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Exponential mixing properties for time inhomogeneous

diffusion processes with killing

Pierre Del Moral∗, Denis Villemonais †

December 8, 2014

Abstract

We consider an elliptic and time-inhomogeneous diffusion process with time-
periodic coefficients evolving in a bounded domain of Rd with a smooth boundary.
The process is killed when it hits the boundary of the domain (hard killing) or after
an exponential time (soft killing) associated with some bounded rate function. The
branching particle interpretation of the non absorbed diffusion again behaves as a
set of interacting particles evolving in an absorbing medium. Between absorption
times, the particles evolve independently one from each other according to the dif-
fusion semigroup; when a particle is absorbed, another selected particle splits into
two offsprings. This article is concerned with the stability properties of these non
absorbed processes. Under some classical ellipticity properties on the diffusion pro-
cess and some mild regularity properties of the hard obstacle boundaries, we prove
an uniform exponential strong mixing property of the process conditioned to not be
killed. We also provide uniform estimates w.r.t. the time horizon for the interacting
particle interpretation of these non-absorbed processes, yielding what seems to be
the first results of this type for this class of non-homogenous diffusion processes
evolving in soft and hard obstacles.

Keywords: process with absorption; uniform mixing property; time-inhomogeneous dif-
fusion process.
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1 Introduction

Let D be a bounded open subset of Rd (d ≥ 1) whose boundary ∂D is of class C2 and
consider the stochastic differential equation

dZt = σ(t,Zt)dBt + b(t,Zt)dt, Z0 ∈ D, (1)
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where B is a standard d dimensional Brownian motion. We assume that the functions

σ :
[0,+∞[×Rd → R

d ×Rd

(t,x) 7→ σ(t,x)
and b :

[0, +∞[×Rd → R
d

(t,x) 7→ σ(t,x)

are bounded continuous on [0, + ∞[×R
d. Moreover, we assume that they are time-

periodic and Lipschitz in x ∈ D uniformly in t ∈ [0, +∞[. This means that there exists
two constants Π ≥ 0 and C0 > 0 such that, forall x,y ∈ D and t ≥ 0,

σ(t+Π,x) = σ(t,x) and b(t+Π,x) = b(t,x),

‖σ(t,x) − σ(t,y)‖+ |b(t,x)− b(t,y)| ≤ C0|x− y|.

In particular, there exists a solution to the stochastic differential equation 1 (see [13,
Theorem 3.10, Chapter 5]). Moreover, the solution is path-wise unique up to time τD =
inf{t ≥ 0, Zt /∈ D} (see [13, Theorem 3.7, Chapter 5]).

For all s > 0 and any probability distribution µ on D, we denote by (Zµ
s,t)t≥s the unique

solution to this stochastic differential equation starting at time s > 0 with distribution
µ, killed when it hits the boundary and killed with a rate κ(t,Zx

s,t) ≥ 0, where

κ : [0, +∞[×D → R+

is a uniformly bounded non-negative measurable function. By “the process is killed”, we
mean that the process is sent to a cemetery point ∂ /∈ D, so that the killed process is
càdlàg almost surely. If there exists x ∈ D such that µ = δx, we set (Zx

s,t)t≥s = (Zδx
s,t)t≥s.

When the process is killed by hitting the boundary, we say that it undergoes a hard
killing; when the process is killed strictly before reaching the boundary (because of the
killing rate κ), we say that it undergoes a soft killing. We denote the killing time by
τ∂ = inf{t ≥ s,Zx

s,t = ∂}.
Let (Qs,t)0≤s≤t be the semi-group of the diffusion process with killing. It is defined, for
all 0 ≤ s ≤ t, x ∈ D and for any bounded measurable function f : Rd ∪ {∂} 7→ R which
vanishes outside D, by

Qs,tf(x) = E
(

f(Zx
s,t)1t<τ∂

)

= E
(

f(Zx
s,t)
)

.

We emphasize that, for any probability measure µ on D, the law of Zµ
s,t is given by the

probability measure µQs,t, defined by

µQs,t(f) =

∫

D

Qs,tf(x)dµ(x).

In this paper, we focus on the long time behaviour of the distribution of Zµ
s,t conditioned

to not be killed when it is observed, that is to the event {t < τ∂}. This distribution is
given by

P(Zµ
s,t ∈ · | t < τ∂) =

µQs,t(·)
µQs,t(1)

. (2)
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When there is no hard killing (i.e. D = R
d) and the solutions to the stochastic differential

equation (1) without killing satisfy some proper mixing properties, it is known (see for
instance Del Moral and Miclo [9, 10]) that the conditional distribution of the process
with soft killing (‖κ‖∞ < ∞) entails the following exponential mixing property : there
exist two constants C > 0 and γ > 0 such that, for any probability measure µ1 and µ2

on D,
∥

∥

∥

∥

µ1Qs,t

µ1Qs,t(1)
− µ2Qs,t

µ2Qs,t(1)

∥

∥

∥

∥

TV

≤ Ce−γt, (3)

where ‖ · ‖TV denotes the total variation norm between measures on R
d. When there

is only hard killing (i.e. κ = 0) and when the coefficients of the stochastic differential
equation (1) are time-independent and of class C1, it is known that the conditioned
distribution (2), which only depends on the difference t − s and on µ, converges when
t goes to +∞ to a limiting distribution on D, called the Yaglom limit (see for instance
Pinsky [20] and Gong, Qian and Zhao [16]). The stability analysis of the discrete time
version of these particle absorption processes with hard and soft obstacles is also de-
veloped by Del Moral and Doucet in [5] and by Del Moral and Guionnet in [6]. In a
recent result, Champagnat and Villemonais [3] also provide a general necessary and suf-
ficient criterion for the existence of a Yaglom limit and the mixing property 3 for time
homogeneous processes.

