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KINETIC MODELING OF MULTIPLE SCATTERING OF

ELASTIC WAVES IN HETEROGENEOUS ANISOTROPIC MEDIA

IBRAHIM BAYDOUN, ÉRIC SAVIN, RÉGIS COTTEREAU, DIDIER CLOUTEAU,
AND JOHANN GUILLEMINOT

Abstract. In this paper we develop a multiple scattering model for elastic
waves in random anisotropic media. It relies on a kinetic approach of wave

propagation phenomena pertaining to the situation whereby the wavelength

is comparable to the correlation length of the weak random inhomogeneities–
the so-called weak coupling limit. The waves are described in terms of their

associated energy densities in the phase space position × wave vector. They

satisfy radiative transfer equations in this scaling, characterized by collision
operators depending on the correlation structure of the heterogeneities. The

derivation is based on a multi-scale asymptotic analysis using spatio-temporal

Wigner transforms and their interpretation in terms of semiclassical operators,
along the same lines as Bal [Wave Motion 43, 132-157 (2005)]. The model

accounts for all possible polarizations of waves in anisotropic elastic media and
their interactions, as well as for the degeneracy directions of propagation when

two phase speeds possibly coincide. Thus it embodies isotropic elasticity which

was considered in several previous publications. Some particular anisotropic
cases of engineering interest are derived in detail.

1. Introduction and summary

1.1. Modeling of wave propagation phenomena in random media. The
study of multiply-scattered elastic waves in heterogeneous, anisotropic media has
relevance to non destructive evaluation of materials and structures, seismic waves
characterization, acoustic emission and backscattered echo analyses, with possible
applications in geophysical prospection, biomedical imaging, or structural health
monitoring, among others. In this respect, the use of ultrasound to infer the mi-
crostructure of polycrystalline materials has been widely considered in the past
since the earlier work of Mason & McSkimin [37]. The nondestructive techniques
elaborated afterwards are based on the measurement of exponential rates of spa-
tial decay (attenuations) and speeds of averaged plane waves, i.e. coherent fields.
The difficulty raised by this approach is the impossibility to distinguish the vari-
ous sources of potential decays between scattering, geometrical spreading, internal
absorption, or the influence of the reflections at the opposite faces of the sample.
These shortcomings have prompted the development of probing techniques based
on the measurement of the evolution of the incoherent part of ultrasonic waves,
i.e. multiply scattered, possibly diffusive fields [20]. The earlier attempts in this
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direction can be tracked back to the works of Guo et al. [22] and Weaver [54]. This
alternative approach has received a considerable attention in the last decade since
it was observed that the empirical cross-correlations of such diffuse fields could
be directly related to the Green function of the propagation medium [11, 14, 55].
The numerous developments and applications in geophysics which have followed
are described in e.g. [12] and references therein.

These advances call for accurate analytical models of ultrasonic wave propa-
gation phenomena in unstructured or structured heterogeneous media. Iterative
perturbation expansions for weakly random polycrystalline materials were consid-
ered in [25,26,46,53] in the spirit of the seminal developments of Karal & Keller [29].
Other approaches are based upon diagrammatic expansions in which the mean re-
sponse is governed by a Dyson equation, and the mean square response is governed
by a Bethe-Salpeter equation [18,52]. Both are analytically intractable unless low-
order truncations are enforced, typically a so-called first-order smoothing approxi-
mation (FOSA) for the Dyson equation, and a so-called ladder approximation for
the Bethe-Salpeter equation. These approximations have been used in [48–51, 54]
for the derivation of (i) scattering-based attenuation coefficients on one hand, and
of (ii) radiative transfer equations for the (renormalized) mean square wave fields
in the limit of small wavelengths (high frequencies) with respect to the macro-
scopic features of the medium on the other hand. The works evoked above have
been mainly confined to untextured or textured aggregates of cubic-symmetry crys-
tallites. Besides, radiative transfer models of high-frequency wave propagation in
heterogeneous media have a broad range of validity and were derived in many fields
from either phenomenological principles [13,27,41,44] or, more recently, systematic
formal multiple-scale asymptotic expansions [6, 7, 10,23,40].

Transport and radiative transfer equations describe the mesoscopic regime of
wave propagation when the wavelength is comparable to the characteristic length
of the heterogeneities, typically a correlation length in a random medium (hereafter
referred to as the fast scale). It corresponds to a situation of strong interaction
between waves and random heterogeneities which cannot be addressed by usual
homogenization and multi-scale techniques. Also it considers large propagation
distances compared to the wavelength, and weak amplitudes of the random pertur-
bations of the material parameters with respect to a bare, possibly heterogeneous,
background medium varying at a length scale (the slow scale) one order of mag-
nitude larger than the wave/correlation lengths. This corresponds to the so-called
weak coupling limit as defined in the dedicated literature, whereby an explicit sep-
aration of scales can be invoked. The analysis developed in [6,7,10,23,40] is based
on the use of a Wigner transform of the wave field, of which high-frequency, non-
negative limit captures the angularly resolved energy density in time and space. It
can be made mathematically rigorous as in [1,19,32] ignoring however the influence
of random inhomogeneities, except for some particular situations [15,34].

The purpose of the research presented in this paper is to assess the influence
of material full anisotropy on the radiative transfer regime of elastic waves in ran-
domly heterogeneous media. Anisotropy is considered at two levels. The first one
is related to the constitutive law of random materials. The second level is related
to the correlation structure of these random materials, referred to as anisomery in
the dedicated literature [35]. More specifically we have developed formal models
for the consideration of anisotropy in the collision kernels of the radiative transfer
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equations pertaining to multiply-scattered elastic waves. These models describe
the evolution of their energy density in the phase space position × wave vector in
terms of the Wigner measure of the wave fields. The analysis follows to a great
extent the techniques used by Bal [6] and Akian [1] in that it handles a second-
order wave equation and introduces the spatio-temporal Wigner transform of the
elastic waves. However, as opposed to [6] it considers vector wave fields, and as op-
posed to [1] it considers the influence of random perturbations in the weak coupling
regime. Therefore our derivation generalizes those previous works and the classical
reference [40] to fully anisotropic bare elastic media with fully anisotropic random
perturbations.

