Zxs,t)1t<τ∂

)
= E

(
f(Zxs,t)

)
.

We emphasize that, for any probability measure µ on D, the law of Zµs,t is given by the
probability measure µQs,t, defined by

µQs,t(f) =

∫
D
Qs,tf(x)dµ(x).

In this paper, we focus on the long time behaviour of the distribution of Zµs,t conditioned
to not be killed when it is observed, that is to the event {t < τ∂}. This distribution is
given by

P(Zµs,t ∈ · | t < τ∂) =
µQs,t(·)
µQs,t(1)

. (3)
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The first aim of this paper is to provide a sufficient criterion for the following expo-
nential mixing property : there exist two constants C > 0 and γ > 0 such that, for any
probability measure µ1 and µ2 on D,∥∥∥∥ µ1Qs,t

µ1Qs,t(1D)
− µ2Qs,t
µ2Qs,t(1D)

∥∥∥∥
TV

≤ Ce−γ(t−s), (4)

where ‖ · ‖TV denotes the total variation norm between measures on Rd.
The usual tools to prove convergence as in (4) for non-conditioned evolution oper-

ator involve coupling arguments: for example, contraction in total variation norm can
be obtained using mirror and parallel coupling see [24, 35, 29]. However, the exponen-
tial contraction obtained for the non-conditioned evolution operator is not maintained
after conditioning, because the denominator µQs,t(1D) goes to 0 when t → ∞, usually
as a stronger pace than the rate of contraction obtained by coupling methods for the
unconditioned evolution operator.

In order to overcome this difficulty, our main tool will be to consider, for any time
horizon T > 0, the process conditioned not to be killed before time T and to prove uniform
rate of contraction in total variation norm for this collection of time-inhomogeneous pro-
cesses. However, this can not be obtained directly from existing coupling methods, since
the process conditioned not to be killed up to a given time t > 0 is a time-inhomogeneous
diffusion process with a singular drift for which the traditional coupling methods men-
tioned above fail. For instance, a standard d-dimensional Brownian motion (Bt)t≥0

conditioned not to exit a smooth domain D ⊂ Rd up to a time T > 0 has the law of the
solution (X

(T )
t )t∈[0,T ] to the stochastic differential equation

dX
(T )
t = dBt +

[
∇ lnQt,T1D((X

(T )
t ))

]
dt.

Since the probability of not being killed Qt,T1D(x) vanishes when x converges to the
boundary ∂D of D, the drift term in the above SDE is singular and hence existing
coupling methods do not apply directly. Moreover, an additional difficulty comes from
the fact that the coupling coefficients must be controlled uniformly in the time horizon
T > 0, while the drift term in the above equation changes with T .

While the idea to consider the process conditioned to not be killed before a varying
time horizon is not new when processes are only subject to a uniformly bounded soft
killing rate (see [6]), it has never been used when a hard killing rate is involved be-
cause of the singularities mentioned above. Instead, convergence of conditioned diffusion
processes with hard killing have been obtained up to now using (sometimes involved)
spectral theoretic arguments (see for instance, [3, 23, 25, 27] for one-dimensional diffu-
sion processes and [3, 22] for multi-dimensional diffusion processes) which all require at
least C1 diffusion coefficients and become impractical in the time-homogeneous setting.

In this paper, we use a new approach to obtain uniform coupling for the process
conditioned to not be killed before a varying time horizon T using existing coupling
results for non-conditioned processes and fine control over the probability of killing before
time T . Doing so, our objective is twofold : first we aim at relaxing the regularity
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assumptions required by the classical spectral methods, second we provide tools that
apply to time-inhomogeneous processes with hard killing, which were not the case of
previous approaches.

Note that our approach is entirely based on probabilistic tools which leads us to
original results in both time-homogeneous and time-inhomogeneous cases. Let us first
discuss the novelty of our results in the time-homogeneous situation. The most advanced
results on the matter are given by Knobloch and Partzsch in [22] and are obtained by
spectral theory tools, whose main drawback is the essential requirement of regularity for
the infinitesimal generator. More precisely, they require σ to be of class C1 on the whole
domain D in order to conclude. On the contrary, we only assume differentiability of σ in
an arbitrary neighbourhood of the boundary ∂D, while the coefficients are only required
to be Lipschitz in the rest of the domain. In fact, our criterion also applies to situations
where the coefficient σ is only Lipschitz in the whole domain D. We give several examples
in the next section, where our criterion applies while existing results from [4], [22], [28],
[18] fail because of their uniform regularity requirements.

Let us now comment the time-inhomogeneous setting. In this case, the classical
spectral theory approach cannot be used since the infinitesimal generator depends on
time. Also, since the coefficients are assumed to be time-periodic, it is natural to ask
whether discrete time results could be applied in this situation. However, no existing
tools can handle a situation where the killing probability between two successive time
is not uniformly bounded away from 0, as it is in our case of a diffusion process with a
hard boundary. On the contrary, our approach, by using fine couplings and hence the
continuous time nature of diffusion processes paths, provides a new way to handle such
situations. Note that our approach could lead to further developments. Indeed, while the
periodic assumption is natural for applications, it would be interesting to know whether
the result remains true without this assumption. In order to generalize our approach to
non-periodic coefficients, one only has to prove that there exists two positive constants
Π > 0 and C > 0 such that

‖Qs,t+Π(1D)‖∞ ≤ C ‖Qs+Π,t+Π(1D)‖∞ , ∀s ≤ t.

However, this apparently simple inequality is related to complex Harnack type inequal-
ities that have not been developed yet. Of course, this inequality is fulfilled in the time
periodic framework. We emphasize that the periodicity assumption can be a little bit
relaxed, since our result also applies to time-inhomogeneous diffusion processes which
are regular time-changes of periodic processes.

For the situation without hard killing, we refer the reader to Del Moral and Mi-
clo [11, 12]. For a general account on the time-homogeneous setting, we refer the reader
to the notion of quasi-stationary distribution (see the surveys of Méléard and Villemon-
ais [26] and ofvan Doorn and Pollett [31]) and, for the particular case of diffusion pro-
cesses, to the recent results of Knobloch and Partzsch [22], of Cattiaux and Méléard[4],
and of the pioneering works of Pinsky [28] and of Gong et al. [18]. In a recent result,
Champagnat and Villemonais [5] also provide an abstract necessary and sufficient crite-
rion for the uniform exponential convergence of the conditioned semi-group to a unique
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quasi-stationary distribution.
The second aim of this paper is to prove a uniform approximation result for the

conditioned distribution (3), based on a Fleming-Viot type interacting particle system.
More precisely, we consider a particle system of fixed size N ≥ 2 which evolves as follows.
The N particles start in D and evolve as independent copies of Z. When one of them
is killed, it undergoes a rebirth: it is placed at the position of one other particle chosen
uniformly among the remaining ones. Then the particles evolve as independent copies
of Z, until on of them killed and so on. This type of processes have been introduced
independently by Burdzy, Holyst, Ingermann and March in the exploratory paper [1]
and Del Moral and Miclo in [10]. Our main result is that the empirical distribution of
the process converges uniformly in time to the conditional distribution (3). The stability
analysis of the discrete time version of these particle absorption processes with hard
and soft obstacles is developed by Del Moral and Doucet in [7] and by Del Moral and
Guionnet in [8].