Our main result, stated in Section 2, is a sufficient criterion ensuring that the mixing
property (3) holds for time inhomogeneous diffusion processes with both soft and hard
killings. The main tools of the proof, developed in Section 4, are a tightness result for
conditional distributions (see Villemonais [24]) and a coupling between diffusion processes
(see Priola and Wang in [21]).

In Section 3, we prove an interesting consequence of our main result. Namely, we show
that our criterion also implies that the approximation method developed in [25] converges
uniformly in time to the conditional distribution of the stochastic differential equation (1).

2 Main result

Let φD : D 7→ R+ denotes the Euclidean distance to the boundary ∂D:

φD(x) = d(x,∂D) = inf
z∈∂D

|x− y|,

‖ · ‖ being the Euclidean norm. According to [11, Chapter 5, Section 4], we fix a > 0
such that φD is of class C2

b on the boundary’s neighbourhood Da ⊂ D defined by

Da = {x ∈ D such that φD(x) < a}.

Assumption (H). We assume that
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1. there exists a constant c0 > 0 such that

c0|y| ≤ |σ(t,x)y|, ∀(t,x,y) ∈ [0,+∞[×D ×R
d.

2. there exist two measurable functions f : [0,+∞[×Da → R+ and g : [0,+∞[×Da →
R such that ∀(t,x) ∈ [0,+∞[×Da,

∑

k,l

∂φD

∂xk
(z)

∂φD

∂xl
(z)[σσ∗]kl(t,x) = f(t,z) + gi(t,x),

and such that

(a) f is of class C1 in time and of class C2 in space, and the successive derivatives
of f are uniformly bounded,

(b) there exists a positive constant kg > 0 such that, for all (t,x) ∈ [0,+∞[×Da,

|g(t,x)| ≤ kgφD(x),

The first point of Assumption (H) is a classical ellipticity assumption. The second point
means that

∑

∂kφD∂lφD[σσ
∗]kl can be approximated by a smooth function near the

boundary, the error term being bounded by kgφD.

Theorem 1. Assume that assumption (H) is satisfied. Then there exist two constants
C > 0 and γ > 0 such that

sup
µ1,µ2∈M1(D)

∥

∥

∥

∥

µ1Q0,T

µ1Q0,T1
− µ2Q0,T

µ2Q0,T1

∥

∥

∥

∥

TV

≤ Ce−γT .

Before turning to the proof of Theorem 1 in Section 4, we present in the next section an
interesting consequence of Theorem 1 for an approximation method based on a Fleming-
Viot type interacting particle system. Note that the approximation method described in
the next section is itself used in the proof of Theorem 1, through the tightness results
obtained in [24].

3 Uniform convergence of a Fleming-Viot type approxima-

tion method to the conditional distribution

We present in this section an interesting consequence of the mixing property for the
approximation method developed in [25] : assuming that Assumption (H) holds, we prove
that the approximation converges uniformly in time. The particle approximation method
has been introduced by Burdzy, Holyst, Ingerman and March [1] for standard Brownian
motions, and studied later by Burdzy, Hołyst and March [2] and by Grigorescu and
Kang [18] for Brownian motions, by Del Moral and Miclo [8, 10] and by Rousset [22] for
jump-diffusion processes with smooth killings, Ferrari and Maric̀ [14] for Markov processes
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in countable state spaces, in [23] for diffusion processes and in [25] for general Markov
processes. The discrete time version of these interacting particle models on general
measurable spaces, including approximations of non absorbed trajectories in terms of
genealogical trees is developed in [5, 6, 7]. For a more detailed discussion, including
applications of these discrete generation particle techniques in advanced signal processing,
statistical machine learning, and quantum physics, we also refer the reader to the recent
monograph [4], and the references therein.

The approximation method is based on a sequence of Fleming-Viot type interacting
particle systems whose associated sequence of empirical distributions converges to the
conditioned distribution (2) when the number of particles tends to infinity. More pre-
cisely, fix N ≥ 2 and let us define the Fleming-Viot type interacting particle system with
N particles. The system of N particles (X1,N

s,t ,...,XN,N
s,t )t≥s starts from an initial state

(X1,N
s,s ,...,XN,N

s,s ) ∈ DN , then:

• The particles evolve as N independent copies of ZX
i,N
s,s

s,· until one of them, say Xi1,N ,
is killed. The first killing time is denoted by τN1 . We emphasize that under our
hypotheses, the particle killed at time τN1 is unique [25].

• At time τN1 , the particle Xi1,N jumps on the position of an other particle, chosen
uniformly among the N − 1 remaining ones. After this operation, the position
Xi,N

s,τN
1

is in D, for all i ∈ {1,...,N}.

• Then the particles evolve as N independent copies of Z
X

i,N

s,τN
1

τN
1
,· until one of them, say

Xi2,N , is killed. This second killing time is denoted by τN2 . Once again, the killed
particle is uniquely determined.

• At time τN2 , the particle Xi2,N jumps on the position of an other particle, chosen
uniformly among the N − 1 remaining ones.

• Then the particles evolve as independent copies of ZX
i,N
s,τ2

τN
2
,· and so on.

We denote by 0 < τN1 < τN2 < ... < τNn < ... the sequence of killing/jump times of the
process. By [25], Assumption (H) implies that

lim
n→∞

τNn = +∞, almost surely.

In particular, the above algorithm defines a Markov process (X1,N
s,t ,...,XN,N

s,t )t≥s. For all

N ≥ 2 and all 0 ≤ s ≤ t, we denote by µN
s,t the empirical distribution of (X1,N

s,t ,...,XN,N
s,t ),

which means that

µN
s,t(·) =

1

N

N
∑

i=1

δ
X

i,N
s,t

(·) ∈ M1(D),
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where M1(D) denotes the set of probability measures on D. This branching type particle
model with fixed population size is closely related to the class of Moran and Fleming-Viot
processes arising in measure valued super-processes [8, 12, 15]. The main difference with
these super-processes comes from the fact that the occupation measures of the system
converge to a deterministic limit measure valued process, as the size of the population
tends to ∞. These particle absorption models can also be interpreted as an extended
version of the Nanbu type mean field particle model developed by C. Graham and S.
Méléard [17] in the context of spatially homogeneous Boltzmann equations. The next
results provide an uniform estimate w.r.t. the time horizon.