1.2. Summary of the main results. We now summarize our main results. We
aim at describing elastic waves in a random medium taking into account the non-
uniformity of the background medium and their scattering by random inhomo-
geneities, with due consideration of the effects of coupling between their different
polarizations. We also consider the regime where the leading wavelength is com-
parable to the (small) correlation length of the heterogeneities, in order to ensure
maximum interactions with the waves. This is a necessary condition if we want to
probe the medium and its fluctuations. It defines the high-frequency range termi-
nology we shall use throughout the paper. At last, our fundamentally new results
are that this objective is achieved for arbitrary anisotropy of the random medium.
As a scalar wave propagates in a random medium with an incident wave vector

q, it can be scattered at any time t and position x into any direction k̂ and wave

vector k (such that k̂ = k/|k|). Therefore it is relevant to consider an angularly
resolved scalar energy density a(t,x,k) for this wave, defined for all positions (x,k)
in phase space. In [6, 40] it is shown that energy conservation takes the form of a
scalar radiative transfer equation:

(1) ∂ta(t,x,k) + ∇kω(x,k) ·∇xa(t,x,k)−∇xω(x,k) ·∇ka(t,x,k)

=

∫
σ(x,k,q)a(t,x,q)dq− Σ(x,k)a(t,x,k) ,

where ω(x,k) is the frequency of the waves at x with wave vector k, and σ(x,k,q)
is the rate of conversion of energy with wave vector q into energy with wave vector
k at position x–the so-called scattering cross-section. The total scattering cross-
section Σ is:

Σ(x,k) =

∫
σ(x,k,q)dq ,

such that the transport equation is conservative because the former relationship
yields: ∫∫

a(t,x,k)dkdx = Const

for all times. The scattering cross-section is explicitly determined by the power
spectral density of the inhomogeneities [6,40]. The transport equation (1) also holds
when the waves are scattered by randomly distributed discrete scatterers, in which
case the scattering cross-section is the cross-section of a single scatterer multiplied
by their density. Here we only consider continuous random inhomogeneities.

For vector waves we must in addition keep track of their state of polarization.
In a three-dimensional anisotropic elastic medium three orthogonal polarization
directions exist, corresponding to at most three different directionally-dependent
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phase velocities: one for quasi-longitudinal compressional wave, and two for quasi-
transverse shear waves. Labeling the polarization states by α = 1, 2 or 3, each one
has its own energy density aα(t,x,q) but it may be converted to any other state

and any other direction k̂ at any position x when scattered by the inhomogeneities.
Conservation of energy is now expressed in terms of coupled radiative transfer
equations for the energy densities of the different polarizations:

(2) ∂taα(t,x,k) + ∇kωα(x,k) ·∇xaα(t,x,k)−∇xωα(x,k) ·∇kaα(t,x,k)

=

3∑
β=1

∫
σαβ(x,k,q)aβ(t,x,q)dq− Σα(x,k)aα(t,x,k) , α = 1, 2, 3 ,

where ωα(x,k) is the frequency of the waves at x with wave vector k and polariza-
tion state α, and σαβ(x,k,q) is the rate of conversion of energy with wave vector
q and polarization state β into energy with wave vector k and polarization state
α, at position x. The total scattering cross-sections Σα are:

Σα(x,k) =

3∑
β=1

∫
σαβ(x,k,q)dq , α = 1, 2, 3 ,

such that the coupled transport equations are conservative since:

3∑
α=1

∫∫
aα(t,x,k)dkdx = Const

in the vector case. The scattering cross-sections σαβ are explicitly determined in
terms of the power spectral density of the inhomogeneities–which may be charac-
terized by up to 21 coefficients in a triclinic medium. They were originally derived
in [40] for isotropic media solely, such that the quasi-transverse shear velocities
are the same everywhere and independent of the propagation direction. Here we
obtain generalized formulas for them accounting for all possible symmetry classes
of anisotropic media, namely Eq. (68) together with the definitions of Eq. (50) and
Eq. (39). In this latter equation the elasticity tensor C0 of the background medium
and the elasticity tensor C1 of the random inhomogeneities are formally allowed to
belong to different symmetry classes, and to vary at different scales. This implies
that they have different contributions to the wave dynamics:

• The variations of C0 at the slow scale contribute only to the left-hand side
of the radiative transfer equations (1) and (2). They basically characterize

the phase velocities ωα(x, k̂) and polarizations α in this regime.
• The variations of C1 contribute only to the right-hand side of these radia-

tive transfer equations in terms of the power spectral densities of its 21
elasticity coefficients. It describes how high-frequency waves are continu-
ously scattered by the material inhomogeneities at the fast scale, which is
also their (small) wavelength. These collision operators account for both
the elastic (change of direction without changing polarization) and inelastic
(with a change of polarization) processes.

In Eq. (2) the energy densities are scalars as long as the phase velocities are all
distinct. Our derivation considers the most general case when they may coincide
for some modes, though. This is the case for isotropic media for example, for
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which Eq. (2) becomes a matrix system. This situation is fully addressed in the
subsequent analyses.