Let us finally mention that adding a soft killing to the process strongly modifies its
behavior between two times s and s+ t (where s,t ≥ 0 are fixed) when it is conditioned
to not be killed before an arbitrarily large time horizon T > 0. This is not the case for
the non-conditioned process : adding a soft killing only modifies the coupling estimates
obtained for the non-conditioned process (between fixed times s and s+ t) by a constant
factor. However, this is not true for the process conditioned to not be killed before time
T , with arbitrary large values of T . Indeed, the probability of not being killed up to time
T without soft killing can not be easily related to the same quantity for the process with
soft killing, but in the case of a constant (in space) killing rate. Since this quantity plays
a fundamental role in the behavior (between times s and s+ t) of the process conditioned
not be killed before time T , we have to take into account the killing rate function (even
if it is uniformly bounded) along the whole proof. This is allowed by the key ingredient
of our approach : the coupling construction and the gradient estimates of [29] and the
non-degeneracy to the boundary result of [33], which are obtained for diffusion processes
with soft killing.

In Section 2, we state our main result, which provides a sufficient criterion ensuring that
the mixing property (4) holds for time inhomogeneous diffusion processes with both soft
and hard killings. The main tools of the proof, developed in Section 4, are a tightness
result for conditional distributions (see Villemonais [33]) and a coupling between diffusion
processes (see Priola and Wang [29]).

In Section 3, we prove an interesting consequence of our main result. Namely, we show
that our criterion also implies that the approximation method developed in [34] con-
verges uniformly in time to the conditional distribution of the solution to the stochastic
differential equation (1).
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2 Main result

Let φD : D 7→ R+ denote the Euclidean distance to the boundary ∂D:

φD(x) = d(x,∂D) = inf
y∈∂D

|x− y|,

| · | being the Euclidean norm. According to [13, Chapter 5, Section 4], we can fix a > 0
small enough so that φD is of class C2

b on the boundary’s neighbourhood Da ⊂ D defined
by

Da = {x ∈ D such that φD(x) < a}.

Assumption (H). We assume that

1. there exists a constant c0 > 0 such that

c0|y| ≤ |σ(t,x)y|, ∀(t,x,y) ∈ [0,+∞[×D × Rd.

2. there exist two measurable functions f : [0,+∞[×Da → R+ and g : [0,+∞[×Da →
R such that ∀(t,x) ∈ [0,+∞[×Da,∑

k,l

∂φD
∂xk

(x)
∂φD
∂xl

(x)[σσ∗]kl(t,x) = f(t,x) + g(t,x),

and such that

(a) f is of class C1 in time and of class C2 in space, and the successive derivatives
of f are uniformly bounded,

(b) there exists a positive constant kg > 0 such that, for all (t,x) ∈ [0,+∞[×Da,

|g(t,x)| ≤ kgφD(x),

The first point of Assumption (H) is a classical ellipticity assumption. The second point
means that

∑
∂kφD∂lφD[σσ∗]kl can be approximated by a smooth function near the

boundary, the error term being bounded by kgφD. In particular, it is satisfied as soon as
σ and φD are sufficiently smooth in a neighbourhood Da of ∂D. More comments on this
criterion and examples of processes satisfying assumption (H) are given after Theorem 1.

Theorem 1. Assume that assumption (H) is satisfied. Then there exist two constants
C > 0 and γ > 0 such that, for all 0 ≤ s ≤ t,

sup
µ1,µ2∈M1(D)

∥∥∥∥ µ1Qs,t
µ1Qs,t1D

− µ2Qs,t
µ2Qs,t1D

∥∥∥∥
TV

≤ Ce−γ(t−s),

whereM1(D) is the set of probability measures on D.
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Before turning to the proof of Theorem 1 in Section 4, we give in Remark 1 four simple
examples of diffusion processes that enter our settings but are not covered by existing
results. Then we present in the next section an interesting consequence of Theorem 1
for an approximation method based on a Fleming-Viot type interacting particle system.
Note that the approximation method described in the next section is itself used in the
proof of Theorem 1, through the tightness results obtained in [33].

Remark 1. The second point of assumption (H) is the only differentiability assumption
which is required on the coefficient of the SDE (1). We emphasize that it only requires
differentiability in an arbitrary small neighbourhood of the boundary ∂D. Note also that
it is fulfilled as soon as the boundary is of class C3 and σσ∗ is of class C1 in time and
C2 in space in the chosen neighbourhood of the boundary. Here are simple and quite
natural examples that are not covered by existing results but enter our settings.

1. Consider the time-homogeneous setting, where D is the unit ball of Rd, b(t,x) = 0
and σ(t,x) = (1 + φD(x))Id if x ∈ D and σ(t,x) = Id otherwise. This corresponds,
informally, to a standard Brownian motion whose variance increases when the path
approaches the center of the domain D. In this case, σ clearly fulfils the first point
of assumption (H), while φD and σ are of class C∞ in D 1

2
so that the second point

of the assumption is also fulfilled and Theorem 1 holds. Note that, since σ is not of
class C1 in the whole domain D, no existing result applies to this simple situation.

2. Consider the situation where D is the unit ball of R2, σ(t,x) = Id and b(t,x) =
ϕD(x)x for all x ∈ D. This clearly fulfils Assumption (H), so that Theorem 1
applies. However, no existing result in the literature covers this simple case. In-
deed, the general result proven in [22] only applies in Rd for d ≥ 3. The studies
that succeeded in studying the conditional limit of 2-dimensional processes (see [4]
and [18]) require at least C1 regularity for both σ and b. But, in our example, this
last function is not C1 in the whole domain D.

3. Consider the situation whereD is the unit disc of Rd, σ(t,x) = Id and b(t,x) = Rt for
x ∈ D, where Rt denotes any time periodic vector. In this situation, all the coeffi-
cients are C∞ in space and σ is C∞ in time. Since the coefficients are time periodic,
we deduce that Theorem 1 applies. However, because of the time-inhomogeneity
of b(t,x), no existing continuous time result covers this situation. Also, since the
probability of extinction between two successive periods is not bounded away from
1, no existing discrete time result applies.