Theorem 2. Assume that Hypothesis (H) holds and that the family of empirical distribu-
tions (µN

s,s)s≥0, N≥2 of the initial distributions of the interacting particle system described
above is uniformly tight. Then

lim
N→∞

sup
s≥0

sup
t∈[s,+∞[

sup
f∈B1(D)

E

∣

∣

∣

∣

µN
s,t(f)−

µN
0 Qs,t(f)

µN
0 Qs,t(1)

∣

∣

∣

∣

= 0.

Proof. Fix ǫ > 0. Our aim is to prove that there exists Nǫ ≥ 2 such that, for all N ≥ Nǫ

and all measurable function f : D → R satisfying ‖f‖∞ ≤ 1, we have

sup
s,t∈[0,+∞[

E

∣

∣

∣

∣

∣

µN
s,s+t(f)−

µN
s,sQs,s+t(f)

µN
s,sQs,s+t(1)

∣

∣

∣

∣

∣

≤ ǫ. (4)

Let γ be the constant of Theorem 1 and fix t0 ≥ 1 such that 2e−γ(t0−1) ≤ ǫ/6. In a first
step, we prove that (4) holds for t ≤ t0. In a second step we prove that it holds for t ≥ t0.

Step 1: Inequality (4) holds for t ≤ t0.
Since the sequence of initial distributions is assumed to be uniformly tight (w.r.t. the
time parameter and the size of the system), there exists α1 = α1(ǫ) > 0 such that,
∀N ≥ 2,

E(µN
s,s(D

α1)) ≤ ǫ

8
.

Now, since the coefficients of the SDE (1) and the killing rate κ are uniformly bounded,
the probability for the process Zx

s,· starting from x ∈ (Dα1)c to be killed after time s+ t0
is uniformly bounded below by a positive constant. In other words, the constant β = β(ǫ)
defined below is positive :

β
def
= inf {Qs,s+t01D(x), s ∈ [0,+∞[, x ∈ (Dα1)c} > 0.

For all t ∈ [0,t0], we have

E

∣

∣

∣

∣

∣

µN
s,s+t(f)−

µN
s,sQs,s+t(f)

µN
s,sQs,s+t(1D)

∣

∣

∣

∣

∣

= E

[

E

(∣

∣

∣

∣

∣

µN
s,s+t(f)−

µN
s,sQs,s+t(f)

µN
s,sQs,s+t(1D)

∣

∣

∣

∣

∣

| µN
s,s

)]

,
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where, by [25, Theorem 2.2],

E

(
∣

∣

∣

∣

∣

µN
s,s+t(f)−

µN
s,sQs,s+t(f)

µN
s,sQs,s+t(1D)

∣

∣

∣

∣

∣

| µN
s,s

)

≤ 2(1 +
√
2)√

NµN
s,sQs,s+t(1D)

.

Since ‖f‖∞ ≤ 1, we have
∣

∣

∣
µN
s,s+t(f)−

µN
s,sQs,s+t(f)

µN
s,sQs,s+t(1D)

∣

∣

∣
≤ 2 almost surely and we deduce

from the previous inequality that

E

∣

∣

∣

∣

∣

µN
s,s+t(f)−

µN
s,sQs,s+t(f)

µN
s,sQs,s+t(1D)

∣

∣

∣

∣

∣

≤ ǫ

2
+ 2P

(

2(1 +
√
2)√

NµN
s,sQs,s+t(1D)

≥ ǫ

2

)

≤ ǫ

2
+ 2P

(

µN
s,sQs,s+t(1D) ≤

4(1 +
√
2)

ǫ
√
N

)

But µN
s,sQs,s+t(1D) ≥ µN

s,s ((D
α1)c) βǫ almost surely, thus

E

∣

∣

∣

∣

∣

µN
s,s+t(f)−

µN
s,sQs,s+t(f)

µN
s,sQs,s+t(1D)

∣

∣

∣

∣

∣

≤ ǫ

2
+ 2P

(

µN
s,s ((D

α1)c) ≤ 4(1 +
√
2)

ǫ
√
Nβǫ

)

≤ ǫ

2
+ 2P

(

µN
s,s (D

α1) ≥ 1− 4(1 +
√
2)

ǫ
√
Nβǫ

)

≤ ǫ

2
+

2

1− 4(1+
√
2)

ǫ
√
Nβǫ

E
(

µN
s,s (D

α1)
)

≤ ǫ

2
+ 2

1

1− 4(1+
√
2)

ǫ
√
Nβǫ

ǫ

8
,

where we used Markov’s inequality. Finally, there exists N1 = N1(ǫ) ≥ 2 such that,
∀N ≥ N1,

sup
s≥0

sup
t∈[0,t0]

E

∣

∣

∣

∣

∣

µN
s,s+t(f)−

µN
s,sQs,s+t(f)

µN
s,sQs,s+t(1D)

∣

∣

∣

∣

∣

≤ ǫ.