1.3. Outline. The rest of the paper is organized as follows. In Sect. 2 we intro-
duce the basic framework and notations used throughout. We more particularly
focus on the characterization of anisotropy in terms of the acoustic, or Christoffel
tensor of the bare medium, and the relevance of using a Wigner transform and its
non-negative limit measure for the analysis of multiple scattering phenomena in the
high-frequency range. This limit is simply the energy density aα introduced above
for each polarization state α. The corresponding transport model is derived in de-
tail in Sect. 3 ignoring the influence of random inhomogeneities in a first step. The
spatio-temporal Wigner transform and the formal mathematical tools used for the
subsequent analyses are also introduced there. The main contribution of the paper
is Sect. 4 which outlines the extension of the previous transport model to account
for anisotropic random inhomogeneities. Matrix radiative transfer equations are
obtained in the most general case. Their collision operators are explicitly described
in terms of the correlation structure of the heterogeneities for all possible symme-
tries arising in elastic constitutive relations. In this respect, it should be noted that
the proposed theory requires a full characterization of the power spectral densities
of the tensorial random fluctuations (assumed to be statistically homogeneous at
the small wavelength scale), but no other statistical information. These data may
be obtained from the random matrix theory of the elasticity tensor developed re-
cently (see [21,47] and references therein) for example. We will however not pursue
the analysis presented here in that direction, considering that simplified correlation
models as classically encountered in the literature are sufficient for the purpose
and scope of this paper. Using these models, the collision kernels (the scattering
cross-sections) for some selected material symmetries are plotted in Sect. 5 in or-
der to illustrate our results. Some conclusions and perspectives are finally drawn
in Sect. 6.

2. Elastic bulk wave propagation in a high-frequency setting

In this section we establish the high-frequency setting we are interested in for the
derivation of the multiple-scattering kinetic (transport) model that will be detailed
in the subsequent parts of this paper. The material below is essentially adapted
from [43]. The primary objective is to introduce the main notations that will be
used throughout the paper.

2.1. Elastic wave equation. We first recall how the vector wave equation arises in
an elastic medium occupying an open domainO ⊆ R3, where R3 stands for the usual
three-dimensional Euclidean space. That medium is constituted by a heterogeneous
linear viscoelastic material, of which density is denoted by %(x) and fourth-order
relaxation, or elasticity tensor is denoted by C(x), for x ∈ O. Its displacement
field about a quasi-static equilibrium considered as the reference configuration is
denoted by uε(x, t) ∈ R3, and its second-order Cauchy stress tensor is denoted by
σε(x, t). The subscript ε stands for the (small) spatial scale of variation of the
initial conditions that will be imposed to the materials and will be propagated to
the displacement and stress fields at later times by hyperbolicity. Then the balance
of momentum in a fixed reference frame ignoring the action of body forces reads:

(3) %∂2
t uε(x, t) = Div σε(x, t) , x, t ∈ O × R .
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Here the divergence of a second-order tensor A is defined by (Div A,b) = ∇x ·
(ATb) for any constant vector b, and ∇x is the gradient vector with respect to x.
At last (·)T stands for the matrix transpose. The initial conditions for Eq. (3) read:

(4) uε(x, 0) = u0(x; ε) , ∂tuε(x, 0) = v0(x; ε) .

They are parameterized by the small parameter ε, which quantifies the rate of
change of x 7→ u0(x) and x 7→ v0(x) with respect to the dimensions of O or the
propagation/observation distances. Since high-frequency waves will be generated
by an initial vibrational energy oscillating at a scale ε� 1, the functions ∇x ⊗ u0

and v0 shall be considered as strongly ε-oscillating functions in the sense of Gérard
et al. [19]. The plane waves u0(x; ε) = εA(x) eik·x/ε and v0(x; ε) = B(x) eik·x/ε for
a given wave vector k ∈ R3 and i =

√
−1, typically fulfill this condition.

In addition, the stress field σε is given as a function of the linearized strain
tensor εε by the material constitutive equation:

(5) σε(x, t) = C(x)εε(x, t) , εε(x, t) = ∇x ⊗s uε(x, t) .

Both σε and εε are parameterized by the scale ε of the applied loads since uε also
is. Here ⊗s is the symmetrised tensor product of two vectors a⊗s b = sym(a⊗ b).
The elastic wave equation for uε is derived plugging this relation into Eq. (3) and
thus reads:

(6) L(uε) = %∂2
t uε −∇x · (C : ∇x ⊗ uε) = 0 , x, t ∈ O × R .

Indeed, since σε and εε are symmetric the elasticity tensor C shall satisfy the
minor symmetries Cijkl = Cjikl = Cijlk. Invoking a thermodynamical reversibility
argument, it also satisfies the major symmetry Cijkl = Cklij .

2.2. The Christoffel tensor. Let us define the 9× 3 matrix M(k) by:

(7) M(k) = i

k 0 0
0 k 0
0 0 k

 , k ∈ R3 ,

and the 9 × 9 symmetric, positive semi-definite matrix C(x) which is constituted
by the 21 independent coefficients of the elasticity tensor C(x). More precisely, C
is a 3× 3 block matrix of which block (i, k) is the 3× 3 matrix with elements Cijkl.
Then the second-order acoustic, or Christoffel tensor Γ(x,k) of the propagation
medium is defined by:

(8) Γ(x,k) = %(x)−1M∗(k)C(x)M(k) , x ∈ O , k ∈ R3 ,

where M∗ = M
T

stands for the conjugate transpose matrix. It is symmetric, real

and positive definite in O × R3 \ {k = 0}. So for a given direction k̂ := k/|k| on
the unit sphere S2 of R3 it has three real positive (possibly multiple) eigenvalues
ω2
α(x,k) for α = 1, 2 or 3, and the associated eigenvectors pα(x,k) can be chosen

real and orthogonal. They can also be normalized such that:

(9) Γ(x,k) =

3∑
α=1

ω2
α(x,k)pα(x,k)⊗ pα(x,k) , I =

3∑
α=1

pα(x,k)⊗ pα(x,k) ,

where I is the identity matrix of R3. The eigenvalues and eigenvectors of the
Christoffel tensor correspond to the phase velocities and polarizations of plane
waves propagating along the direction k̂ in the medium O. Here we do not assume
any particular ordering of the eigenvalues with indices 1, 2 and 3. The polarization
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with the closest direction to k̂ is called the quasi-longitudinal wave, the other two
components being the quasi-transversal waves. Also in view of Eq. (8), the eigen-
values ω2

α(x,k) have the form ω2
α(x,k) = ω2

α(x, k̂)|k|2 := c2α(x, k̂)|k|2 where the
cα’s have dimension of celerities. One has in addition pα(x,k) = pα(x, k̂). The
above spectral expansion of the Christoffel tensor is valid for all directions but the
so-called acoustic axes [4,8,39], along which two eigenvalues may coincide. For such
a direction k̂ = k̂a of degeneracy where, say ω1(x, k̂a) = ω2(x, k̂a), the expansion
reduces to:

(10) Γ(x, k̂a) = ω2
1(x, k̂a)I +

(
ω2

3(x, k̂a)− ω2
1(x, k̂a)

)
p3(x, k̂a)⊗ p3(x, k̂a) .

It follows from Eq. (10) that any vector which is orthogonal to p3(x, k̂a) is an
eigenvector of the Christoffel tensor Γ(x, k̂a), i.e. it is an allowed polarization for
a wave propagating along k̂a with a wave celerity ω1(x, k̂a). A common example is
elastic isotropy, when C = λI⊗ I+ 2µI� I where λ and µ are the Lamé parameters
and (A�A)B := ABsA, for Bs standing for the symmetric part of a square matrix
B. Then the Christoffel tensor reads:

(11) Γ(x, k̂) = c2S(x)I +
(
c2P(x)− c2S(x)

)
k̂⊗ k̂ , ∀k̂ ∈ S2 ,

where cP =
√

(λ+ 2µ)/% and cS =
√
µ/% are the velocities for compressive and

shear waves, respectively. The various properties of the Christoffel tensor for
anisotropic media are discussed in e.g. [3, 4, 9, 28] and references therein.

2.3. High-frequency setting. The high-frequency limit ε → 0 in the previous
setting shall be considered for quadratic observables of the wave displacement field
uε as explained now. We rely on the simple following example which was already
discussed in [42, 43]. The real function x 7→ uε(x) oscillating with an amplitude
a(x) about its mean u(x):

(12) uε(x) = u(x) + a(x) sin
x

ε
, 0 < ε� 1 ,

has no strong limit when ε → 0, although the functions a and u vary slowly.
However for any smooth function ϕ with compact support on R, one can obtain a
vague limit as:

(13) lim
ε→0

∫
R
ϕ(x) (uε(x))

2
dx =

∫
R
ϕ(x)

(
(u(x))2 +

1

2
(a(x))2

)
dx .

Thus the purpose of the observation function ϕ is to compute a smoothened version
of the ”energy” of uε(x) as given by u(x)2 + 1

2a(x)2. It allows to estimate the
deviation of oscillations with amplitude a(x) about the mean at any point x selected
by the support of ϕ. This feature is illustrated on Fig. 1.

A mathematical generalization of this idea is possibly given by the notion of
Wigner measure [1, 7, 19, 36, 40]. Let us now consider that the observable function
ϕ is an arbitrary 3 × 3, compactly supported matrix function of both the space
variable x and the wave vector k ∈ R3. For a vector field u ∈ [L2(R3)]3, the
functional space of R3-valued, square integrable functions equipped with the scalar
product (u,v)L2 =

∫
R3 u(x) · v(x) dx, consider the (semiclassical) operator:

(14) ϕθ(x, εD)u(x) =
1

(2π)3

∫
R3×R3

eik·(x−y)ϕ((1− θ)x + θy, εk)u(y) dydk ,
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Figure 1. The energy limit of a strongly oscillating sequence: the
oscillating function uε(x) (thin line), the mean function u(x) (thick
line), and the square-root limit (u(x)2 + 1

2a(x)2)
1
2 (thick dashed

line). After [43].

for θ ∈ [0, 1]. This parameter defines the so-called quantization of the operator.
The case θ = 0 corresponds to the standard quantization. It is simply denoted by
ϕ(x, εD) such that:

(15) ϕ(x, εD)u(x) =
1

(2π)3

∫
R3

eik·xϕ(x, εk)û(k) dk ,

where û(k) :=
∫
R3 e−ik·x u(x)dx stands for the Fourier transform of u(x). The

case θ = 1
2 corresponds to the Weyl quantization, which is usually denoted by

ϕW (x, εD). Then for a sequence (uε) uniformly bounded in [L2(R3)]3, there exists
a positive, Hermitian measure W[uε] such that, up to extracting a subsequence if
need be:

(16) lim
ε→0

(ϕθ(x, εD)uε,uε)L2 = Tr

∫
R3×R3

ϕ(x,k)W[uε](dx,dk) , ∀ϕ ,

independently of the quantization θ. W[uε] is the so-called Wigner measure of the
sequence (uε) because it can also be interpreted as the weak limit of its Wigner
transform Wε[uε,uε] := Wε[uε]. Indeed, if the latter is defined for R3-valued tem-
perate distributions u,v by:

(17) Wε[u,v](x,k) =
1

(2π)3

∫
R3

eik·y u
(
x− εy

2

)
⊗ v

(
x +

εy

2

)
dy ,

then one has:

(ϕW (x, εD)u,v)L2 = Tr

∫
R3×R3

ϕ(x,k)Wε[u,v](dx,dk) .

