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CODING OF GEODESICS AND LORENZ-LIKE TEMPLATES FOR

SOME GEODESIC FLOWS

PIERRE DEHORNOY AND TALI PINSKY

Abstract. We construct a template with two ribbons that describes the topology of
all periodic orbits of the geodesic flow on the unit tangent bundle to any sphere with
three cone points with hyperbolic metric. The construction relies on the existence of a
particular coding with two letters for the geodesics on these orbifolds.

1. Introduction

For p, q, r three positive integers—r being possibly infinite—satisfying 1
p + 1

q + 1
r < 1,

we consider the associated hyperbolic triangle and the associated orientation preserving
Fuchsian group Gp,q,r. The quotient H2/Gp,q,r is a sphere with three cone points of an-
gles 2π

p ,
2π
q ,

2π
r obtained by gluing two triangles. The unit tangent bundle T1H2/Gp,q,r is

a 3-manifold that is a Seifert fibered space. It naturally supports a flow whose orbits are
lifts of geodesics on H2/Gp,q,r. It is called the geodesic flow on T1H2/Gp,q,r and is denoted
by ϕp,q,r. These flows are of Anosov type [Ano67] and, as such, are important for at least
two reasons: they are among the simpliest chaotic systems [Had1898] and they are funda-
mental objects in 3-dimensional topology [Thu88]. Each of these flows has infinitely many
periodic orbits, which are all pairwise non-isotopic. The study of the topology of these
periodic orbits began with David Fried who showed that many collections of such periodic
orbits form fibered links [Fri83]. More recently Étienne Ghys gave a complete description
in the particular case of the modular surface—which corresponds to p = 2, q = 3, r =∞—
by showing that the periodic orbits are in one-to-one correspondence with periodic orbits
of the Lorenz template [Ghy07].

The goal of this paper is to extend this result by giving an explicit description of
the isotopy classes of all periodic orbits of ϕp,q,r for every p, q, r (with p, q finite). A
template [BW83] is an embedded branched surface made of several ribbons and equipped
with a semi-flow. A template is characterized by its embedding in the ambient manifold
and by the way its ribbons are glued, namely by the kneading sequences that describe the
left- and rightmost orbit of every ribbon [HS90, dMvS93]. Call Tp,q,r the template with
two ribbons whose embedding in T1H2/Gp,q,r is depicted on Figure 1 and whose kneading
sequences are the words uL, uR, vL, vR given by Table 1, where the letter a corresponds to
travelling along the left ribbon and b to travelling along the right ribbon. If r is infinite,
the template is open of both sides of every ribbon, so that the kneading sequences are not
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2 PIERRE DEHORNOY AND TALI PINSKY

realized by any orbit of the template. If r is finite, both ribbons are closed on the left and
open on the right, so that uL and vL are realized, but not uR nor vR.

Theorem A. Up to one exception when r is finite, there is a one-to-one correspondance
between periodic orbits of the geodesic flow ϕp,q,r on T1H2/Gp,q,r and periodic orbits of
the template Tp,q,r such that its restriction to every finite collection is an isotopy. The
exception consists of the two orbits of Tp,q,r whose codes wL and wR are given by Table 2
and which actually correspond to the same orbit of ϕp,q,r.

p−1 q−1

r−1

uL vR

vLuR

Figure 1. The template Tp,q,r in T1H2/Gp,q,r. The 3-manifold T1H2/Gp,q,r is
obtained from S3 by surgeries on a three component Hopf link (dotted) with the
given indices. The template Tp,q,r is characterized by its embedding in T1H2/Gp,q,r
and by the kneading sequences that describe the orbits of the extremities of the
ribbons. When r is infinite, T1H2/Gp,q,r is the open manifold obtained by remov-
ing the component labelled r − 1 of the 3-component Hopf link. When p = 2, the
exit side of the left ribbon is strictly included into the entrance side of the right

ribbon.

In subsequent works, we intend to use the template Tp,q,r for deriving important prop-
erties of the geodesic flow ϕp,q,r, in particular the fact that all periodic orbits form prime
knots, or the left-handedness (a notion introduced in [Ghy09]) of ϕp,q,r (see [Deh15-2]).

The kneading sequences (Table 1) may look complicated. In a sense, it is the cost
for having a template with two ribbons only. The proof suggests that, in the case of r
finite, there are infinitely many other possible words, thus leading to other templates (the
difference lying in the kneading sequences, not in the embedding). But these words are
not simpler than the ones we propose here.

Theorem A is to be compared with previous works by Ghys [Ghy07], Pinsky [Pin11], and
Dehornoy [Deh15]. The results of [Ghy07, Pin11] deal with orbifolds of type H2/G2,3,∞
and H2/G2,q,∞ for all q > 3 respectively. The existence of a cusp in these cases allows
the obtained templates to have trivial kneading sequences of the form a∞ and b∞. These
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uL vR
r infinite (ap−1b)∞ (bq−1a)∞

p, q, r > 2

r odd ((ap−1b)
r−3
2 ap−1b2)∞ ((bq−1a)

r−3
2 bq−1a2)∞

r even ((ap−1b)
r−2
2 ap−2(bap−1)

r−2
2 b2)∞ ((bq−1a)

r−2
2 bq−2(abq−1)

r−2
2 a2)∞

p = 2, q > 2, r > 4

r odd ((ab)
r−3
2 ab2)∞ bq−1((abq−1)

r−5
2 abq−2)∞

r even ((ab)
r−4
2 ab2)∞ bq−1((abq−1)

r−4
2 abq−2)∞

vL := buL,
uR := avR

Table 1. The kneading sequences of the template Tp,q,r.

p, q, r > 2 wL wR

r odd ((ap−1b)
r−3
2 ap−2b)∞ ((bq−1a)

r−3
2 bq−2a)∞

r even ((ap−1b)
r−2
2 ap−2b(ap−1b)

r−4
2 ap−2b)∞ ((bq−1a)

r−2
2 bq−2a(bq−1a)

r−4
2 bq−2a)∞

p = 2, q > 2, r > 4

r odd ((ab)
r−3
2 ab2)∞ ((abq−1)

r−5
2 abq−2)∞

r even ((ab)
r−4
2 ab2)∞ ((abq−1)

r−4
2 abq−2)∞

Table 2. The codes of the two periodic orbits of Tp,q,r that correspond to the
same periodic orbit of the geodesic flow ϕp,q,r.

constructions can be recovered from Theorem A. The construction in [Deh15] deals with
compact orbifolds, including the case of H2/Gp,q,r, but the constructed templates have
numerous ribbons instead of two here, and the kneading sequences are not determined.
Thus, Theorem A is a generalization of the results of [Ghy07, Pin11] to compact orbifold
of type H2/Gp,q,r, as well as a simplification of the construction of [Deh15] with more
precise information.