Step 2: Inequality (4) holds for t ≥ t0.
Fix now t ≥ t0. We have

E

∣

∣

∣

∣

∣

µN
s,s+t(f)−

µN
s,sQs,s+t(f)

µN
s,sQs,s+t(1D)

∣

∣

∣

∣

∣

≤ E

∣

∣

∣

∣

∣

µN
s,s+t(f)−

µN
s,s+1+t−t0

Qs+1+t−t0,s+t(f)

µN
s,s+1+t−t0

Qs+1+t−t0,s+t(1D)

∣

∣

∣

∣

∣

+ E

∣

∣

∣

∣

∣

µN
s,s+1+t−t0

Qs+1+t−t0,s+t(f)

µN
s,s+1+t−t0

Qs+1+t−t0,s+t(1D)
−

µN
s,sQs,s+t(f)

µN
s,sQs,s+t(1D)

∣

∣

∣

∣

∣

.

By [24, Theorem 3.1], there exists α2 = α2(ǫ) > 0 and N2 = N2(ǫ) ≥ 2 such that for all
s ∈ [0,+∞[, t ≥ t0 and N ≥ N2,

E
(

µN
s,s+1+t−t0

(Dα2)
)

≤ ǫ.
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Since α1 and α2 can be chosen arbitrarily small, one can assume without loss of gener-
ality that α1 = α2. Now, using step 1 for the particle system with initial distribution
µN
s,s+1+t−t0

and the Markov property for the particle system, we deduce that, for all
N ≥ 2,

E

∣

∣

∣

∣

∣

µN
s,s+t(f)−

µN
s,s+1+t−t0

Qs+1+t−t0,s+t(f)

µN
s,s+1+t−t0

Qs+1+t−t0,s+t(1D)

∣

∣

∣

∣

∣

≤ ǫ

2
+ 2

1

1− 4(1+
√
2)

ǫ
√
Nβǫ

ǫ

8
.

By Theorem 1, we also have

E

∣

∣

∣

∣

∣

µN
s,s+1+t−t0

Qs+1+t−t0,s+t(f)

µN
s+1+t−t0

Qs+1+t−t0,s+t(1D)
− µs,sQs,s+t(f)

µN
s,sQs,s+t(1D)

∣

∣

∣

∣

∣

≤ 2e−γ(t0−1) = ǫ/6.

We deduce from the two previous inequality that there exists N3 = N3(ǫ) ≥ N2 such
that, ∀N ≥ N3,

E

∣

∣

∣

∣

∣

µN
s,s+t(f)−

µN
s,sQs,s+t(f)

µN
s,sQs,s+t(1D)

∣

∣

∣

∣

∣

≤ ǫ.

Conclusion.
Setting Nǫ = N1 ∨N3, we have proved (4), which concludes the proof of Theorem 2.

4 Proof of the main result

In Subsection 4.1, we present a coupling construction for multi-dimensional time-inhomo-
geneous diffusion processes. In Subsection 4.2, we derive from this coupling two interme-
diate results which are key steps for the proof of Theorem 1. The first result (Lemma 4)
concerns the existence of a path (xs,t)0≤s≤t and a constant r0 > 0 such that

inf
x∈B(xs,t,r0)

Qs,t1D(x) ≥
1

2
‖Qs,t1D‖∞, ∀0 ≤ s+Π+ 1 ≤ t,

where we recall that Π is the time-period of the coefficients σ and b. The second result
(Lemma 5) states the existence of a constant β > 0 and a family of probability measures
(νx1,x2

s )s≥0,(x1,x2)∈D×D such that, for all s ≥ 0, all (x1,x2) ∈ D×D and any non-negative
measurable function f ,

Qs,s+1f(xi)

Qs,s+11D(xi)
≥ βνx1,x2

s (f), i = 1,2.

We conclude the proof of Theorem 1 in Subsection 4.3, showing that Lemma 4 and
Lemma 5 imply the strong mixing property.
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4.1 Coupling

In the following proposition, we state the existence of a coupling for multi-dimensional
time-inhomogeneous diffusion processes. The result also provides a bound for the cou-
pling probability that will be very useful in the next subsections.

Proposition 3. For all s ≥ 0 and all (y1,y2) ∈ D ×D, there exists a diffusion process
(Y 1

s,t,Y
2
s,t)t≥s such that

1. (Y 1
s,t)t≥s has the same law as (Zy1

s,t)t≥s,

2. (Y 2
s,t)t≥s has the same law as (Zy2

s,t)t≥s;

3. Y 1
s,t and Y 2

s,t are equal almost surely after the coupling time

T s
c = inf{t ≥ 0, Y 1

s,t = Y 2
s,t},

where inf ∅ = +∞ by convention.

4. There exists a constant c > 0 which doesn’t depend on s,t such that

P(t < τ1∂ ∨ τ2∂ and T s
c > t ∧ τ1∂ ∧ τ2∂ ) ≤

c|y1 − y2|
√

1 ∧ (t− s)
,

where τ1∂ and τ2∂ denote the killing times of Y 1 and Y 2 respectively.

The proof of Proposition 3 is given in [21] for time-homogeneous diffusion processes,
though a careful check of the arguments shows that the authors do not use the time-
homogeneity of the coefficients to derive the existence and other properties of the cou-
pling. We do not write the proof in details, but we recall the idea behind the coupling
construction. The proof of the 4th statement of Proposition 3 requires fine estimates and
calculus which are plainly detailed in [21].

By Assumption (H), there exists λ0 > 0 such that σσ∗ − λ0I is definite positive for
all t,x. Let σ0 :=

√
σσ∗ − λ0I be the unique symmetric definite positive matrix function

such that σ2
0 = σσ∗ − λ0I. Without loss of generality, one can choose λ0 small enough

so that σ0 is uniformly positive definite. We define

u(x,y) =
k(|x− y|)(x− y)

(k(|x− y|) + 1)|x− y| and Ct(x,y) = λ0 (I − 2u(x,y)u(x,y)∗)+σ0(t,x)σ0(t,y)
∗,

where k(r) = (k0r
2/2 ∨ r)

1

4 . Before the coupling time, the coupling process is generated
by

Lt(x,y) =
1

2

d
∑

i,j=1

{

[σ(t,x)σ(t,x)∗]i,j
∂2

∂xi∂xj
+ [σ(t,y)σ(t,y)∗]i,j

∂2

∂yi∂yj

+2[Ct(x,y)]i,j
∂2

∂xi
∂yj

}

+

d
∑

i=1

{

bi(t,x)
∂

∂xi
+ bi(t,y)

∂

∂yi

}

.