Thus W[uε] describes the limit energy of the sequence (uε) in the phase space
R3

x × R3
k. As in Eq. (13), the matrix function ϕ(x,k) is used to select any quadratic

observable or quantity of interest associated to this energy: the kinetic energy, or the
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free energy, or the power flow, etc. For example, the high-frequency strain energy
Vε(t) := 1

2

∫
O Cεε : εε dx in O may be estimated with ϕ(x,k) ≡ %(x)Γ(x,k):

(18) lim
ε→0
Vε(t) =

1

2

∫
O×R3

%(x)Γ(x,k) : W[uε(·, t)](dx,dk) ,

up to some possible boundary effects on ∂O. Similarly, the kinetic energy Tε(t) :=
1
2

∫
O %|∂tuε|

2 dx is estimated by:

(19) lim
ε→0
Tε(t) =

1

2

∫
O×R3

%(x) Tr W[ε∂tuε(·, t)](dx,dk) .

The vibrational energy density Eε := Vε + Tε does not solve a closed-form equation
in the high-frequency limit ε → 0. However the Wigner measure, which provides
a decomposition of these quantities in the phase space, does so as explained in the
subsequent derivations. This is another reason why we shall now focus on such
limit measure rather than uε directly or quadratic quantities of uε.

3. Wigner measure of high-frequency elastic waves

In this section we show how to obtain explicitly the Wigner measure (16) of the
high-frequency solutions of the elastic wave equation (20) in the setting outlined
in the foregoing section. Indeed, it is needed in (18) and (19) for the computation
of the evolution of the strain and kinetic energies, for example. The objectives
are also to outline its main properties for a slowly varying medium, as well as
the (formal) mathematical tools used for its derivation. Both will prove useful in
the subsequent Sect. 4 where elastic waves in a rapidly varying random medium
with correlation lengths comparable to the small wavelength ε are considered. The
analysis presented here is derived from [19], where first-order hyperbolic systems
with constant and slowly varying coefficients are addressed, and [1], where arbi-
trary order hyperbolic systems with slowly varying coefficients are addressed. The
dispersion properties of the elastic Wigner measure are derived in Sect. 3.4, and its
evolution properties are derived in Sect. 3.5. Here it is shown that its components
in the eigenspaces of the Christoffel tensor, the so-called specific intensities, satisfy
transport equations of the Liouville type. The latter states that the energy densities
in these eigenspaces are transported in phase space with celerities corresponding to
the associated eigenvalues. Before doing so, we shall need some formal mathemati-
cal tools in order to compute the Wigner transform and its limit for high-frequency
elastic waves. They are introduced in Sect. 3.2 and Sect. 3.3 below. Now in order to
hopefully clarify the subsequent derivations, we start by reformulating the elastic
wave equation in a form that is adapted to the analysis developed in the remaining
of the paper.

3.1. Elastic wave equation as a semiclassical operator. Here we write Eq. (6)
in a more convenient form for the derivation of the high-frequency regime ε� 1. We
shall first consider a slowly fluctuating medium characterized by an elastic tensor
C(x) which is independent of the small parameter ε. The corresponding Christoffel
tensor being given by Eq. (8) as Γ(x,k) = %(x)−1M∗(k)C(x)M(k) where M has
been defined in Eq. (7), the elastic wave equation (6) then reads [1]:

(20) (iε)2L(uε) =
(
%(x)(εDt)

2uε − Lε(x, εDx)
)
uε = 0 , x, t ∈ O × R ,
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with Dx = 1
i ∇x, Dt = 1

i ∂t, and the operator Lε(x, εDx) = M∗(εDx) ◦ C(x) ◦
M(εDx). The latter may be expanded as:

(21) Lε = L0 +
ε

i
L2 ,

where:

L0(x,k) = %(x)Γ(x,k) ,

L2(x,k) = %(x)Γ2(x,k) = ∇kM∗(k) ·∇xC(x)M(k) ,
(22)

with the notation ∇kA ·∇xB =
∑3
j=1(∂kjA)(∂xjB) for two matrices A and B.

It should be observed that L2(x, εDx) is a first-order partial differential operator
(independent of time), and that L2 ≡ 0 in a homogeneous medium.

3.2. Some formal rules of pseudo-differential calculus. Let ϕ(k) be a smooth
matrix-valued observable defined on R3, we recall the notation of Eq. (15) for the
homogeneous semiclassical operator ϕ(εDx) in the standard quantization. We then
have (see e.g. [6]):

Wε[ϕ(εDx)uε,vε] = ϕ

(
k +

εDx

2

)
Wε[uε,vε] ,

Wε[uε,ϕ(εDx)vε] = Wε[uε,vε]ϕ
∗
(

k− εDx

2

)
.

(23)

Here we assume that the differential operator Dx within the observable ϕ acts on
Wε[uε,vε] so that, for instance, Wε[uε,vε]ϕ

∗(k− εDx

2 ) should be interpreted as
the component-wise inverse Fourier transform of the matrix Ŵε[uε,vε]·ϕ∗(k− εp

2 ).
These relations can be extended for a non homogeneous semiclassical operator
ϕ(x, εDx) (as in Eq. (15) again) in the form [6,19]:

(24) Wε[ϕ(x, εDx)uε,vε] = ϕ(x,k)Wε[uε,vε] +
ε

2i
{ϕ,Wε[uε,vε]}

− ε

2i
∇x ·∇kϕ(x,k)Wε[uε,vε] + O(ε2) ,

and:

(25) Wε[uε,ϕ(x, εDx)vε] = Wε[uε,vε]ϕ
∗(x,k) +

ε

2i
{Wε[uε,vε],ϕ

∗}

+
ε

2i
Wε[uε,vε]∇x ·∇kϕ

∗(x,k) + O(ε2) ,

since Wε[uε,vε] = Wε[vε,uε]
∗
. Here {A,B} := ∇kA ·∇xB−∇xA ·∇kB stands

for the usual Poisson bracket such that {A,B}∗ = −{B∗,A∗}.