The main idea for the proof of Theorem A is to distort all geodesics in H2/Gp,q,r onto an
embedded graph that is just a bouquet of two oriented circles. We perform the distortion
in a equivariant way in H2 (or in fact in T 1H2), and this allows one to deform through
the cone points. We use this freedom to fix a direction in which the deformed geodesic
is allowed to wind around a cone point, and this allows us to choose such a simple graph
and a template with only two ribbons. In order to have a one-to-one correspondence
between orbits of the flow and orbits of the template, the distortion has to obey some
constraints. We introduce the notion of spectacles, which allows one to verify that we
always get at most one coding for any semi-infinite geodesic and that the coding is nice.
Ultimately we introduce what we call an accurate pairs of spectacles, that ensures we do
get some coding for any bi-infinite geodesic. The main intermediate step is the following
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result which might be of independent interest (see the introduction of Section 3 for the

definitions of the graph Ĝp,q,r, of the code, and of the supershift operator σ̂)

Theorem B. Assume that η, ξ in ∂H2 are the two extremities of a lift in H2 of a periodic

geodesic in H2/Gp,q,r, then there exists a bi-infinite path γ in Ĝp,q,r that connects η to ξ

and whose code w(γ) satisfies uL 6 σ̂k(w(γ)) < uR ( resp. vL 6 σ̂k(w(γ)) < vR) for every
shift σ̂k(w(γ)) that begins with a power of the letter a ( resp. b). This path is unique,
except for the paths encoded by the words wL and wR that have the same extremities.

Theorem B is reminiscent of results by Caroline Series [Ser81, Thm 2.7] and Jérôme
Los [Los13, Thm 4.4]. The novelty here is that we deal with monoids instead of groups,
and that we cover some cases that were not addressed by Series (for small values of p, q,
and r).

The article is organized as follows. First we recall in Section 2 the topology of the
space T1H2/Gp,q,r by giving a surgery presentation on a link in S3. We then describe in
Section 3 a coding with two letters only for geodesics on H2/Gp,q,r. In Section 4, we use
the coding for constructing a template with two ribbons in T1H2/Gp,q,r and describe its
kneading sequences in terms of the chosen coding. We conclude the article with a few
questions in Section 5.

In the whole text, p, q, r denote three natural numbers (with r possibly infinite) sat-
isfying 1

p + 1
q + 1

r < 1. We denote by A0B0C0 a fixed hyperbolic triangle in H2 with

respective angles π/p, π/q, and π/r. We denote by Gp,q,r the orientation-preserving Fuch-
sian group generated by the rotations of angles 2π/p, 2π/q, and 2π/r around A0, B0,
and C0. The quotient H2/Gp,q,r is then a 2-dimensional orbifold, namely a sphere with
three cone points (or a cusp when r is infinite), that we call A↓, B↓, C↓. The letters A and
B with sub/superscripts will always denote points of H2 in the Gp,q,r-orbit of A0 and B0

respectively.

2. The topology of T1H2/Gp,q,r

The unit tangent bundle T1H2/Gp,q,r is a Seifert fibered space whose regular fibers
correspond to fibers of regular points of H2/Gp,q,r and exceptional fibers to the fibers of
the cone points A↓, B↓, C↓. The goal of this section (Proposition 2.4) is to give a surgery
presentation of the 3-manifold T1H2/Gp,q,r with explicit coordinates. This has already
been done, for example in [Mon87, p. 183]. The presentation we give here is slightly
different, but more suited to the description of the template Tp,q,r. Using Kirby calculus
(see [Rol76, p. 267]), one can check that our presentation yields the same manifold as
Montesinos’. In this section, the numbers p, q, r can be finite or infinite.

We begin with some elementary lemmas that help us fixing some notation. Assume that
γ is an oriented closed curve immersed in a surface. Then the restriction T1γ to the fibers
of the points of γ of the unit tangent bundle to the surface is a 2-torus which supports
four particular homology classes, represented by four vector fields:

1. the fiber f of a given point of γ, oriented trigonometrically,
2. an index 0 vector field zγ ; for example, a vector field that is everywhere tangent to γ,
3. an index +1 vector field u+γ , that is, a vector field that rotates once to the left when

traveling along γ,
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4. an index −1 vector field u−γ , that is, a vector field that rotates once to the right when
traveling along γ.

Lemma 2.1. For γ an embedded oriented curve, the classes [f ] and [zγ ] form a basis
of T1γ. In this basis, one has [u−γ ] = −[f ] + [zγ ] and [u+γ ] = [f ] + [zγ ].

Proof. The vector fields f and zγ have exactly one point in common where they intersect
transversally, so they form a basis of H1(T

1γ). Rotating along a fiber amounts to turning
to the left, so one get [u+γ ] = [f ] + [zγ ]. Similarly one obtains [u−γ ] = −[f ] + [zγ ]. �

Let P be an oriented pair of pants whose three oriented boundary components are
denoted by γA, γB, γC . Consider the vector field v on P given by Figure 2 and denote
by vA, vB, vC its respective restrictions to γA, γB, γC . Since vA is tangent to γA, one has
[vA] = [zA] on T1γA. Similarly one has [vB] = [zB] on T1γB. Now vC is not tangent to γC .
Since it rotates plus one times when traveling along γC , one has [vC ] = [u+C ] on T1γC .

γA γB

γC

Figure 2. A pair of pants P and the vector field v. The orientations of the
boundary components induced by the orientation of P are with larger red arrows.

We denote by C3 = UA ∪ UB ∪ UC the 3-component link in S3 that is a chain of 3
unknots, with UC in the middle (see Figure 3).