9



The coefficients of Lt are continuous and bounded over Rd, then, for all s ≥ 0 and x =
(y1,y2) ∈ D×D, there exists a not necessarily unique process (Xx

s,t)t≥0 with values in R2d

to the martingale problem associated with (Lt)t≥s (see [19, Theorem 2.2, Chapter IV]).
We define Y ′1 and Y ′2 as the two marginal components of Xx, so that Xx

s,t = (Y ′1
s,t,Y

′2
s,t)

almost surely. We consider the coupling time T ′s
c of Xx

s,·, which is defined by

T ′s
c = inf{t ≥ s, such that Y ′1

s,t = Y ′2
s,t}.

We define Y 1 and Y 2 as follows:

Y i
t =

{

Y ′i
t , t ≤ T ′s

c ,
Y ′1
t , t > T ′s

c .

Moreover, each marginal process Y i, i = 1,2, is killed either when it hits the boundary
∂D or with a rate κ.

4.2 Intermediate results

In this section, we prove Lemmas 4 and 5, which are essential part of the proof of
Theorem 1. We recall that Π denotes the time-period of the coefficients of the SDE 1.
Note also that Lemma 4 is the only part of the paper which makes use of the periodicity
assumption.

Lemma 4. For any 0 ≤ s < t, let us denote by xs,t ∈ D the point at which Qs,t1D is
maximal. There exists a positive constant r0 > 0 (independent of s and t) such that

inf
x∈B(xs,t,r0)

Qs,t1D(x) ≥
1

2
‖Qs,t1D‖∞, ∀0 ≤ s ≤ s+Π+ 1 ≤ t,

where B(xs,t,r0) denotes the ball of radius r0 centred on xs,t.

Proof of Lemma 4. Fix s ≥ 0 and let (Y 1
s,·,Y

2
s,·) be the coupling of Proposition 3, starting

from to points y1 and y2 in D. From the properties (1) and (2) of the proposition, we
deduce that, for any measurable bounded function f which vanishes outside D, we have

∣

∣Qs,s+Πf(y
1)−Qs,s+Πf(y

2)
∣

∣ ≤ E

∣

∣f(Y 1
s,s+Π)− f(Y 2

s,s+Π)
∣

∣

where f(Y 1
s,s+Π) = f(Y 2

s,s+Π) = 0 if s+Π ≥ τ1∂ ∨τ2∂ and, by property (3) of Proposition 3,

Y 1
s,s+Π = Y 2

s,s+Π if T s
c ≤ s+Π ∧ τ1∂ ∧ τ2∂ . Thus we have

∣

∣Qs,s+Πf(y
1)−Qs,s+Πf(y

2)
∣

∣ ≤ ‖f‖∞P
(

s+Π < τ1∂ ∨ τ2∂ and T s
c > (s +Π) ∧ τ1∂ ∧ τ2∂

)

≤ ‖f‖∞
c|y1 − y2|√

1 ∧Π
, (5)

by the fourth property of Proposition 3.
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By Proposition [24, Theorem 4.1] with ǫ = 1/2 and t0 = 1, there exists α0 > 0 such that,
for all 0 ≤ s ≤ s+Π+ 1 ≤ t,

Qs+Π,t1D(x) ≤ 2Qs+Π,t1(Dα0 )c(x).

We emphasize that α0 does not depend on s,t. Now, since the coefficients of the SDE (1)
and the killing rate κ are assumed to be uniformly bounded on D, there exists a positive
constant cα0

, such that, for any t ≥ 0,

inf
x∈(Dα0 )c

Qt,t+Π1D(x) ≥ cα0
> 0.

In particular, we have

1(Dα0)c ≤
Qt,t+Π1D

cα0

.

We deduce that, for all 0 ≤ s ≤ s+Π+ 1 ≤ t,

Qs+Π,t1D ≤ 2Qs+Π,t
Qt,t+Π1D

cα0

,

so that

‖Qs+Π,t (1D) ‖∞ ≤ 2

cα0

‖Qs+Π,t+Π1D‖∞ =
2

cα0

‖Qs,t1D‖∞,

by the time-periodicity assumption on the coefficients of the SDE (1). Applying inequal-
ity (5) to f = Qs+Π,t (1D) and using the semi-group property of (Qs,t)s≤t, we deduce
that, for all s ≤ s+Π+ 1 ≤ t,

∣

∣Qs,t1D(y
1)−Qs,t1D(y

2)
∣

∣ ≤ 2c|y1 − y2|
cα0

√
1 ∧Π

‖Qs,t1D‖∞.

For any 0 ≤ s ≤ s+Π+ 1 ≤ t, let xs,t be such that Qs,t1D(xs,t) = ‖Qs,t1D‖∞. We have
by the previous inequality,

Qs,tf(y) ≥ ‖Qs,t1D‖∞ − 2c|xs,t − y|
cα0

√
1 ∧Π

‖Qs,t1D‖∞, ∀y ∈ D.

Choosing r0 =
cα0

4c

√
1 ∧Π, one obtains Lemma 4.

Lemma 5. There exist a constant β > 0 and a family of probability measures denoted
by (νx1,x2

s )s≥0,(x1,x2)∈D×D such that, for all s ≥ 0, for all (x1,x2) ∈ D×D, i ∈ {1,2} and
for any non-negative measurable function f ,

Qs,s+1f(xi)

Qs,s+11D(xi)
≥ βνx1,x2

s (f).