4. In fact, our result do not require the diffusion coefficient σ to be differentiable at
all. For instance, consider the situation where D is the unit ball of Rd and let
h : Rd → [0,1/2] be any positive Lipschitz function. Then the diffusion process
solution to the SDE (1) with b(t,x) = 0 and σ(t,x) = (1 + h(x)φD(x))Id enters our
setting while σ(t,x) is a priori only Lipschitz in D. This is, up to our knowledge,
the first result covering such an example.
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3 Uniform convergence of a Fleming-Viot type approxima-
tion method to the conditional distribution

We present in this section an interesting consequence of the mixing property for the
approximation method developed in [34] : assuming that Assumption (H) holds, we prove
that the approximation converges uniformly in time. The particle approximation method
has been introduced by Burdzy, Holyst, Ingerman and March [1] for standard Brownian
motions, and studied later by Burdzy, Hołyst and March [2] and by Grigorescu and
Kang [20] for Brownian motions, by Del Moral and Miclo [10, 12] and by Rousset [30] for
jump-diffusion processes with smooth killings, Ferrari and Maric̀ [16] for Markov processes
in countable state spaces, in [32] for diffusion processes and in [34] for general Markov
processes. The discrete time version of these interacting particle models on general
measurable spaces, including approximations of non absorbed trajectories in terms of
genealogical trees is developed in [7, 8, 9]. For a more detailed discussion, including
applications of these discrete generation particle techniques in advanced signal processing,
statistical machine learning, and quantum physics, we also refer the reader to the recent
monograph [6], and the references therein.

The approximation method is based on a sequence of Fleming-Viot type interacting
particle systems whose associated sequence of empirical distributions converges to the
conditioned distribution (3) when the number of particles tends to infinity. More pre-
cisely, fix N ≥ 2 and let us define the Fleming-Viot type interacting particle system with
N particles. The system of N particles (X1,N

s,t ,...,X
N,N
s,t )t≥s starts from an initial state

(X1,N
s,s ,...,X

N,N
s,s ) ∈ DN , then:

• The particles evolve as N independent copies of ZX
i,N
s,s

s,· until one of them, say Xi1,N ,
is killed. The first killing time is denoted by τN1 . We emphasize that under our
hypotheses, the particle killed at time τN1 is unique [34].

• At time τN1 , the particle Xi1,N jumps on the position of an other particle, chosen
uniformly among the N − 1 remaining ones. After this operation, the position
Xi,N

s,τN1
is in D, for all i ∈ {1,...,N}.

• Then the particles evolve as N independent copies of Z
Xi,N

s,τN1

τN1 ,· until one of them, say

Xi2,N , is killed. This second killing time is denoted by τN2 . Once again, the killed
particle is uniquely determined and the N − 1 other particles are in D.

• At time τN2 , the particle Xi2,N jumps on the position of one particle, chosen uni-
formly among the N − 1 particles that are in D at time τN2 .

• Then the particles evolve as independent copies of Z
Xi,N

s,τN2

τN2 ,· and so on.
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We denote by 0 < τN1 < τN2 < ... < τNn < ... the sequence of killing/jump times of the
process. By [34], Assumption (H) implies that

lim
n→∞

τNn = +∞, almost surely.

In particular, the above algorithm defines a Markov process (X1,N
s,t ,...,X

N,N
s,t )t≥s. For all

N ≥ 2 and all 0 ≤ s ≤ t, we denote by µNs,t the empirical distribution of (X1,N
s,t ,...,X

N,N
s,t ),

which means that

µNs,t(·) =
1

N

N∑
i=1

δ
Xi,N
s,t

(·) ∈M1(D),

whereM1(D) denotes the set of probability measures on the open set D. This branching
type particle model with fixed population size is closely related to the class of Moran and
Fleming-Viot processes arising in measure valued super-processes [10, 14, 17]. The main
difference with these super-processes comes from the fact that the occupation measures
of the system converge to a deterministic limit measure valued process, as the size of the
population tends to ∞. These particle absorption models can also be interpreted as an
extended version of the Nanbu type mean field particle model developed by C. Graham
and S. Méléard [19] in the context of spatially homogeneous Boltzmann equations. The
next results provide an uniform estimate w.r.t. the time horizon.

Theorem 2. Assume that Hypothesis (H) holds and that the family of empirical distribu-
tions (µNs,s)s≥0, N≥2 of the initial distributions of the interacting particle system described
above is tight inM1(D). Then

lim
N→∞

sup
s≥0

sup
t∈[s,+∞[

sup
f∈B1(D)

E

∣∣∣∣∣µNs,t(f)−
µNs,sQs,t(f)

µNs,sQs,t(1D)

∣∣∣∣∣ = 0.

Proof. Fix ε > 0. Our aim is to prove that there exists Nε ≥ 2 such that, for all N ≥ Nε

and all measurable function f : D → R satisfying ‖f‖∞ ≤ 1, we have

sup
s,t∈[0,+∞[

E

∣∣∣∣∣µNs,s+t(f)−
µNs,sQs,s+t(f)

µNs,sQs,s+t(1D)

∣∣∣∣∣ ≤ ε. (5)

Let γ be the constant of Theorem 1 and fix t0 ≥ 1 such that 2e−γ(t0−1) ≤ ε/6. In a first
step, we prove that (5) holds for t ≤ t0. In a second step we prove that it holds for t ≥ t0.

Step 1: Inequality (5) holds for t ≤ t0.
Since the sequence of initial distributions is assumed to be uniformly tight (w.r.t. the
time parameter and the size of the system), there exists α1 = α1(ε) > 0 such that,
∀N ≥ 2,

E(µNs,s(D
α1)) ≤ ε

8
.
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Now, since the coefficients of the SDE (1) and the killing rate κ are uniformly bounded,
the probability for the process Zxs,· starting from x ∈ (Dα1)c to be killed after time s+ t0
is uniformly bounded below by a positive constant. In other words, the constant βε
defined below is positive :

βε
def
= inf {Qs,s+t01D(x), s ∈ [0,+∞[, x ∈ (Dα1)c} > 0.

Now, fix s ≥ 0. For all t ∈ [0,t0], we have

E

∣∣∣∣∣µNs,s+t(f)−
µNs,sQs,s+t(f)

µNs,sQs,s+t(1D)

∣∣∣∣∣ =

∫
M1(D)

EN,sµ

∣∣∣∣∣µNs,s+t(f)−
µNs,sQs,s+t(f)

µNs,sQs,s+t(1D)

∣∣∣∣∣ dP(µNs,s = µ),

where EN,sµ (resp. PN,sµ ) denotes the expectation (resp. the probability) with respect to
the law of the Fleming-Viot system with N particles and initial deterministic empirical
distribution µ, whose particles evolve as independent copies of Zs,· between their rebirths.