Lemma 2.2. The unit tangent bundle to the pair of pants P is homeomorphic to S3 \ C3,
where the respective meridians of the components UA, UB, UC of C3 are represented by the
vector fields −zA,−zB, fC and the respective longitudes by fA, fB, u

+
C .

Proof. Since P is an open surface, the unit tangent bundle T1P is homeomorphic to
the product P × S1, that is, to S3 \ C3 (see Figure 3). The vector field v given by
Figure 2 yields a section for this product whose boundary consists of two meridians of UA

and UB respectively and one longitude of UC . The respective longitudes of UA, UB and
the meridian of UC correspond to three fibers (as can be checked on Figure 3). �

The above presentation of T1P is not symmetric in the three boundary components.
This symmetry can be recovered using a twist. Denote by H3

+ = HA ∪ HB ∪ HC the
positive 3-component Hopf link in S3 (the green link in Figure 1).
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UA UB

UC

fC

u+CzCu−C

fAu+A

zA

u−A

fBu+B

zB

u−B

Figure 3. The unit tangent bundle to a pair of pants T1P seen as a product P×
S1, where the section corresponding to the vector field v on P of Figure 2 is
shaded. The vector fields f (double arrow, green), z (orange) and u+ (purple)
for the three boundary tori T1γA,T

1γB and T1γC are represented. Next to every
torus is represented the homology classes of these vector fields and of u− in the
{meridian, longitude}-basis.

Lemma 2.3. The unit tangent bundle to the pair of pants P is homeomorphic to S3 \H3
+,

where the respective meridians of the components HA, HB, HC of C3 are represented by
the vector fields −zA,−zB,−zC and the respective longitudes by u+A, u

+
B, u

+
C .

Proof. Starting from the presentation T1P ' S3 \ C3 of Lemma 2.2, we perform a positive
twist τC on the component UC , that is, we cut S3 along a disc bounded by UC and we
glue back after performing one full positive turn along this disc (see Figure 4). We denote
by HA, HB, HC the images of UA, UB, UC under τC . The tori HA, HB as well as the fibers
of the points of P all get linked plus one times. On these two tori, the twist performs
a positive transvection, adding a meridian to the longitude. Since the meridian of UA

is represented by the vector field −zA, the meridian of HA is also represented by −zA
and the longitude by fA − (−zA) = uA+. The same holds on HB. On the torus UC , the
twist performs another transvection, adding a longitude to the meridian. Therefore the
longitude of HC is represented by uC+, as is the longitude of UC . Its meridian is represented

by fC − uC+ = −zC . �

In the above presentation of T1P as S3 \ H3
+, the fibers of all points of P are fibers of

the positive Hopf fibration (see [AGL08] for explanations and movies).
We can now give the desired presentation of T1H2/Gp,q,r. Recall that a Dehn filling

with slope a/b on a knot amounts to gluing in a solid torus so that a meridian of the
solid torus intersects a longitudes and b meridians of the knot. With this convention, a
Dehn filling with slope ∞ amounts to filling the removed knot back in. Here we add the
extra-convention that in that case of infinite slope, we keep the knot removed.
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HA HB

HC

fAu+A

zA

u−A

fBu+B

zB

u−B

fCu+C
zC

u−C

Figure 4. The unit tangent bundle to a pair of pants T1P as the complement
of a Hopf link. It is obtained from the previous one by a twist along the shaded
disc. The vector fields f (double arrow, green), z (orange) and u+ (purple) for the
three boundary tori T1γA,T

1γB and T1γC . On all three tori are represented the
homology classes of these vector fields and u−, in the {meridian, longitude}-basis.
All meridians are of type −z and all longitudes of type u+.

Proposition 2.4. The 3-manifold T1H2/Gp,q,r can be obtained from S3 \ H3
+ by Dehn

filling the three components of H3
+ with respective slopes p− 1, q− 1, and r− 1. Moreover,

the fibers of T1H2/Gp,q,r correspond to the fibers of the Hopf fibration of S3 \ H3
+ and the

exceptional fibers to the cores of the Dehn fillings.

Proof. Since H2/G∞,∞,∞ is a pair of pants, Lemma 2.3 gives the result in this case.
We now suppose p finite (and q, r arbitrary). Let Dp be the quotient of a disc D,

by a rotation of order p. The orbifold H2/Gp,q,r is obtained from H2/G∞,q,r by gluing
T1Dp into the cusp γA (corresponding to the fiber of A↓), formally by first removing a
neighbourhood of γA.

The unit tangent bundle T1Dp is a solid torus whose meridian disc corresponds to
the image on Dp of a non-singular vector field on D (see Figure 5). Such a vector field
intersects each non singular fiber p times and intersects a vector field tangent to ∂Dp once
(Figure 5 (d, e)). Therefore after gluing, the meridian of T1Dp is glued to a curve with
coordinates (p − 1,±1) in the {meridian, longitude}-basis of HA. The sign can be fixed
either by working out explicitly the action of S1 as in [Mon87], or simply by checking that
in the p = 1 case the meridian is glued to the curve u+ as depicted in Figure 5 (a), hence
has coordinates (0, 1). Therefore the gluing corresponds to a Dehn filling of slope p− 1.

The cases of q and r are treated similarly. �

Note that, if we had not perform the negative Dehn twist in Lemma 2.3, we would
obtain the complement of a chain of three unknots instead of the Hopf link, as depicted
on Figure 3. In this case, a similar statement to Proposition 2.4 holds by replacing the
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(a) (b) (c) (d) (e)

Figure 5. (a) The unit tangent bundle T1D to a disc D is a solid torus D×S1.
The fiber T1{∗} = f∗ of a point ∗ of ∂D is shown in green, a vector field z∂D
tangent to ∂D in orange and a meridian disc given by a constant vector field in
blue. When traveling along ∂D with the orientation induced by the exterior (hence
in the clockwise direction), the blue vector field has index +1, that is, it rotates to
the left. It is then isotopic to u+∂D. (b) the action of an order 3 rotation on T1D:
the vector field z∂D is invariant, while the meridian disc (in blue) is rotated in the
fiber direction, and the fiber f∗ (in green) is rotated around D. (c) the quotient
of T1D by an order 3 rotation: a fundamental domain is given by a horizontal slice
of the full torus made of those tangent vectors that point between 9 o’clock and
1 o’clock, say. (d) the same picture expanded in the fiber direction. The top and
bottom faces are identified using an order 3 rotation. (e) after a twist of −1/3 of
a turn, T1D3 is a solid torus with the standard identification of the opposite faces
of a cylinder. The meridian disc is still given by the blue vector field. It intersects
the fiber of a point (in green) 3 times , and the vector field tangent to ∂D3 (in
orange) minus one times.

surgery coeffecients by p, q, and 1−1/r respectively (again, the change of coefficients is
coherent with Rolfsen’s move [Rol76, p.267]).