Moreover, for any r1 > 0, we have for all x ∈ D

inf
s≥0, (x1,x2)∈D×D

νx1,x2

s (B(x,r1) ∩D) > 0.
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Proof of Lemma 5. Let us first prove that there exist a constant ρ0 > 0 and a fixed point
x0 ∈ D such that, for any (y1,y2) ∈ B(x0,ρ0) × B(x0,ρ0) and any s ≥ 0, there exists a
probability measure µy1,y2

s which fulfills

E

(

f(Zyi

s+ 2

3
,s+1

)

)

≥ 1

2
µy1,y2
s (f), (6)

for any i ∈ {1,2}. Fix x0 ∈ D and s ≥ 0. Let ρ0 be a positive constant which will be
fixed later in the proof. Let y1,y2 be two elements of B(x0,ρ0) and let (Y 1

s+ 2

3
,·,Y

2
s+ 2

3
,·) be

the coupling of Proposition 3 starting from (y1,y2) ∈ D×D at time s+ 2
3 . We define the

event E by
E =

{

s+ 1 ≥ τ1∂ ∨ τ2∂ or T s
c ≤ (s+ 1) ∧ τ1∂ ∧ τ2∂

}

,

where T s
c is the coupling time of Proposition 3, and τ1∂ and τ2∂ the killing times of

Y 1 and Y 2 respectively. By definition of the killing time, s + 1 ≥ τ1∂ ∨ τ2∂ implies
Y 1
s+ 2

3
,s+1

= Y 1
s+ 2

3
,s+1

= ∂. Moreover, by the coupling property (3) of Proposition 3,

T s
c ≤ (s+ 1) ∧ τ1∂ ∧ τ2∂ implies Y 1

s+ 2

3
,s+1

= Y 2
s+ 2

3
,s+1

. Finally,

E ⊂
{

Y 1
s+ 2

3
,s+1

= Y 2
s+ 2

3
,s+1

}

,

so that
E

(

f(Y 2
s+ 2

3
,s+1

)|E
)

= E

(

f(Y 1
s+ 2

3
,s+1

)|E
)

.

We have then (the first equality being a consequence of Proposition 3 (1)), for any
measurable function f which vanishes outside D,

E

(

f(Zyi
s+ 2

3
,s+1

)

)

= E

(

f(Y i
s+ 2

3
,s+1

)
)

≥ E

(

f(Y i
s+ 2

3
,s+1

)|E
)

P (E)

≥ E

(

f(Y 1
s+ 2

3
,s+1

)|E
)

P (E) .

But Proposition 3 (4) implies

P (E) ≥ 1− 3c|y1 − y2| ≥ 1− 6cρ0

so that

E

(

f(Zyi
s+ 2

3
,s+1

)

)

≥ E

(

1D(Y
1
s+ 2

3
,s+1

)|E
)

(1− 6cρ0)µ
y1,y2
s (f), ∀i = 1,2, (7)

where the probability measure µy1,y2
s on D is defined by

µy1,y2
s (f) =

E

(

f(Y 1
s+ 2

3
,s+1

)|E
)

E

(

1D(Y 1
s+ 2

3
,s+1

)|E
) .
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It only remains to find a lower bound for E
(

1D(Y
1
s+ 2

3
,s+1

)|E
)

to conclude that (6) holds

for a well chosen ρ0. We have

E

(

1D(Y
1
s+ 2

3
,s+1

)|E
)

=
1

P(E)E
(

1D(Y
1
s+ 2

3
,s+1

)
)

− 1− P(E)
P(E) E

(

1D(Y
1
s+ 2

3
,s+1

)|Ec
)

≥ 1

P(E)E
(

1D(Zy1

s+ 2

3
,s+1

)

)

− 1− P(E)
P(E)

≥ E

(

1D(Zy1

s+ 2

3
,s+1

)

)

− 6cρ0
1− 6cρ0

.

Now, for an arbitrarily fixed point x0 ∈ D, one can choose ρ0 > 0 small enough so that
d(∂D,B(x0,ρ0)) > 0. Then, since the coefficients of the SDE (1) and the killing rate κ
are uniformly bounded on D, we have

ǫ0
def
= inf

s≥0
inf

y1∈B(x0,ρ0)
E

(

1D(Zy1

s+ 2

3
,s+1

)

)

> 0.

Finally, we deduce from (7) that

E

(

f(Zyi
s+ 2

3
,s+1

)

)

≥
(

ǫ0 −
6cρ0

1− 6cρ0

)

(1− 6cρ0)µ
y1,y2
s (f),

for any non-negative measurable function which vanishes outside D. In particular, choos-
ing ρ0 small enough, we deduce that, for all i ∈ {1,2},

E

(

f(Zyi
s+ 2

3
,s+1

)

)

≥ ǫ0
2
µy1,y2
s (f). (8)

Let us now conclude the proof of Lemma 5. By [24, Theorem 4.1] with µ = δx, there
exists a constant α1 > 0 such that, for all s ≥ 0 and all x ∈ D,

Qs,s+ 1

3

1(Dα1 )c(x) ≥ 1

2
Qs,s+ 1

3

1D(x)

≥ 1

2
Qs,s+11D(x). (9)

Since the coefficients of the SDE (1) and the killing rate κ are uniformly bounded, we
have

ǫ1
def
= inf

s≥0,x∈(Dα1 )c
Qs+ 1

3
,s+ 2

3

1B(x0,ρ0)(x) > 0.