In our diffusion process setting, for any s ≤ t and any probability distribution µ,
the probability of not being killed before time t, given by µQs,t1D, is positive. As a
consequence, we can make use of Theorem [34, Theorem 2.2] to deduce that

EN,sµ

(∣∣∣∣∣µNs,s+t(f)−
µNs,sQs,s+t(f)

µNs,sQs,s+t(1D)

∣∣∣∣∣
)
≤ 2(1 +

√
2)√

N

√
EN,sµ

(
1

µNs,sQs,s+t(1D)2

)
.

Using the fact that µNs,s = µ almost surely under PN,sµ , we deduce that

ENµ

(∣∣∣∣∣µNs,s+t(f)−
µNs,sQs,s+t(f)

µNs,sQs,s+t(1D)

∣∣∣∣∣
)
≤ 2(1 +

√
2)√

NµQs,s+t(1D)
.

Since ‖f‖∞ ≤ 1, we have
∣∣∣µNs,s+t(f)− µNs,sQs,s+t(f)

µNs,sQs,s+t(1D)

∣∣∣ ≤ 2 almost surely and we deduce
from the previous inequality that

E

∣∣∣∣∣µNs,s+t(f)−
µNs,sQs,s+t(f)

µNs,sQs,s+t(1D)

∣∣∣∣∣ ≤ ε

2
+ 2P

(
2(1 +

√
2)√

NµNs,sQs,s+t(1D)
≥ ε

2

)

≤ ε

2
+ 2P

(
µNs,sQs,s+t(1D) ≤ 4(1 +

√
2)

ε
√
N

)
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But µNs,sQs,s+t(1D) ≥ µNs,s ((Dα1)c)βε almost surely, thus

E

∣∣∣∣∣µNs,s+t(f)−
µNs,sQs,s+t(f)

µNs,sQs,s+t(1D)

∣∣∣∣∣ ≤ ε

2
+ 2P

(
µNs,s ((Dα1)c) ≤ 4(1 +

√
2)

ε
√
Nβε

)

≤ ε

2
+ 2P

(
µNs,s (Dα1) ≥ 1− 4(1 +

√
2)

ε
√
Nβε

)
≤ ε

2
+

2

1− 4(1+
√

2)

ε
√
Nβε

E
(
µNs,s (Dα1)

)
≤ ε

2
+ 2

1

1− 4(1+
√

2)

ε
√
Nβε

ε

8
,

where we used Markov’s inequality. Finally, there exists N1 = N1(ε) ≥ 2 such that,
∀N ≥ N1,

sup
s≥0

sup
t∈[0,t0]

E

∣∣∣∣∣µNs,s+t(f)−
µNs,sQs,s+t(f)

µNs,sQs,s+t(1D)

∣∣∣∣∣ ≤ ε.
Step 2: Inequality (5) holds for t ≥ t0.
Fix now t ≥ t0. We have

E

∣∣∣∣∣µNs,s+t(f)−
µNs,sQs,s+t(f)

µNs,sQs,s+t(1D)

∣∣∣∣∣ ≤ E

∣∣∣∣∣µNs,s+t(f)−
µNs,s+1+t−t0Qs+1+t−t0,s+t(f)

µNs,s+1+t−t0Qs+1+t−t0,s+t(1D)

∣∣∣∣∣
+ E

∣∣∣∣∣ µNs,s+1+t−t0Qs+1+t−t0,s+t(f)

µNs,s+1+t−t0Qs+1+t−t0,s+t(1D)
−

µNs,sQs,s+t(f)

µNs,sQs,s+t(1D)

∣∣∣∣∣ .
By [33, Theorem 3.1], there exists α2 = α2(ε) > 0 and N2 = N2(ε) ≥ 2 such that for all
s ∈ [0,+∞[, t ≥ t0 and N ≥ N2,

E
(
µNs,s+1+t−t0(Dα2)

)
≤ ε.

Since α1 and α2 can be chosen arbitrarily small, one can assume without loss of gener-
ality that α1 = α2. Now, using step 1 for the particle system with initial distribution
µNs,s+1+t−t0 and the Markov property for the particle system, we deduce that, for all
N ≥ 2,

E

∣∣∣∣∣µNs,s+t(f)−
µNs,s+1+t−t0Qs+1+t−t0,s+t(f)

µNs,s+1+t−t0Qs+1+t−t0,s+t(1D)

∣∣∣∣∣ ≤ ε

2
+ 2

1

1− 4(1+
√

2)

ε
√
Nβε

ε

8
.

By Theorem 1 applied to the initial distributions µNs,s+1+t−t0 and µNs,sQs,s+1+t−t0 , we also
have

E

∣∣∣∣∣ µNs,s+1+t−t0Qs+1+t−t0,s+t(f)

µNs,s+1+t−t0Qs+1+t−t0,s+t(1D)
−

µNs,sQs,s+t(f)

µNs,sQs,s+t(1D)

∣∣∣∣∣ ≤ 2e−γ(t0−1) = ε/6.
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We deduce from the two previous inequality that there exists N3 = N3(ε) ≥ N2 such
that, ∀N ≥ N3,

E

∣∣∣∣∣µNs,s+t(f)−
µNs,sQs,s+t(f)

µNs,sQs,s+t(1D)

∣∣∣∣∣ ≤ ε.
Conclusion.
Setting Nε = N1 ∨N3, we have proved (5), which concludes the proof of Theorem 2.

4 Proof of the main result

The proof of Theorem 1 is based on the study of the process conditioned not to be killed
before a time horizon T that we let go to infinity : we prove coupling estimates for these
processes, uniformly in T . More precisely, let us define, for all 0 ≤ s ≤ t ≤ T the linear
operator RTs,t by

RTs,tf(x) =
Qs,t(fQt,T1D)(x)

Qs,T1D(x)
,

for all x ∈ D and any bounded measurable function f . Let us remark that the value
RTs,tf(x) is the expectation of f(Zxs,t) conditioned to T < τ∂ . Indeed we have

E
(
f(Zxs,t)

∣∣ T < τ∂
)

=
E
(
f(Zxs,t)1Zxs,T∈D

)
E (T < τ∂)

=
E
(
f(Zxs,t)E

(
1Zxs,T∈D

∣∣∣Zxs,t))
Qs,T1D(x)

=

E
(
f(Zxs,t)E

(
1
Z
Zxs,t
t,T ∈D

|Zxs,t
))

Qs,T1D(x)
,

by the Markov property. Finally, since E
(
1
Z
Zxs,t
s,T ∈D

|Zxs,t
)

= Qt,T1D(Zxs,t), we get the

announced result.