3. Coding of the geodesic flow

The geodesic flow φ on T1H2 ' H2 × S1 is defined in the following way: every unit
tangent vector to H2 is of the form (γ(0), γ̇(0)) where γ is a geodesic traveled at speed 1,
we then set φt(γ(0), γ̇(0)) = (γ(t), γ̇(t)). For G a Fuchsian group, this definition is G-
equivariant, and the geodesic flow then projects on T1H2/G.

These flows are the oldest known example of Anosov flows [Ano67]. Their hyperbolic
character implies the existence of a Markov partition [Rat73], that is, of a decomposition
of the flow into flow boxes whose entry and exit faces glue nicely. However, describing such
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a coding for explicit groups (for example for surface or triangular groups) is not so easy.
This problem has a long history, see among others [MH38, BS79, Ser81, AF91, CN08,
Kat08, Pit11] and the references therein.

Here we adapt to our needs the coding given by Caroline Series [Ser81] and completed
by Jérôme Los [Los13] (who covers some cases that were left out by Series). The main
idea in these codings is to distort geodesics in H2 on a planar Cayley graph of G. Here
we do not even need a Cayley graph, but only a planar graph that is G-invariant. In this
context, all properties of Series-Los’ coding still hold. Our present generalisation works
for general Fuchsian groups, but since stating the construction in full generality would
make the notations heavier, we only state it in the case we are interested in.

We start with the triangle A0B0C0 in H2 and the group Gp,q,r as before. We denote

by Ĝp,q,r the embedded graph in H2 whose vertices are the images of A0 and B0 by Gp,q,r,
and whose edges are the images of the segment (A0B0) by Gp,q,r (see Figure 6). All vertices

of Ĝp,q,r have degree p or q. All components of the complement H2 \ Ĝp,q,r are polygons
with 2r vertices, half of which are in the Gp,q,r-orbit of A0 and half of which in the orbit
of B0.

Definition 3.1 (see Figure 6). Assume that γ := (B0, A1, B2, . . . ) is a semi-infinite path

in Ĝp,q,r. The code of γ is the semi-infinite word w(γ) defined as ak1bk2ak3bk4 . . . , where

+2πk2i+1/p (resp. −2πk2i/q) is the value of the angle ̂B2iA2i+1B2i+2 (resp. ̂A2i−1B2iA2i+1).
The code of a path starting in the orbit of A0 is defined similarly, but starts with a power
of the letter b. The code of a bi-infinite path (. . . , A−1, B0, A1, B2, . . . ) is the bi-infinite
word . . . ak−1bk0ak1bk2 . . . defined in the same way.

Beware the choice of the opposite orientations for a and b. We denote by 6lex and <lex

the lexicographic ordering on words on the alphabet {a, b}. This choice ensures that the
lexicographic ordering on codes and the clockwise ordering on ∂H2 coincide (Lemma 3.6).
Note that two paths obtained one from the other by an element of Gp,q,r have the same
code. Following an edge corresponds to suppressing the first block of a of b in the code of
a path. We then define the super-shift operator σ̂ on infinite words that suppresses, not
only the first letter of a word but, the first block of similar letters of a word.

It is easy to see that every geodesic in H2 is quasi-isometric to a path in Ĝp,q,r, but
the latter is not unique. The words uL, uR, vL, vR, wL, wR being given by Table 1 and 2,
the goal of this section is to prove Theorem B of the introduction which states that for
(almost) every closed geodesic there is a way to choose a unique code.

3.1. Pairs of spectacles and admissible paths.

Definition 3.2. A base pair of spectacles is a pair of disjoint semi-open intervals {IA0→B0 ,
IB0→A0} in ∂H2, such that all geodesic rays starting at A0 and reaching IA0→B0 span an
angle 2π/p from A0, and all geodesic rays starting at B0 and reaching IB0→A0 span an

angle 2π/q from B0. For every oriented edge (A,B) of Ĝp,q,r, the associated spectacle IA→B
is the image of IA0→B0 by the unique element of Gp,q,r that maps (A0, B0) onto (A,B).
The spectacles associated to an oriented edge (B,A) is defined similarly.

Remark 3.3. It will usually make sense to choose the base pair of spectacles so that the
geodesic rays from A0 to IA0→B0 include the ray passing through B0, and this will be the
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A0
B0

C0

IA0→B0

IB0→A0

Figure 6. The graph Ĝp,q,r in the case p = 3, q = 4, r = 5. In bold is a path
through the graph whose code starts with aba2b3. A choice of a base pair of
spectacles P = {IA0→B0

, IB0→A0
} ⊂ ∂H2 is also depicted.

case for our choice of spectacles in the next section. However, we do not require this in
the definition.

Deciding whether the intervals are open on the left or on the right is not important, but
in order to avoid heavy case specifications, we arbitrarily decide that all intervals on ∂H2

are open on the right and closed on the left.
Since IA0→B0 spans an angle 2π/p from A0, the p spectacles associated to the p edges

starting at a point in the orbit of A0 tesselate ∂H2 (and so do the q spectacles associated
to the edges starting at a point in the orbit of B0), for any choice of base pair of spectacles.

Definition 3.4. Given a base pair of spectacles S, a semi-infinite or bi-infinite path γ

in Ĝp,q,r is S-admissible if it has a limit in ∂H2, say ξ, and if ξ belongs to all spectacles
associated to all oriented edges of γ.
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Given a pair of spectacles S and a point ξ on ∂H2, it is not clear whether there exists
an S-admissible semi-infinite path connecting A0 (say) to ξ. What is easy to check is that
if there is such an admissible path, it is unique.