In particular, we deduce from (9) that, for all x ∈ D,

Qs,s+ 2

3

1B(x0,ρ0)(x) = Qs,s+ 1

3

(

Qs+ 1

3
,s+ 2

3

1B(x0,ρ0)

)

(x)

≥ ǫ1Qs,s+ 1

3

1(Dαǫ)c(x)

≥ ǫ1
2
Qs,s+11D(x) (10)
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Finally, we have, for all x1,x2 ∈ D ×D,

Qs,s+1f(xi) ≥
∫

B(x0,ρ0)
Qs+ 2

3
,s+1f(y1)

[

δx1
Qs,s+ 2

3

]

(dy1)

≥ 1

Qs,s+ 2

3

1B(x0,ρ0)(x2)
×

∫

B(x0,ρ0)

∫

B(x0,ρ0)
Qs+ 2

3
,s+1f(y1)

[

δx1
Qs,s+ 2

3

⊗ δx2
Qs,s+ 2

3

]

(dy1,dy2)

≥ ǫ0
2Qs,s+ 2

3

1B(x0,ρ0)(x2)
×

∫

B(x0,ρ0)

∫

B(x0,ρ0)
µy1,y2
s (f)

[

δx1
Qs,s+ 2

3

⊗ δx2
Qs,s+ 2

3

]

(dy1,dy2) by (8)

≥ ǫ0
Qs,s+ 2

3

1B(x0,ρ0)(x1)

2
νx1,x2

s (f),

where νx1,x2
s is the probability measure on D defined by

νx1,x2

s (f) =

∫

B(x0,ρ0)

∫

B(x0,ρ0)
µy1,y2
s (f)

[

δx1
Qs,s+ 2

3

⊗ δx2
Qs,s+ 2

3

]

(dy1,dy2)

Qs,s+ 2

3

1B(x0,ρ0)(x1)Qs,s+ 2

3

1B(x0,ρ0)(x2)
.

This and Inequality (10) allow us to conclude the proof of the first part of Lemma 5.

Fix r1 > 0 and let us prove the second part of the lemma. We have, for all (y1,y2) ∈
(B(x0,ρ0))

2 and all x ∈ D,

µy1,y2
s (B(x,r1)) =

E

(

1B(x,r1)(Y
1
s+ 2

3
,s+1

)|E
)

E

(

1D(Y
1
s+ 2

3
,s+1

)|E
)

≥ E

(

1B(x,r1)(Y
1
s+ 2

3
,s+1

) | E
)

P(E)

≥ E

(

1B(x,r1)(Y
1
s+ 2

3
,s+1

)
)

− (1− P(E))
≥ δy1Qs+ 2

3
,s+1(B(x,r1))− 6cρ0.

We emphasize that, because of the boundedness and the regularity of D, B(x,r1) ∩ D
contains a ball of minimal volume uniformly over x ∈ D. Then, since the coefficients of
the SDE (1) and the killing rate κ are assumed to be uniformly bounded, we have

ǫ2
def
= inf

s≥0, x∈D, y1∈B(x,ρ0)
Qs+ 2

3
,s+11B(x,r1)(y1) > 0,

where we recall that ρ0 is chosen small enough so that d(∂D,B(x0,ρ0)) > 0. We deduce
that

µy1,y2
s (B(x,r1)) ≥ ǫ2/2.
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Finally, by definition of νx,ys , we deduce that

νx,ys (B(x,r1)) ≥ ǫ2/2, ∀x ∈ D.

This concludes the proof of Lemma 5.

4.3 Conclusion of the proof of Theorem 1

In this section, we conclude the proof of Theorem 1. Let us define, for all 0 ≤ s ≤ t ≤ T
the linear operator RT

s,t by

RT
s,tf(x) =

Qs,t(fQt,T1D)(x)

Qs,T1D(x)
,

for all x ∈ D and any bounded measurable function f . Let us remark that the value
RT

s,tf(x) is the expectation of f(Zx
s,t) conditioned to T < τ∂ . Indeed we have

E
(

f(Zx
s,t)
∣

∣ T < τ∂
)

=
E

(

f(Zx
s,t)1Zx

s,T
∈D
)

E (T < τ∂)

=
E

(

f(Zx
s,t)E

(

1Zx
s,T

∈D

∣

∣

∣
Zx
s,t

))

Qs,T1D(x)

=

E

(

f(Zx
s,t)E

(

1
Z

Zx
s,t

t,T
∈D

|Zx
s,t

))

Qs,T1D(x)
,

by the Markov property. Finally, since E

(

1
Z

Zx
s,t

s,T
∈D

|Zx
s,t

)

= Qt,T1D(Zx
s,t), we get the

announced result.

For any T > 0, the family (RT
s,t)0≤s≤t≤T is a semi-group. Indeed, we have for all 0 ≤ u ≤

s ≤ t ≤ T

RT
u,s(R

T
s,tf)(x) =

Qu,s(R
T
s,tfQs,T1D)(x)

Qu,T1D(x)
,

where, for all y ∈ D,

RT
s,tf(y)Qs,T1D(y) = Qs,t(fQt,T1D)(y),

then

RT
u,sR

T
s,tf(x) =

Qu,s(Qs,t(fQt,T1D))(x)

Qu,T1D(x)

=
Qu,t(fQt,T1D)(x)

Qu,T1D(x)
= RT

u,tf(x),

where we have used that (Qs,t)s≤t is a semigroup.
In order to prove the exponential mixing property of Theorem 1, we need the following

lemma, whose proof is postponed to the end of this subsection.
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Lemma 6. There exists a constant β′ > 0 and a family of probability measures (ηx1,x2
s )s,x1,x2

such that, for all 0 ≤ s ≤ T −Π− 2, we have

RT
s,s+1f(xi) ≥ β′ηx1,x2

s (f), i = 1,2,

for all (x1,x2) ∈ D ×D and any non-negative measurable function f .