For any T > 0, the family (RTs,t)0≤s≤t≤T is an evolution operator. Indeed, we have for
all 0 ≤ u ≤ s ≤ t ≤ T

RTu,s(R
T
s,tf)(x) =

Qu,s(R
T
s,tfQs,T1D)(x)

Qu,T1D(x)
,

where, for all y ∈ D,

RTs,tf(y)Qs,T1D(y) = Qs,t(fQt,T1D)(y),

12



then

RTu,sR
T
s,tf(x) =

Qu,s(Qs,t(fQt,T1D))(x)

Qu,T1D(x)

=
Qu,t(fQt,T1D)(x)

Qu,T1D(x)
= RTu,tf(x),

where we have used that (Qs,t)s≤t is an evolution operator.
In order to prove the exponential mixing property of Theorem 1, we need the following

lemma, whose proof is postponed to the end of this section (see Subsection 4.1). Its proof
is based on a coupling construction and on a gradient estimate both obtained in [29].
We will also use a non-degeneracy to the boundary result for the conditional distribution
proved in [33].

Lemma 3. There exists a positive constant β′ > 0 and a family of probability measures
(ηx1,x2s )s,x1,x2 such that, for all 0 ≤ s ≤ T −Π− 2, we have

RTs,s+1f(xi) ≥ β′ηx1,x2s (f), i = 1,2,

for all (x1,x2) ∈ D ×D and any non-negative measurable function f .

For any orthogonal probability measures µ1,µ2 on D, we have

‖µ1R
T
s,s+1 − µ2R

T
s,s+1‖TV = sup

f∈B1(D)
|µ1R

T
s,s+1(f)− µ2R

T
s,s+1(f)|

≤ sup
f∈B1(D)

∫
D×D

∣∣RTs,s+1f(x)−RTs,s+1f(y)
∣∣ (µ1 ⊗ µ2)(dx,dy),

where B1(D) denotes the set of measurable functions f such that ‖f‖∞ ≤ 1, and ‖ · ‖TV
the total variation norm for signed measures. For any x,y ∈ D ×D and any f ∈ B1(D),
we have, for all s ≤ T −Π− 2,∣∣RTs,s+1f(x)−RTs,s+1f(y)

∣∣ =
∣∣(RTs,s+1f(x)− β′ηx,ys (f)

)
−
(
RTs,s+1f(y)− β′ηx,ys (f)

)∣∣
≤
∣∣RTs,s+1f(x)− β′ηx,ys (f)

∣∣+
∣∣RTs,s+1f(y)− β′ηx,ys (f)

∣∣
But, by Lemma 3, δxRTs,s+1 − β′η

x,y
s is a non-negative measure with total mass smaller

than 1− β′, so that

0 ≤
∣∣RTs,s+1f(x)− β′ηx,ys (f)

∣∣ ≤ 1− β′.

We obtain the same inequality for
∣∣RTs,s+1f(y)− β′ηx,ys (f)

∣∣, so that∣∣RTs,s+1f(x)−RTs,s+1f(y)
∣∣ ≤ 2(1− β′).

13



Since µ1 and µ2 are assumed to be orthogonal probability measures, we have ‖µ1 −
µ2‖TV = 2, so that

‖µ1R
T
s,s+1 − µ2R

T
s,s+1‖TV ≤ (1− β′)‖µ1 − µ2‖TV .

If µ1 and µ2 are two different but not orthogonal probability measures, one can apply
the previous result to the orthogonal probability measures (µ1−µ2)+

(µ1−µ2)+(D) and (µ1−µ2)−
(µ1−µ2)−(D) .

Then∥∥∥∥ (µ1 − µ2)+

(µ1 − µ2)+(D)
RTs,s+1 −

(µ1 − µ2)−
(µ1 − µ2)−(D)

RTs,s+1

∥∥∥∥
TV

≤ (1− β′)
∥∥∥∥ (µ1 − µ2)+

(µ1 − µ2)+(D)
− (µ1 − µ2)−

(µ1 − µ2)−(D)

∥∥∥∥
TV

.

But (µ1 − µ2)+(D) = (µ1 − µ2)−(D) since µ1(D) = µ2(D) = 1, then, multiplying the
obtained inequality by (µ1 − µ2)+(D), we deduce that

‖(µ1 − µ2)+R
T
s,s+1 − (µ1 − µ2)−R

T
s,s+1‖TV ≤ (1− β′)‖(µ1 − µ2)+ − (µ1 − µ2)−‖TV .

But (µ1 − µ2)+ − (µ1 − µ2)− = µ1 − µ2, so that

‖µ1R
T
s,s+1 − µ2R

T
s,s+1‖TV ≤ (1− β′)‖µ1 − µ2‖TV .

In particular, using the evolution operator property of (RTs,t)s,t, we deduce that

‖δxRT0,T−Π−2 − δyRT0,T−Π−2‖TV

=
∥∥∥δxRT0,T−Π−3R

T
T−Π−3,T−Π−2 − δyRT0,T−Π−3R

T
T−Π−3,T−Π−2

∥∥∥
TV

≤ (1− β′)‖δxRT0,T−Π−3 − δyRT0,T−Π−3‖TV ≤ 2(1− β′)[T−Π−2],

where [T − Π − 2] denotes the integer part of T − Π − 2. Theorem 1 is thus proved for
any pair of probability measures (δx,δy), with (x,y) ∈ D×D, for a good choice of C and
γ which are now assumed to be fixed.

Let µ be a probability measure on D and y ∈ D. We have∣∣∣∣µQ0,T (f)− µQ0,T (1D)
δyQ0,T (f)

δyQ0,T (1D)

∣∣∣∣ =

∣∣∣∣∫
D
Q0,T f(x)− δxQ0,T (1D)

δyQ0,T (f)

δyQ0,T (1D)
dµ(x)

∣∣∣∣
≤
∫
D
Ce−γT δxQ0,T (1D)dµ(x),

by Theorem 1 for Dirac initial measures that we just proved. Dividing by µQ0,T (1D) =∫
D δxQ0,T (1D)dµ(x), we deduce that∣∣∣∣ µQ0,T (f)

µQ0,T (1D)
−

δyQ0,T (f)

δyQ0,T (1D)

∣∣∣∣ ≤ Ce−γT ,
for any f ∈ B1. The same procedure, replacing δy by any probability measure, leads us
to Theorem 1.
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4.1 Proof of Lemma 3

In Subsection 4.1.1, we present a coupling construction for multi-dimensional time-
inhomogeneous diffusion processes obtained in [29]. In Subsection 4.1.2, we derive from
this coupling and from the non-degeneracy result for conditional distribution obtained
in [33] two intermediate results which are key steps for the proof of Lemma 3. The first
result (Lemma 5) concerns the existence of a path (xs,t)0≤s≤t and a constant r0 > 0 such
that

inf
x∈B(xs,t,r0)

Qs,t1D(x) ≥ 1

2
‖Qs,t1D‖∞, ∀0 ≤ s+ Π + 1 ≤ t,

where we recall that Π is the time-period of the coefficients σ and b. The second result
(Lemma 6) states the existence of a constant β > 0 and a family of probability measures
(νx1,x2s )s≥0,(x1,x2)∈D×D such that, for all s ≥ 0, all (x1,x2) ∈ D×D and any non-negative
measurable function f ,

Qs,s+1f(xi)

Qs,s+11D(xi)
≥ βνx1,x2s (f), i = 1,2.