Lemma 3.5. Given a pair of spectacles S, for every A in Ĝp,q,r and every ξ in ∂H2, there

exists at most one S-admissible path in Ĝp,q,r joining A to ξ.

Proof. The path can be constructed inductively: if the path begins by (A0, B1, . . . , A2i)
(resp. (A0, B1, . . . , B2i+1)), there is a unique oriented edge starting at A2i (resp. B2i+1)
whose associated spectacle contains ξ. This gives a unique choice for B2i+1 (resp. A2i+2).
Note that it is not clear that the path so defined converges to ξ. �

A nice feature of the coding with two letters given by Definition 3.1 is that the natural
cyclic ordering on admissible paths starting at a given point is reflected in the lexicographic
order of the codes.

Lemma 3.6. Let S be a base pair of spectacles. Assume that γ, γ′ are two S-admissible

paths in Ĝp,q,r that begin with the same edge. Then γ is to the left of γ′ after they diverge

if and only if w(γ) <lex w(γ′) holds.

Proof. The main observation is that, after taking any edge of Ĝp,q,r, the cyclic ordering on
the p − 1 or q − 1 possible next edges coincide with the lexicographic ordering. Indeed,
since a corresponds to a rotation of angle +2π

p , a path whose code begins with ab is on the

right of a path whose code begins with a2b, and so on, and the leftmost paths have codes
beginning with ap−1b. Similarly, since b corresponds to a rotation of angle −2π

q , a path

whose code begins with ba is on the left of a path whose code begins with b2a, and so on.
Therefore, two paths coincide as long as their codes coincide. As soon as they diverge, the
leftmost has the smallest code. �

3.2. Accurate pairs of spectacles and existence of admissible paths. We have

seen how a choice of a base pair of spectacles yields a coding for every path in Ĝp,q,r, and
leads to the notion of admissible infinite path. Now we want to find spectacles that ensure
that every bi-infinite geodesic in H2 can be shadowed by an admissible bi-infinite path.
This is the notion of accurate spectacles.

Definition 3.7. A base pair of spectacles S is said to be accurate if for every A in H2

and for every η, ξ in ∂H2 there exist an S-admissible semi-infinite path connecting A to ξ
and an S-admissible bi-infinite path connecting η to ξ. These paths are denoted by γSA→ξ
and γSη→ξ respectively.

Let us see which codes are yielded by accurate pairs of spectacles.

Definition 3.8. Assume that S = {IA0→B0 , IB0→A0} is an accurate pair of spectacles.
Denote by uSL and uSR the respective codes of the admissible paths connecting A0 to the
left and right extremities of IA0→B0 , and by vSL and vSR the codes of admissible the paths
connecting B0 to the two extremities of IB0→A0 . The sequences uSL, u

S
R, v

S
L, v

S
R are called

the kneading sequences associated to the pair of spectacles S.
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Lemma 3.9. Given an accurate pair of spectacles S, a semi-infinite word w = bk1ak2bk3 . . .
is the code of an S-admissible path if and only if it satisfies uSL 6

lex σ̂2i+1(w) <lex uSR and

vSL 6
lex σ̂2i(w) <lex vSR for every i.

Proof. Let ξ be a point ∂H2. By definition of accurate spectacles, there exists an S-
admissible path γ := (A0, B1, A2, B3, . . . ) that connects A0 to ξ and by Lemma 3.5
this S-admissible path is unique. Denote its code by w. For every i the code of the
path (A2i, B2i+1, . . . ) is the word σ̂2i(w). Since ξ belongs the the interval IA2i→B2i+1 , by
Lemma 3.6, we have vSL 6

lex σ̂2i(w) <lex vSR. Similarly, since ξ belongs the the inter-

val IB2i+1→A2i+2 , we have uSL 6
lex σ̂2i+1(w) <lex uSR.

Conversely, if w satisfies the above constraints, denote the associated path by γ and
the limit of γ in ∂H2 by ξ. Lemma 3.5 implies that ξ belongs to all spectacles IA2i→B2i+1

and IB2i+1→A2i+2 . This means exactly that w is S-admissible. �

By the same argument, we immediately get

Lemma 3.10. Given an accurate pair of spectacles S, a bi-infinite word w = . . . bk−1ak0bk1 . . .
is the code of an S-admissible path if and only if it satisfies uSL 6

lex σ̂2i+1(w) <lex uSR and

vSL 6
lex σ̂2i(w) <lex vSR for every i.

3.3. An explicit choice of spectacles. Accurate pairs of spectacles yield codes that are
easy to describe. However, it is not obvious that there exist accurate pairs of spectacles.
For example, if the spectacles IA0→B0 do not include the endpoint of the geodesic ray
from A0 through B0, then an admissible path γSA→ξ would veer away from ξ instead of
converging toward ξ. As another example, note that when r is infinite, there exists a

unique pair of spectacles. Indeed in this case the graph Ĝp,q,r is a tree, and the only
possibility for the intervals IA0→B0 and IB0→A0 is to be the two intervals that connect the
extremities of the two horoballs meeting on the edge (A0B0).

The goal of this section is to construct explicitly an accurate pair of spectacles in the
case where r is finite.

For the rest of this section, assume p > 2. The case p = 2 will be treated in Section 3.5.

Assume F is a region of the complement of Ĝp,q,r in H2. Since F has 2r vertices, it makes
sense to say that two edges are opposite in F : if there are r − 1 edges between them in
both directions.

Definition 3.11 (see Figures 7 and 8). Assume that A,B are two adjacent vertices

of Ĝp,q,r. Then the associated bigon βAB is defined as the infinite sequence (F 1, F 2, . . . )

of faces of the complement of Ĝp,q,r, where F 1 is the face on the left of the edge (AB), the
edge F 1 ∩ F 2 is opposite to (AB) in F 1, and F i ∩ F i+1 is opposite to F i−1 ∩ F i in F i for
every i > 2.

The bigon βAB has a left and a right boundary starting at A and B respectively. They
both converge to the same point in ∂H2 that we call the normal extremity of the oriented
edge (AB) and denote by ξAB.