3.3. Spatio-temporal Wigner transform. In the sequel, the Wigner measure of
the solutions of Eq. (20) shall be obtained using a spatio-temporal Wigner transform
of that equation and its high-frequency limit as ε→ 0. This is because the spatial
and temporal scales in the wave equation (20) play a symmetric role, and their
oscillations should be accounted for altogether. Therefore a larger phase space than
the one considered in the definition (17) has to be introduced. For two sequences
(uε) and (vε) of square-integrable functions, the spatio-temporal Wigner transform
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Wε[uε,vε] is defined as:

(26) Wε[uε,vε](t, ω,x,k) :=

1

(2π)4

∫
R4

ei(y·k+sω) uε

(
t− εs

2
,x− εy

2

)
⊗ vε

(
t+

εs

2
,x +

εy

2

)
dyds .

Note that if it is applied to uε and vε ≡ uε, Wε[uε,uε] will be denoted by Wε[uε]
as implicitly done in Eq. (16). The spatio-temporal Wigner transform (26) is re-
lated to the (time-dependent) spatial Wigner transform (17) by Wε[uε](t,x,k) =∫
R Wε[uε](t, ω,x,k)dω, where ω arises as the dual variable of t. Besides, one should

observe that the rules expounded in Sect. 3.2 above can be extended further on to
a time-dependent observable ϕ(t, ω) or a space-time observable ϕ(t, ω,x,k). It
suffices, for example, to redefine the Poisson bracket in Eq. (24) as a differential
operator with respect to the space-time variable (t,x) ∈ R4 and the impulse variable
(ω,k) ∈ R4: {A,B} := ∇ω,kA ·∇t,xB−∇t,xA ·∇ω,kB.

3.4. Dispersion properties. The pseudo-differential calculus and the spatio-temporal
Wigner transform are now used for the wave equation (20). Computing the space-
time Wigner transform (26) of L(uε) and uε, yields:

Wε

[(
(εDt)

2I− Γ(x, εDx)− ε

i
Γ2(x, εDx)

)
uε,uε

]
= 0 .

But the partial derivative with respect to time reads:

(27) D2
tf(t) :=

(
∂t
i

)2

f(t) =

∫
R

dω

2π
eiωtQ(ω)f̂(ω) ,

where Q(ω) := ω2. Thus invoking the rules of calculus of the previous section, we
get:

(28)

(
ω +

εDt

2

)2

Wε[uε] = Γ(x,k)Wε[uε] +
ε

2i
{Γ,Wε[uε]}

− ε

2i
∇x ·∇kΓ(x,k)Wε[uε] +

ε

i
Γ2(x,k)Wε[uε] + O(ε2) .

Considering the leading-order term, one obtains:

(29) (ω2I− Γ(x,k))W[uε] = 0 ,

for the Wigner measure W[uε] of the sequence (uε) given by Eq. (16). Owing to
the properties (9) of the Christoffel tensor, one thus has:

(30)

R∑
α=1

γαΠαW[uε] = 0 on X := Rω ×O × R∗k ,

where γα(ω,x,k) = ω2 − ω2
α(x,k) and:

Πα(x,k) = pα(x,k)⊗ pα(x,k)

= pα(x,k)p∗α(x,k) .

Here R ≤ 3 is the number of different eigenvalues of the Christoffel tensor Γ, and
pα = {pα,r}1≤r≤rα is the family of eigenvectors associated to the positive eigenvalue
ω2
α of which order of algebraic multiplicity is rα. It is assumed in the remaining

that these multiplicities remain constant in phase space. We shall however see in
Sect. 5, following [8, 39], that this is not always true for the classes of symmetry
considered there and that the eigenvalues of the Christoffel tensor may coincide at
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some points or lines. The analysis of such crossings in terms of Wigner measures
is a difficult task which has been addressed mathematically in [16,17]. An explicit
transition coefficient can be obtained in terms of the gap between the eigenvalues
thanks to a proper rescaling of the crossing process. However, the extension of
the results presented in these works to elasticity is not straightforward and requires
further analyses out of the scope of the present publication. Going back to Eq. (30),
the R families of eigenvectors pα, 1 ≤ α ≤ R, form an orthonormal basis of R3:
p∗αpβ = pα · pβ = δαβIα, where Iα is the rα × rα identity matrix and δαβ stands
for the Kronecker symbol. Then the Πα’s are projectors, implying that each term
in the sum above cancels. Thus:

γαΠαW[uε]Πβ = 0 on X , ∀α, β .

Likewise, W[uε] being hermitian, γβW[uε]Πβ = 0 on X and consequently one has
γβΠαW[uε]Πβ = 0 on X for all α, β. Taking the difference of these equalities
yields:

(γα − γβ)ΠαW[uε]Πβ = 0 on X , ∀α, β .

But γα 6= γβ on X as soon as α 6= β, and ΠαW[uε]Πβ = 0 in this case. Expanding
W[uε] on X on the basis {Πα}1≤α≤R such that

∑R
α=1 Πα = I:

W[uε] =

R∑
α=1

ΠαW[uε] =

R∑
α.β=1

ΠαW[uε]Πβ ,

the expansion on X finally reduces to the diagonal terms α = β solely:

(31) W[uε] =

R∑
α=1

Wα[uε] , Wα[uε] = ΠαW[uε]Πα ,

where supp Wα[uε] ⊂ {(ω,x,k) ∈ X ; γα(ω,x,k) = 0}. So the Wigner measure
W[uε] of the ε-oscillating elastic wave fields (uε) is expanded into the finite sum
of its orthogonal projections onto the different energy paths of the propagation
operator with symbol ω2I− Γ(x,k). These paths are determined by the equation
γα(ω,x,k) = 0, 1 ≤ α ≤ R, in phase space. They correspond to the rays for
the medium arising in classical Hamiltonian dynamics, as shown in the subsequent
section.