We conclude the proof of Lemma 3 in Subsection 4.1.3, showing that Lemma 5 and
Lemma 6 imply a uniform coupling rate for the process conditioned not be killed up to
an arbitrary time horizon T > 0.

4.1.1 Coupling

In the following proposition, we state the existence of a coupling for multi-dimensional
time-inhomogeneous diffusion processes. The result also provides a bound for the cou-
pling probability that will be very useful in the next subsections.

Proposition 4. For all s ≥ 0 and all (y1,y2) ∈ D ×D, there exists a diffusion process
(Y 1
s,t,Y

2
s,t)t≥s such that

1. (Y 1
s,t)t≥s has the same law as (Zy1s,t)t≥s,

2. (Y 2
s,t)t≥s has the same law as (Zy2s,t)t≥s;

3. Y 1
s,t and Y 2

s,t are equal almost surely after the coupling time

T sc = inf{t ≥ 0, Y 1
s,t = Y 2

s,t},

where inf ∅ = +∞ by convention.

4. There exists a constant c > 0 which doesn’t depend on s,t such that

Py1,y2(t < τ1
∂ ∨ τ2

∂ and T sc > t ∧ τ1
∂ ∧ τ2

∂ ) ≤ c|y1 − y2|√
1 ∧ (t− s)

,

where τ1
∂ and τ2

∂ denote the killing times of Y 1 and Y 2 respectively.
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The proof of Proposition 4 is given in [29] for time-homogeneous diffusion processes,
though a careful check of the arguments shows that the authors do not use the time-
homogeneity of the coefficients to derive the existence and other properties of the cou-
pling. We do not write the proof in details, but we recall the idea behind the coupling
construction. The proof of the 4th statement of Proposition 4 requires fine estimates and
calculus which are plainly detailed in [29]. More precisely, the authors obtain this result
on page 261. Note that the result is a little bit hidden but is easily obtained by straight-
forward computations. Indeed, one checks that, in our situation (and using the notation
of the cited article), there exist constants a,b > 0 such that Fδ,ε(ρ(x,y)) ≤ aρ(x,y) and
hε(ρ(x,y)) ≤ bρ(x,y) in equation [29, (4.4)].

Let us nom briefly present the construction of the coupling. By Assumption (H), there
exists λ0 > 0 such that σσ∗ − λ0I is definite positive for all t,x. Let σ0 :=

√
σσ∗ − λ0I

be the unique symmetric definite positive matrix function such that σ2
0 = σσ∗ − λ0I.

Without loss of generality, one can choose λ0 small enough so that σ0 is uniformly
positive definite. We define

u(x,y) =
k(|x− y|)(x− y)

(k(|x− y|) + 1)|x− y|
and Ct(x,y) = λ0 (I − 2u(x,y)u(x,y)∗)+σ0(t,x)σ0(t,y)∗,

where k(r) = ((k0 + 1)2r2/2 ∨ r)
1
4 , where k0 > 0 is taken from (2). Before the coupling

time, the coupling process is generated by

Lt(x,y) =
1

2

d∑
i,j=1

{
[σ(t,x)σ(t,x)∗]i,j

∂2

∂xi∂xj
+ [σ(t,y)σ(t,y)∗]i,j

∂2

∂yi∂yj

+2[Ct(x,y)]i,j
∂2

∂xi∂yj

}
+

d∑
i=1

{
(b(t,x))i

∂

∂xi
+ (b(t,y))i

∂

∂yi

}
.

The coefficients of Lt are continuous and bounded over Rd, then, for all s ≥ 0 and
any initial position x = (y1,y2) ∈ D × D, there exists a not necessarily unique process
(Xx

s,t)t≥0 with values in R2d to the martingale problem associated with (Lt)t≥s (see [21,
Theorem 2.2, Chapter IV]). We define Y ′1 and Y ′2 as the two marginal components of
Xx, so that Xx

s,t = (Y ′1s,t,Y
′2
s,t) almost surely. We consider the coupling time T ′sc of Xx

s,·,
which is defined by

T ′sc = inf{t ≥ s, such that Y ′1s,t = Y ′2s,t}.

We define Y 1 and Y 2 as follows:

Y i
t =

{
Y ′it , t ≤ T ′sc ,
Y ′1t , t > T ′sc .

Moreover, each marginal process Y i, i = 1,2, is killed either when it hits the boundary
∂D or with a rate κ.
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4.1.2 Intermediate results

In this section, we prove Lemmas 5 and 6, which are essential part of the proof of
Theorem 1. We recall that Π denotes the time-period of the coefficients of the SDE (1).
Note also that Lemma 5 is the only part of the paper which makes use of the periodicity
assumption.

Lemma 5. For any 0 ≤ s < t, let us denote by xs,t ∈ D the point at which Qs,t1D is
maximal. There exists a positive constant r0 > 0 (independent of s and t) such that

inf
x∈B(xs,t,r0)

Qs,t1D(x) ≥ 1

2
‖Qs,t1D‖∞, ∀0 ≤ s ≤ s+ Π + 1 ≤ t,

where B(xs,t,r0) denotes the ball of radius r0 centred on xs,t.

Proof of Lemma 5. Fix s ≥ 0 and let (Y 1
s,·,Y

2
s,·) be the coupling of Proposition 4, starting

from to points y1 and y2 in D. From the properties (1) and (2) of the proposition, we
deduce that, for any measurable bounded function f which vanishes outside D, we have

|Qs,s+Πf(y1)−Qs,s+Πf(y2)| ≤ E
∣∣f(Y 1

s,s+Π)− f(Y 2
s,s+Π)

∣∣
where f(Y 1

s,s+Π) = f(Y 2
s,s+Π) = 0 if s+Π ≥ τ1

∂ ∨τ2
∂ and, by property (3) of Proposition 4,

Y 1
s,s+Π = Y 2

s,s+Π if T sc ≤ s+ Π ∧ τ1
∂ ∧ τ2

∂ . Thus we have

|Qs,s+Πf(y1)−Qs,s+Πf(y2)| ≤ ‖f‖∞P
(
s+ Π < τ1

∂ ∨ τ2
∂ and T sc > (s+ Π) ∧ τ1

∂ ∧ τ2
∂

)
≤ ‖f‖∞

c|y1 − y2|√
1 ∧Π

, (6)

by the fourth property of Proposition 4.