Lemma 3.12. The codes of the paths that follow the left and right boundaries of βAB are
the words vR and uL given by Table 1.
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ξA0B0

A0
B0

C0

IfA0→B0

IfB0→A0

Figure 7. The pair of spectacles Sf

Proof. We have to draw the corresponding bigon, and to describe its borders. This is
depicted in Figure 8. The code is periodic, the period corresponding to one face in the
case of r odd and two faces in the case of r even. �

Let Sf = (IfA0→B0
, IfB0→A0

) be the pair of spectacles such that the left extremity

of IfA0→B0
and the right extremity of IfB0→A0

both coincide with the point ξA0B0 (see

Figure 7).

Lemma 3.13. For every A in Ĝp,q,r and ξ on ∂H2, the path γS
f

A→ξ converges to ξ.

Proof. Let (A0, B1, A2, . . . ) denote the consecutive vertices visited by γS
f

A→ξ and bξ be a

Busemann function [Bus85] on H2 associated to ξ . We claim that bξ is decreasing when

evaluated along every second point of γS
f

A→ξ, that is, bξ(A
0) > bξ(A

2) > bξ(A
4) > . . .

holds. Indeed, one checks (see Figure 9) that for every i the spectacles IB2i+1→A2i+2 are
included inside the interval of ∂H2 consisting of those directions that are closer to A2i+2

than to A2i. �
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A B A B

ap−1

b

ap−1
b2

ap−1
b

ap−1
b

ap−2
b
ap−1
b
ap−1
b2

Figure 8. The code uL of the right border of on infinite bigon is the peri-

odic word ((ap−1b)
r−3
2 ap−1b2)∞ when r is odd (on the left with r = 5), and

((ap−1b)
r−2
2 ap−2(bap−1)

r−2
2 b2)∞ when r is even (on the right with r = 6).

A0

A1

A2

A3

B0

IA0→B0 ∩ IB0→A1

IA0→B0 ∩ IB0→A2

IA0→B0 ∩ IB0→A3

ξA0B0

ξA1B0

ξA2B0

ξA3B0
ξB0A0

Figure 9. For every ξ in the interval IA0→B0
∩ IB0→A1

(approximately the in-
terval between 12:00 and 1:30), the Busemann function bξ is smaller at A1 than
at A0: indeed IA0→B0

∩ IB0→A1
is included in the half space defined by the per-

pendicular bisector of (A0A1) (dashed) and containing A1. Similarly for A2 (1:30
to 3:300) and A3 (3:30 to 6:00).

Now we have to see why for every η, ξ on ∂H2 there exists an admissible path that
connects η to ξ.
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Lemma 3.14. The pair of spectacles Sf is accurate.

Proof. We have to show that for every η, ξ on ∂H2 there exists an Sf -admissible path
connecting η to ξ. Consider a sequence (An)n∈N of points in the orbit of A0 that converges
to η and stays at a bounded distance from the hyperbolic geodesic connecting A0 to η.

By Lemma 3.13 all paths γS
f

An→ξ converge to ξ. Also every path γS
f

An→ξ is at a bounded

distance from the geodesic connecting An to ξ. Therefore, every path γS
f

An→ξ is at a
bounded distance from the geodesic that connects η to ξ. Since the orbit of A0 contains
only finitely many points in every ball of bounded radius, this implies that infinitely many

paths γS
f

An→ξ go through the same point, hence ultimately coincide. By extraction, this

yields an Sf -admissible path connecting η to ξ. �

3.4. Uniqueness of the coding. The last missing point for proving Theorem B in
the case p > 2 is to see when admissible paths fail to be unique. Denote the word

(ap−1b)
r−3
2 ap−2b when r is odd and (ap−1b)

r−2
2 ap−2b(ap−1b)

r−4
2 ap−2b when r is even by xL,

and the word (bq−1a)
r−3
2 bq−2a when r is odd and (bq−1a)

r−2
2 bq−2a(bq−1a)

r−4
2 bq−2a when r

is even by xR. We then have (see Table 2) wL = x∞L and wR = x∞R .

Lemma 3.15. Assume r finite. Suppose that γ1, γ2 are two Sf -admissible paths connecting
the same points on ∂H2. Then either γ1, γ2 coincide in a neighbourhood of ξ in which case
their codes are of the form (. . . xLxLxL)w1 and (. . . xRxRxR)w2 where w1 and w2 are
semi-infinite words that ultimately coincide, or γ, γ′ are disjoint in which case their codes
are x∞L and x∞R .

Proof. First suppose that γ1, γ2 have no point in common. Since γ1, γ2 have the same

extremities on ∂H2, they are separated by an infinite strip of faces of H2 \ Ĝp,q,r, namely
there exists faces . . . , F−1, F 0, F 1, . . . , such that F i+1 is adjacent to F i, that γ1 is on the
left of · · · ∪ F−1 ∪ F 0 ∪ F 1 ∪ . . . and γ2 on the right. Note that the width of the strip
cannot exceed one face. Indeed, since all faces are 2r-gons with r > 4 whose vertices have
angle at least π/3, one checks that in order to converge to the same point at infinity, one
of the paths would have to use more than half of the sides of a face. This would contradict
the admissibility of the path: indeed the code of such a path would contain at least r/2
consecutive blocks of the form ap−1b (or abq−1), and this is prohibited by the kneading
sequences of Table 1.

Now, for every i, the intersection F i ∩ F i+1 contains two vertices of Ĝp,q,r that we

denote by Ai and Bi. Then γ1 and γ2 are two Sf -admissible paths connecting Bi and
Ai to ξ. Since γ1 does not go through Ai and γ2 not through Bi, the point ξ belongs
to ∂H2 \ (IAi→Bi ∪ IBi→Ai) (the bottom gray interval on Figure 7) for every i. This forces
γ1∩F i∩F i+1 to be in the orbit of A for every i and γ2∩F i∩F i+1 to be in the orbit of B.

Assume first r is odd. The previous remark implies that γ1 and γ2 both travel along r−1
sides of F i, so that the faces F i−1 and F i+1 are opposite with respect to F i. Therefore,
the codes of γ1 and γ2 are x∞L and x∞R .