3.5. Evolution properties. On the other hand, considering the Wigner transform
of the adjoint wave equation L∗(uε) and uε we have:

Wε

[
uε,
(

(εDt)
2I− Γ(x, εDx)− ε

i
Γ2(x, εDx)

)
uε

]
= 0 ,

since the wave operator is actually formally self-adjoint, L∗ ≡ L. This yields:

(32)

(
ω − εDt

2

)2

Wε[uε] = Wε[uε]Γ(x,k) +
ε

2i
{Wε[uε],Γ}

+
ε

2i
Wε[uε]∇x ·∇kΓ(x,k)− ε

i
Wε[uε]Γ

∗
2(x,k) + O(ε2) ,
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or, upon substracting Eq. (28) and Eq. (32), multiplying by i
ε , and observing that

Γ∗2 = ∇x ·∇kΓ− Γ2:

(33) 2ω∂tWε[uε] =
i

ε

(
ΓWε[uε]−Wε[uε]Γ

)
+

1

2

(
{Γ,Wε[uε]} − {Wε[uε],Γ}

)
+
[
Γ2 −

1

2
∇x ·∇kΓ,Wε[uε]

]
+ O(ε) .

Here [A,B] := AB−BA stands for the Lie bracket. One should observe that the
matrix K := Γ2 − 1

2∇x ·∇kΓ above is skew-symmetric. Following [40], we then
introduce the rα × rα matrices wα = p∗αW[uε]pα for 1 ≤ α ≤ R such that W[uε] =∑R
α=1 pαwαp∗α with supp Wα[uε] ⊂ {(ω,x,k) ∈ X ; γα(ω,x,k) = 0}, and compute

the projection of Eq. (33) on the eigen directions pα. Thus multiplying Eq. (33)
by p∗α on the left side and by pα on the right side, one first obtains:

p∗αKpα = p∗αΓ2pα + Ks
α −

1

2
(∇x ·∇kω

2
α)Iα ,

where Kα = ∇kp∗α(ω2
αI− Γ) ·∇xpα. Indeed, the normalization condition p∗αpβ =

δαβIα yields (∂kjp
∗
α)pβ = −p∗α(∂kjpβ) and a similar relation for the partial deriva-

tives ∂xj . We then use this relation and its derivatives recursively in the compu-
tation of the projection of ∇x ·∇kΓ. Secondly, we consider the projection of the
Poisson’s brackets in Eq. (33). It is derived from the following identity:

p∗α(∂kjΓ) = ∂kj (p
∗
αΓ)− (∂kjp

∗
α)Γ

= ∂kj (ω
2
αp∗α)− (∂kjp

∗
α)Γ

= (∂kjω
2
α)p∗α + (∂kjp

∗
α)(ω2

αI− Γ) ,

and a similar result for the partial derivatives p∗α(∂xjΓ). Likewise:

(∂xjW[uε])pα = ∂xj (W[uε]pα)−W[uε]∂xjpα

= ∂xj (pαwα)−W[uε]∂xjpα

= pα∂xjwα + (∂xjpα)wα −W[uε]∂xjpα ,

and a similar result for the partial derivatives (∂kjW[uε])pα. Therefore one has:

p∗α{Γ,W[uε]}pα = {ω2
α,wα}+ p∗α{ω2

α,pα}wα + wα{ω2
α,p

∗
α}pα + 2Ka

αwα ,

p∗α{W[uε],Γ}pα = {wα, ω
2
α}+ wαp∗α{ω2

α,pα}+ {ω2
α,p

∗
α}pαwα + 2wαKa

α ,

where Aa stands for the skew-symmetric part of a square matrix A. Here one should
observe that p∗α{ω2

α,pα} = −{ω2
α,p

∗
α}pα owing to the normalization condition.

Now combining all these results in Eq. (33) and passing to the limit ε → 0 one
obtains the transport equations:

(34) 2ω∂twα = {ω2
α,wα}+ [Nα,wα] , 1 ≤ α ≤ R ,

where Nα := Kα + p∗α{ω2
α,pα}+ p∗αΓ2pα is skew-symmetric. Note that the ma-

trix Nα vanishes in an homogeneous medium, and that the Lie bracket in Eq. (34)
does so whenever rα = 1.

Now we show how the transport equations above localize the energy on rays
as described by classical Hamiltonian dynamics. Indeed, introducing the following
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system of Hamiltonian equations:

(35)

dx

dτ
= ∇kγα(ω(τ),x(τ),k(τ)) ,

dt

dτ
= ∇ωγα(ω(τ),x(τ),k(τ)) ,

dk

dτ
= −∇xγα(ω(τ),x(τ),k(τ)) ,

dω

dτ
= −∇tγα(ω(τ),x(τ),k(τ)) = 0 ,

with initial conditions satisfying γα(ω(0),x(0),k(0)) = 0 and t(0) = 0, then its
solutions τ 7→ (t(τ) = 2ωτ, ω(τ) = ω,xα(τ),kα(τ)) are the so-called null bicharac-
teristics such that γα(ω,xα,kα) remains constant (and null) since one observes by
a straightforward application of the chain rule that dγα

dτ = 0. Thus the energy rays
supporting the Wigner measures Wα[uε] may be constructed by solving the ordi-
nary differential equations (35) (provided that the usual conditions for the local
existence, uniqueness and smoothness of its solutions with respect to the initial
conditions are fulfilled, see e.g. [24]. This issue is however much beyond the scope
of this paper). From the Hamiltonian system (35) and the definition of γα one can
notice that the above equations read:

d

dτ
wα(t(τ), ω,xα(τ),kα(τ)) = [Nα,wα] , 1 ≤ α ≤ R ,

with t = 2ωτ . As in [19, Remark 6.2], if one introduces the matrix Uα satisfying:

dUα

dτ
= NαUα , Uα(τ = 0) = Iα ,

and wα = Uαw̃αU∗α, then Eq. (34) reduces to:

(36)
d

dτ
w̃α(t(τ), ω,xα(τ),kα(τ)) = 0 , 1 ≤ α ≤ R .