For any orthogonal probability measures µ1,µ2 on D, we have

‖µ1R
T
s,s+1 − µ2R

T
s,s+1‖TV = sup

f∈B1(D)
|µ1R

T
s,s+1(f)− µ2R

T
s,s+1(f)|

≤ sup
f∈B1(D)

∫

D×D

∣

∣RT
s,s+1f(x)−RT

s,s+1f(y)
∣

∣ (µ1 ⊗ µ2)(dx,dy),

where B1(D) denotes the set of measurable functions f such that ‖f‖∞ ≤ 1, and ‖ · ‖TV

the total variation norm for signed measures. For any x,y ∈ D ×D and any f ∈ B1(D),
we have by Lemma 6, for all s ≤ T −Π− 2,

∣

∣RT
s,s+1f(x)−RT

s,s+1f(y)
∣

∣ =
∣

∣

(

RT
s,s+1f(x)− β′ηx,ys (f)

)

−
(

RT
s,s+1f(y)− β′ηx,ys (f)

)
∣

∣

≤ 2(1− β′).

Since µ1 and µ2 are assumed to be orthogonal probability measures, we have ‖µ1 −
µ2‖TV = 2, so that

‖µ1R
T
s,s+1 − µ2R

T
s,s+1‖TV ≤ (1− β′)‖µ1 − µ2‖TV .

If µ1 and µ2 are two different but not orthogonal probability measures, one can apply
the previous result to the orthogonal probability measures (µ1−µ2)+

(µ1−µ2)+(D) and (µ1−µ2)−
(µ1−µ2)−(D) .

Then

∥

∥

∥

∥

(µ1 − µ2)+
(µ1 − µ2)+(D)

RT
s,s+1 −

(µ1 − µ2)−
(µ1 − µ2)−(D)

RT
s,s+1

∥

∥

∥

∥

TV

≤ (1− β′)

∥

∥

∥

∥

(µ1 − µ2)+
(µ1 − µ2)+(D)

− (µ1 − µ2)−
(µ1 − µ2)−(D)

∥

∥

∥

∥

TV

.

But (µ1 − µ2)+(D) = (µ1 − µ2)−(D) since µ1(D) = µ2(D) = 1, then, multiplying the
obtained inequality by (µ1 − µ2)+(D), we deduce that

‖(µ1 − µ2)+R
T
s,s+1 − (µ1 − µ2)−R

T
s,s+1‖TV ≤ (1− β′)‖(µ1 − µ2)+ − (µ1 − µ2)−‖TV .

But (µ1 − µ2)+ − (µ1 − µ2)− = µ1 − µ2, so that

‖µ1R
T
s,s+1 − µ2R

T
s,s+1‖TV ≤ (1− β′)‖µ1 − µ2‖TV .
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In particular, using the semigroup property of (RT
s,t)s,t, we deduce that

‖δxRT
0,T−Π−2 − δyR

T
0,T−Π−2‖TV

= δxR0,T−Π−3R
T
T−Π−3,T−Π−2 − δyR

T
0,T−Π−3R

T
T−Π−3,T−Π−2‖TV

≤ (1− β′)‖δxRT
0,T−Π−3 − δyR

T
0,T−Π−3‖TV ≤ 2(1 − β′)[T−Π−2],

where [T − Π − 2] denotes the integer part of T − Π− 2. Theorem 1 is thus proved for
any pair of probability measures (δx,δy), with (x,y) ∈ D×D, for a good choice of C and
γ which are now assumed to be fixed.

Let µ be a probability measure on D and y ∈ D. We have

∣

∣

∣

∣

µQ0,T (f)− µQ0,T (1D)
δyQ0,T (f)

δyQ0,T (1D)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

D

Q0,T f(x)− δxQ0,T (1D)
δyQ0,T (f)

δyQ0,T (1D)
dµ(x)

∣

∣

∣

∣

≤
∫

D

Ce−γT δxQ0,T (1D)dµ(x),

by Theorem 1 for Dirac initial measures that we just proved. Dividing by µQ0,T (1D) =
∫

D
δxQ0,T (1D)dµ(x), we deduce that

∣

∣

∣

∣

µQ0,T (f)

µQ0,T (1D)
− δyQ0,T (f)

δyQ0,T (1D)

∣

∣

∣

∣

≤ Ce−γT ,

for any f ∈ B1. The same procedure, replacing δy by any probability measure, leads us
to Theorem 1.

Proof of Lemma 6. By Lemma 5, there exist β > 0 and a family of probability measures
denoted by (νx1,x2

s )s≥0, (x1,x2)∈D×D such that, for any (x1,x2) ∈ D × D and any s ≥ 0,
we have for all i ∈ {1,2}

Qs,s+1f(xi) ≥ Qs,s+11D(xi)βν
x1,x2

s (f),

for any non-negative measurable function f . Then we have

RT
s,s+1f(xi) =

Qs,s+1(fQs+1,T1D)(xi)

Qs,T1D(xi)

≥ βνx1,x2
s (fQs+1,T1D)Qs,s+11D(xi)

Qs,T1D(xi)
.

Since s + 1 + Π + 1 ≤ T by assumption, we deduce from Lemma 4 that there exist
xs+1,T ∈ D and r0 > 0 such that

inf
x∈B(xs+1,T ,r0)

Qs+1,T1D(x) ≥
1

2
‖Qs+1,T1D‖∞. (11)
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Now, we define the probability measure ηx1,x2
s by

ηx1,x2

s (A)
def
=

νx1,x2
s (A ∩B(xs,T ,r0))

νx1,x2
s (B(xs,T ,r0))

, ∀A ⊂ D.

By the second part of Lemma 5, νx1,x2
s (B(xs,T ,r0)) is uniformly bounded below by a

constant ǫ > 0 which only depend on r0. We deduce that

RT
s,s+1f(x1) ≥

ǫ
2η

x1,x2
s (f)Qs,s+11D(x1)‖Qs+1,T1D‖∞

Qs,T1D(x1)

≥ ǫ

2
ηx1,x2

s (f),

by the Markov property. This concludes the proof of Lemma 6.
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