By Proposition [33, Theorem 4.1] with ε = 1/2 and t0 = 1, there exists α0 > 0 such that,
for all 0 ≤ s ≤ s+ Π + 1 ≤ t,

Qs+Π,t1D(x) ≤ 2Qs+Π,t1(Dα0 )c(x).

We emphasize that α0 does not depend on s,t. Now, since the coefficients of the SDE (1)
and the killing rate κ are assumed to be uniformly bounded on D, there exists a positive
constant cα0 , such that, for any t ≥ 0,

inf
x∈(Dα0 )c

Qt,t+Π1D(x) ≥ cα0 > 0.

In particular, we have

1(Dα0 )c ≤
Qt,t+Π1D

cα0

.

We deduce that, for all 0 ≤ s ≤ s+ Π + 1 ≤ t,

Qs+Π,t1D ≤ 2Qs+Π,t
Qt,t+Π1D

cα0

,
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so that

‖Qs+Π,t (1D) ‖∞ ≤ 2

cα0

‖Qs+Π,t+Π1D‖∞ =
2

cα0

‖Qs,t1D‖∞,

by the time-periodicity assumption on the coefficients of the SDE (1). Applying inequal-
ity (6) to f = Qs+Π,t (1D) and using the evolution operator property of (Qs,t)s≤t, we
deduce that, for all s ≤ s+ Π + 1 ≤ t,

|Qs,t1D(y1)−Qs,t1D(y2)| ≤ 2c|y1 − y2|
cα0

√
1 ∧Π

‖Qs,t1D‖∞.

For any 0 ≤ s ≤ s+ Π + 1 ≤ t, let xs,t be such that Qs,t1D(xs,t) = ‖Qs,t1D‖∞. We have
by the previous inequality,

Qs,t1D(y) ≥ ‖Qs,t1D‖∞ −
2c|xs,t − y|
cα0

√
1 ∧Π

‖Qs,t1D‖∞, ∀y ∈ D.

Choosing r0 =
cα0
4c

√
1 ∧Π, one obtains Lemma 5.

Lemma 6. There exist a constant β > 0 and a family of probability measures denoted
by (νx1,x2s )s≥0,(x1,x2)∈D×D such that, for all s ≥ 0, for all (x1,x2) ∈ D×D, i ∈ {1,2} and
for any non-negative measurable function f ,

Qs,s+1f(xi)

Qs,s+11D(xi)
≥ βνx1,x2s (f).

Moreover, for any r1 > 0, we have for all x ∈ D

inf
s≥0, (x1,x2)∈D×D

νx1,x2s (B(x,r1) ∩D) > 0.

Proof of Lemma 6. Let us first prove that there exist a constant ρ0 > 0 and a fixed
point x0 ∈ D such that there exists a constant c0 > 0 such that, for any (y1,y2) ∈
B(x0,ρ0) × B(x0,ρ0) and any s ≥ 0, there exists a probability measure µy1,y2s which
fulfills

E
(
f(Zy

i

s+ 2
3
,s+1

)

)
≥ c0 µ

y1,y2
s (f), (7)

for any i ∈ {1,2}. Fix x0 ∈ D and s ≥ 0. Since the coefficients of the SDE (1) and the
killing rate κ are uniformly bounded on D, we deduce that, for any value of ρ > 0 such
that d(∂D,B(x0,ρ)) > 0,

ε(ρ)
def
= inf

s≥0
inf

y1∈B(x0,ρ)
E
(
1D(Zy1

s+ 2
3
,s+1

)

)
> 0.
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Since ε(ρ) is a non-increasing function of ρ, one can define a constant ρ0 > 0 small enough
so that d(∂D,B(x0,ρ)) > 0 and

0 < ε(ρ0)(1− 6cρ0)− 6cρ0 ≤ ε(ρ0)/2, (8)

where c is the positive constant of Proposition 4.
Let y1,y2 be two points of B(x0,ρ0) and let (Y 1

s+ 2
3
,·,Y

2
s+ 2

3
,·) be the coupling of Propo-

sition 4 starting from (y1,y2) ∈ D ×D at time s+ 2
3 . We define the event E by

E =
{
s+ 1 ≥ τ1

∂ ∨ τ2
∂ or T sc ≤ (s+ 1) ∧ τ1

∂ ∧ τ2
∂

}
,

where T sc is the coupling time of Proposition 4, and τ1
∂ and τ2

∂ the killing times of
Y 1 and Y 2 respectively. By definition of the killing time, s + 1 ≥ τ1

∂ ∨ τ2
∂ implies

Y 1
s+ 2

3
,s+1

= Y 1
s+ 2

3
,s+1

= ∂. Moreover, by the coupling property (3) of Proposition 4,

T sc ≤ (s+ 1) ∧ τ1
∂ ∧ τ2

∂ implies Y 1
s+ 2

3
,s+1

= Y 2
s+ 2

3
,s+1

. Finally,

E ⊂
{
Y 1
s+ 2

3
,s+1

= Y 2
s+ 2

3
,s+1

}
,

so that
E
(
f(Y 2

s+ 2
3
,s+1

)|E
)

= E
(
f(Y 1

s+ 2
3
,s+1

)|E
)
.

We have then (the first equality being a consequence of Proposition 4 (1)), for any
measurable function f which vanishes outside D,

E
(
f(Zyi

s+ 2
3
,s+1

)

)
= E

(
f(Y i

s+ 2
3
,s+1

)
)

≥ E
(
f(Y i

s+ 2
3
,s+1

)|E
)
P (E)

≥ E
(
f(Y 1

s+ 2
3
,s+1

)|E
)
P (E) .

But Proposition 4 (4) implies

P (E) ≥ 1−
√

3 c|y1 − y2| ≥ 1− 6cρ0,

the last inequality being obtained using the fact that (y1,y2) ∈ B(x0,ρ0)×B(x0,ρ0). We
deduce that

E
(
f(Zyi

s+ 2
3
,s+1

)

)
≥ E

(
1D(Y 1

s+ 2
3
,s+1

)|E
)

(1− 6cρ0)µy1,y2s (f), ∀i = 1,2, (9)

where the probability measure µy1,y2s on D is defined by

µy1,y2s (f) =
E
(
f(Y 1

s+ 2
3
,s+1

)|E
)

E
(
1D(Y 1

s+ 2
3
,s+1

)|E
) .
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It only remains to find a lower bound for E
(
1D(Y 1

s+ 2
3
,s+1

)|E
)
to conclude that (7) holds.