Next, assume r is even. The remark implies that γ1 and γ2 travel one along r − 2
sides of F i and the other along r sides. Similarly, in the face F i+1, the two paths travel
along r − 2 and r sides of F i+1. If the same path, say γ1, travels along r sides of F i and
F i+1, then ξ actually belongs to the interval IAi→Bi so that γ1 should have visited Bi, a
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contradiction. Therefore γ1 must travel along r sides of F i and r − 2 of F i+1, while γ2
travels along r − 2 sides of F i and r sides of F i+1. By induction, the codes of γ1 and γ2
are x∞L and x∞R .

Now if γ1, γ2 have one point in common, by Lemma 3.5, they coincide after that point.
By the same argument as above, the part between them is a semi-infinite chain of 2r-gons.
The only possibility for such a chain is to be of the above form. �

We can now conclude.

Proof of Theorem B in the case p > 2. We consider the pair of spectacles Sf introduced
in Section 3.3. By Lemma 3.14 the pair Sf is accurate, meaning that for every η, ξ on ∂H2,
there exists an Sf -admissible path connecting η to ξ. By Lemma 3.10, accurate paths are
exactly the paths whose code verify the given inequalities. Finally, by Lemma 3.15, if η, ξ
are lifts of the extremities of a periodic geodesic this Sf -admissible path is unique, except
in the case of the words wL and wR. �

3.5. Case p = 2. All definitions and lemmas of Section 3.1 and 3.2 and still valid when

p = 2. Since faces of H2 \ Ĝp,q,r now have r sides and not 2r, the definition of bigons
(Definition 3.11) and the description of their boundaries (Lemma 3.12) need to be adapted.

We still consider the faces as 2r-gons (with angles at some of the vertices equal to π)
and describe the corresponding boundaries. Up to switching between q and r, we can
suppose r > 5. The kneading sequences in this case are given by Table 1 as shown by
Figure 10.

bq−1
a

bq−1
a

bq−2

a
b

a
b

a
b2
a
b

a
b

bq−1

a

bq−2

a

bq−2

a
b
a
b2
a
b
a
b2

Figure 10. An infinite bigon in the case p = 2, r = 7 on the left. The code uL of

the right border is the periodic word ((ab)
r−3
2 ab2)∞ when r is odd (on the picture

with r = 7) and ((ab)
r−4
2 ab2)∞ when r is even. The code vR of the left border

is bq−1((abq−1)
r−5
2 abq−2)∞ when r is odd and bq−1((abq−1)

r−4
2 abq−2)∞ when r

is even. The case p = 2, r = 5 on the right: the term (abq−1)
r−5
2 disappears in vR.

The proofs of Lemmas 3.13 and 3.14 need no special adaptation. Finally the proof of
Lemma 3.15 can be translated to this case. The only modification is that for every i the
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intersection F i ∩ F i+1 consists of two vertices Bi
1 and Bi

2 that are both adjacent to some
point Ai, and thus the point ξ belongs to ∂H2\(IAi→Bi

1
∪IAi→Bi

2
). If r is odd this forces γ1

to travel along r−3
2 sides of F i and γ2 along r−1

2 sides (or r−1
2 and r−3

2 sides respectively).

At the next face F i+1, the same argument as in the proof of Lemma 3.15 proves that the
numbers have to alternate. Therefore the codes of γ1 and γ2 are those given by Table 2.
If r is even the same proof also gives the codes of Table 2.

Finally the proof of Theorem B is now exactly the same that in the case p > 2.

4. The template Tp,q,r
We now introduce the main character of this story: the template Tp,q,r in T1H2/Gp,q,r.

The basic idea is that Theorem B gives a canonical way to distort T1H2/Gp,q,r onto the 2-

complex that is made of the fibers of the points of Ĝp,q,r/Gp,q,r. However, this 2-complex is
not a template because it branches along two circles, namely the fibers of the two vertices,
instead of along intervals. The trick for proving Theorem A is then to replace the vertices

of Ĝp,q,r by roundabouts, thus obtaining a template that has the desired properties. More

precisely, we distort any path in Ĝp,q,r in a neighbourhood of each vertex. The crucial point
is that since we make the distortion in H2, we can choose to push the path to one side of
the vertex or the other as we wish. We are therefore able to arrange all paths that pass
through a vertex so that they turn around the vertex in a fixed direction (counterclockwise
for any image of A0, clockwise for any image of B0). Thanks to the admissibility of the

original path, the transformed path will rotate by an angle at most p−1
p 2π around A0, and

at most q−1
q 2π around B0.

For A,B two adjacent vertices of Ĝp,q,r, we denote by B+ the image of B by a +2π/p-
rotation around A and by A+ the image of A by a −2π/q-rotation around B.

Definition 4.1 (see Figure 11). Let Bp,q,r be the embedded oriented graph in H2/Gp,q,r
which is a bouquet of two oriented circles, one winding once around A↓ and one winding

minus one times around B↓. Let B̃p,q,r denote the lift of Bp,q,r in H2. Every lift of a circle
is called a roundabout. A switch is the contact point of two adjacent roundabouts. For

A,B two adjacent vertices of Ĝp,q,r, we denote by cAB
the arc of the roundabout around A

that connects the edge (AB) to (AB+) and by cBA
the arc of the roundabout around B

that connects the edge (AB) to (A+B).

Every vertex of Ĝp,q,r is canonically associated to a roundabout of B̃p,q,r, and every

edge Ĝp,q,r to a switch of B̃p,q,r.

Definition 4.2 (see Figure 12). Assume that γ = (. . . , A−1, B0, A1, . . . ) is a simple path

in Ĝp,q,r. The associated tango path
∼
γ is the path in B̃p,q,r that is obtained by rotating

around the roundabouts associated to the vertices of γ and changing at the switches that
correspond to the edges of γ.

Define T̃p,q,r as the branched surface embedded in T1H2 that is made of those vectors of

the form (x, v), where x is a point on B̃p,q,r that belongs to an arc of the form cAB
(resp.

cBA
) and v is a tangent vector that points into IfB→A (resp. IfA→B). The surface T̃p,q,r
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A B

A+
B+

A−

B−

cAB

cBA

cAB−
cBA−

Figure 11. The graph B̃p,q,r.

is a surface made of ribbons of the form cAB
× IfB→A (resp. cBA

× IfA→B) that branches

in the fibers of the switches of B̃p,q,r. We equip T̃p,q,r with a semi-flow, denoted by τ̃p,q,r,
whose orbits are, on every ribbon, of the form cAB

× {∗} (resp. cBA
× {∗}). Since we are

interested in the topology of orbits and not in the time, the speed is not relevant, we can
arbitrarily decide that τ̃p,q,r travels along each branch at unit speed. In order to say that

T̃p,q,r is a template, we need to check that ribbons are glued nicely.