We have

E
(
1D(Y 1

s+ 2
3
,s+1

)|E
)

=
1

P(E)
E
(
1D(Y 1

s+ 2
3
,s+1

)
)
− 1− P(E)

P(E)
E
(
1D(Y 1

s+ 2
3
,s+1

)|Ec
)

≥ 1

P(E)
E
(
1D(Zy1

s+ 2
3
,s+1

)

)
− 1− P(E)

P(E)

≥ E
(
1D(Zy1

s+ 2
3
,s+1

)

)
− 6cρ0

1− 6cρ0
.

Finally, we deduce from (9) and from the definition of ε(ρ0) that that

E
(
f(Zyi

s+ 2
3
,s+1

)

)
≥
(
ε(ρ0)− 6cρ0

1− 6cρ0

)
(1− 6cρ0)µy1,y2s (f),

for any non-negative measurable function which vanishes outsideD. Using inequality (8),
we deduce that, for all i ∈ {1,2},

E
(
f(Zyi

s+ 2
3
,s+1

)

)
≥ ε(ρ0)

2
µy1,y2s (f). (10)

Let us now conclude the proof of Lemma 6. By [33, Theorem 4.1] with µ = δx, there
exists a constant α1 > 0 such that, for all s ≥ 0 and all x ∈ D,

Qs,s+ 1
3
1(Dα1 )c(x) ≥ 1

2
Qs,s+ 1

3
1D(x)

≥ 1

2
Qs,s+11D(x). (11)

Since the coefficients of the SDE (1) and the killing rate κ are uniformly bounded, we
have

ε1
def
= inf

s≥0,x∈(Dα1 )c
Qs+ 1

3
,s+ 2

3
1B(x0,ρ0)(x) > 0.

In particular, we deduce from (11) that, for all x ∈ D,

Qs,s+ 2
3
1B(x0,ρ0)(x) = Qs,s+ 1

3

(
Qs+ 1

3
,s+ 2

3
1B(x0,ρ0)

)
(x)

≥ ε1Qs,s+ 1
3
1(Dα1 )c(x)

≥ ε1
2
Qs,s+11D(x) (12)
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Finally, we have, for all x1,x2 ∈ D ×D,

Qs,s+1f(xi) ≥
∫
B(x0,ρ0)

Qs+ 2
3
,s+1f(y1)

[
δx1Qs,s+ 2

3

]
(dy1)

≥ 1

Qs,s+ 2
3
1B(x0,ρ0)(x2)

×∫
B(x0,ρ0)

∫
B(x0,ρ0)

Qs+ 2
3
,s+1f(y1)

[
δx1Qs,s+ 2

3
⊗ δx2Qs,s+ 2

3

]
(dy1,dy2)

≥ ε0
2Qs,s+ 2

3
1B(x0,ρ0)(x2)

×∫
B(x0,ρ0)

∫
B(x0,ρ0)

µy1,y2s (f)
[
δx1Qs,s+ 2

3
⊗ δx2Qs,s+ 2

3

]
(dy1,dy2) by (10)

≥ ε0
Qs,s+ 2

3
1B(x0,ρ0)(x1)

2
νx1,x2s (f),

where νx1,x2s is the probability measure on D defined by

νx1,x2s (f) =

∫
B(x0,ρ0)

∫
B(x0,ρ0) µ

y1,y2
s (f)

[
δx1Qs,s+ 2

3
⊗ δx2Qs,s+ 2

3

]
(dy1,dy2)

Qs,s+ 2
3
1B(x0,ρ0)(x1)Qs,s+ 2

3
1B(x0,ρ0)(x2)

.

This and Inequality (12) allow us to conclude the proof of the first part of Lemma 6.

Fix r1 > 0 and let us prove the second part of the lemma. We have, for all (y1,y2) ∈
(B(x0,ρ0))2 and all x ∈ D,

µy1,y2s (B(x,r1)) =
E
(
1B(x,r1)(Y

1
s+ 2

3
,s+1

)|E
)

E
(
1D(Y 1

s+ 2
3
,s+1

)|E
)

≥ E
(
1B(x,r1)(Y

1
s+ 2

3
,s+1

) | E
)
P(E)

≥ E
(
1B(x,r1)(Y

1
s+ 2

3
,s+1

)
)
− (1− P(E))

≥ δy1Qs+ 2
3
,s+1(B(x,r1))− 6cρ0.

We emphasize that, because of the boundedness and the regularity of D, B(x,r1) ∩ D
contains a ball of minimal volume uniformly over x ∈ D. Then, since the coefficients of
the SDE (1) and the killing rate κ are assumed to be uniformly bounded, we have

ε2
def
= inf

s≥0, x∈D, y1∈B(x,ρ0)
Qs+ 2

3
,s+11B(x,r1)(y1) > 0,

where we recall that ρ0 is chosen small enough so that d(∂D,B(x0,ρ0)) > 0. We deduce
that

µy1,y2s (B(x,r1)) ≥ ε2/2.
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Finally, by definition of νx,ys , we deduce that

νx,ys (B(x,r1)) ≥ ε2/2, ∀x ∈ D.

This concludes the proof of Lemma 6.

4.1.3 Conclusion of the proof of Lemma 3

By Lemma 6, there exist β > 0 and a family of probability measures denoted by
(νx1,x2s )s≥0, (x1,x2)∈D×D such that, for any (x1,x2) ∈ D × D and any s ≥ 0, we have
for all i ∈ {1,2}

Qs,s+1f(xi) ≥ Qs,s+11D(xi)βν
x1,x2
s (f),

for any non-negative measurable function f . Then we have

RTs,s+1f(xi) =
Qs,s+1(fQs+1,T1D)(xi)

Qs,T1D(xi)

≥
βνx1,x2s (fQs+1,T1D)Qs,s+11D(xi)

Qs,T1D(xi)
.

Since s + 1 + Π + 1 ≤ T by assumption, we deduce from Lemma 5 that there exist
xs+1,T ∈ D and r0 > 0 such that

inf
x∈B(xs+1,T ,r0)

Qs+1,T1D(x) ≥ 1

2
‖Qs+1,T1D‖∞. (13)

Now, we define the probability measure ηx1,x2s by

ηx1,x2s (A)
def
=

νx1,x2s (A ∩B(xs,T ,r0))

νx1,x2s (B(xs,T ,r0))
, ∀A ⊂ D.

By the second part of Lemma 6, νx1,x2s (B(xs,T ,r0)) is uniformly bounded below by a
constant ε > 0 which only depend on r0. We deduce that

RTs,s+1f(x1) ≥
ε
2η

x1,x2
s (f)Qs,s+11D(x1)‖Qs+1,T1D‖∞

Qs,T1D(x1)

≥ ε

2
ηx1,x2s (f),

by the Markov property. This concludes the proof of Lemma 3.
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