Lemma 4.3. Every branching arc of the surface T̃p,q,r is of the form M × I, where M is

a switch of the graph B̃p,q,r and, denoting the vertices of B̃p,q,r that surround M by A,B,

the arc I in ∂H2 is the segment IfA→B ∪ I
f
B→A.

Proof. In the fiber of M four branches meet, namely cAB
, cBA

, cAB− , and cBA− . Their

visual intervals are respectively IfB→A, I
f
A→B, I

f
B−→A, and If

A−→B. Figure 11 shows that

all these segments are included in IfA→B ∪ I
f
B→A. �

Lemma 4.3 ensures that T̃p,q,r is indeed a template: it is made of ribbons, its branching

arcs are segments, each branching segment has two incoming ribbons (cAB− × I
f
B−→A and
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Figure 12. The broken line represents a bi-infinite path in Ĝp,q,r. The associated

tango path in B̃p,q,r is thickened. All circles correspond to roundabouts.

cBA− ×I
f
A−→B) that overlap and two outgoing ribbons (cAB

×IfB→A and cBA
×IfA→B) that

do not overlap. Along the branching segments, the vector fields induced by the different

ribbons coincide. By construction, T̃p,q,r is Gp,q,r-equivariant, so we can mod out.

Definition 4.4. The template Tp,q,r in T1H2/Gp,q,r is defined as the quotient T̃p,q,r/Gp,q,r.
It is equipped with the semi-flow τp,q,r that is the projection of τ̃p,q,r.

We can now conclude.

Proof of Theorem A. First we check that Tp,q,r is embedded in the way described by Fig-
ure 1. Indeed, contracting the ribbons of Tp,q,r into arcs bring Tp,q,r in a neighbourhood
of the vector field v describes on Figure 2, and the arcs cAB

, cBA
wind once around the

corresponding points A↓ and B↓. For the framing of the ribbons of Tp,q,r, notice that it is
given by the direction of the fibers of T1H2/Gp,q,r. The framing of Figure 1 is obtained
by a rotation of 90 degrees, that is, by an isotopy. This proves that the template Tp,q,r is
indeed embedded as in Figure 1.

Now, all we have to do is to describe a map, say dp,q,r, from T1H2/Gp,q,r to Tp,q,r that will
transport the orbits of the geodesic flow ϕp,q,r onto the orbits of the semi-flow τp,q,r on the
template, and check that its restriction to finite collection of periodic orbits is a topological
equivalence and an isotopy. Actually, it is easier to do that in a Gp,q,r-equivariant way
in T1H2.

Assume that η, ξ are two points in ∂H2 and denote by gη→ξ the geodesics in H2 that

connects them. By Theorem B, there also exists a unique admissible path γfη→ξ in Ĝp,q,r
that connects η and ξ. We denote it by

∼
γη→ξ the associated tango path in B̃p,q,r. The lift
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of gη→ξ in T1H2 is the orbit gη→ξ × {ξ} of the geodesic flow ϕp,q,r. We now define d̃p,q,r

as the map that takes gη→ξ × {ξ} onto
∼
γη→ξ ×{ξ}, which is an orbit of τ̃p,q,r. Of course,

this can be done using an isotopy in the level H2 × {ξ} and in a Gp,q,r-equivariant way.

By Theorem B, the image of the map d̃p,q,r is exactly the template T̃p,q,r. Modding out

the map d̃p,q,r by Gp,q,r, we obtain the desired map dp,q,r.
In order to check that we have an isotopy when we restrict to finite collections of

periodic orbits, assume that γ, γ′ are two arbitrary lifts in T1H2 of two periodic orbits
of ϕp,q,r. Then γ, γ′ cannot point in the same direction in ∂H2, for otherwise they would
become arbitrarily close, which is not possible for two periodic orbits. Therefore, the

deformation d̃p,q,r can be realized for these two orbits by two isotopies that live in different
levels of T1H2. These can be extended to a global isotopy of T1H2. The same idea works
for arbitrary (but finitely) many periodic orbits. �

5. Concluding remarks

5.1. Templates with two ribbons. In this article, we have given a construction of a
template for some particular geodesic flows. One can wonder about the optimality of the
result, that is, whether it can be extended to other geodesic flows on other surfaces or
2-dimensional orbifolds. It was proven in [BW83] that in this general case, there exists
always a template, but with no control on the number of ribbons and the way they are
embedded. Explicit constructions were given in [Deh15], but they always yield templates
with more than two ribbons. Actually we have

Proposition 5.1. Assume that G is a Fuchsian group such that H2/G is not a sphere with
three cone points. Then there is no template with two ribbons that describes the isotopy
classes of all periodic orbits of the geodesic flow on T1H2/G.

Proof. The set of isotopy classes that can be represented by a template with two ribbons
is a submonoid with two generators of π1(T

1H2/G). Since the fundamental groups of all
Fuchsian groups different from triangles groups have rank larger than 2, they cannot equal
a monoid with two generators. �

The natural task is then to wonder what are the next simplest templates and which
groups they represent.

5.2. Space of codings. In Section 3 we have constructed a particular coding, relying
on a particular pair of accurate spectacles. It would be interesting to understand which
codings can be obtained in this way.

Question 5.2. Given p, q, r, what is the set of accurate spectacles for coding the periodic
geodesics of H2/Gp,q,r?

More generally, given a generating set ofGp,q,r, a coding of periodic geodesics on H2/Gp,q,r
is a language. What we did is to describe one particular such language. Another example
is given in [Pfe08] (it is not clear to us whether this coding can be obtained using an
accurate pair of spectacles).

Question 5.3. Given a generating set of Gp,q,r, what is the set of those languages that
encode the periodic geodesics of H2/Gp,q,r?
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