We finally conclude this section by observing that from Eq. (35) we further obtain
that dxα

dt = ∓cα whenever ω = ±ωα, where cα = ∇kωα is the group velocity for
the mode α. This shows that the specific intensity wα propagates in the ”forward”
direction ĉα on the energy path xα for ω = −ωα, and in the ”backward” direction
−ĉα for ω = ωα. Formally writing it wα = a+

α δ(ω + ωα) + a−α δ(ω − ωα) for the
forward and backward traveling components, the so-called specific intensities a±α ,
respectively, the transport equations (34) yield:

(37) ∂ta
±
α ± {ωα,a±α }+ [N±α ,a

±
α ] = 0 , 1 ≤ α ≤ R ,

where ±2ωαN±α = Nα. The Liouville transport equations (37) above generalize
Eqs. (3.99) and (3.100) of [40] to an arbitrary anisotropy of the elastic medium. The
isotropic case considered in this latter publication is recovered as briefly explained
below.

3.6. The isotropic case. For isotropic elasticity for example, R = 2 with α = P
or α = S and rP = 1, rS = 2. The eigenvalues of the Christoffel tensor are
ωP(x,k) = cP(x)|k| and ωS(x,k) = cS(x)|k|, with the velocities cP and cS for
the compressional and shear waves are as in Eq. (11). Then pP(x,k) = k̂ and
pS(x,k) = [ẑ1(k), ẑ2(k)] such that (k̂, ẑ1, ẑ2) forms an orthonormal triplet, and the
projectors are ΠP = k̂⊗ k̂ and ΠS = I− k̂⊗ k̂. The Wigner measure is then
expanded as:

(38) W[uε] = wPpPp∗P + pSwSp∗S ,

where wP is a scalar and wS is a 2 × 2 matrix. Thus the multiply-scattered wave
energy in an elastic medium may be characterized by five parameters, four for the
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transverse waves and one for the longitudinal wave. They correspond to the elastic
Stokes parameters introduced in [50, 51]. Other particular anisotropies shall be
described later on in the Sect. 5.

4. Radiative transport equations

We now turn to the weak coupling regime of high-frequency waves in a random
anisotropic medium. The weak coupling regime denotes the situation whereby
(i) propagation distances are large compared to the wavelength ε, and (ii) the
perturbations of the elasticity tensor of the background medium are weak and
vary at the same scales as the wavelength (meaning that their correlation lengths
scale as ε). The subsequent analysis is derived from [6] where scalar (acoustic)
waves are considered, and [10] where general first-order anti-selfadjoint systems
are considered. The main result of this section is the (matrix) radiative transfer
equation (70) which couples all wave polarizations in an arbitrarily anisotropic
elastic medium. Radiative transfer equations are linear Boltzmann equations which
describe the kinetics of particles in a lattice of randomly distributed inclusions, for
example. Thus high-frequency wave propagation phenomena may be very well
understood in terms of a gas kinetics analogy. It involves collisional processes
characterized in terms of differential and total scattering cross-sections, of which
expressions are precisely given by Eq. (68) and Eq. (69), respectively, for the present
case of arbitrarily anisotropic random elastic media. The different steps for this
derivation are the following. The mathematical form chosen for modeling such
inhomogeneities is first given in the next Sect. 4.1. The random perturbations of
the elasticity tensor of the bare anisotropic medium considered in the previous part
are assumed to vary at the fast scale x

ε as opposed to the slow scale of variation x
of the latter. Therefore one has to introduce a two-scale expansion of the Wigner
transform of the wave fields in this situation (Sect. 4.2), and a dedicated rule of
pseudo-differential calculus accounting for both scales and generalizing those of the
previous part (Sect. 4.3). A major consequence of this separation of scales and of the
scaling of the amplitudes of the random inhomogeneities in Sect. 4.1 is that the fast
scale does not modify the spectral (dispersion) properties of the Wigner measure
already derived in Sect. 3.4. Sect. 4.4 shows why this property holds. However,
the fast scale modifies the next-order contribution to the Wigner transform and
consequently the evolution properties of the Wigner measure. The contribution of
the fast scale of variations of the random inhomogeneities to the two-scale expansion
of the Wigner transform is given explicitly in Sect. 4.5. This correction actually
gives rise to the collision operator characterizing the multiple scattering process of
high-frequency waves on the random inhomogeneities. It is therefore responsible for
the modification of the transport equations of Sect. 3.5 for the bare elastic medium
into radiative transfer equations for the randomly perturbed elastic medium. The
final Sect. 4.6 outlines how this modification arises.

4.1. Elasticity tensor of a randomly perturbed anisotropic medium. In
the setting invoked above it is assumed that the elasticity tensor now reads:

C(x) = C0 (x) +
√
εC1

(x

ε

)
,(39)

where C0 is the elasticity tensor of the anisotropic background medium, and C1 is
its fluctuation with amplitude

√
ε. This fluctuation is modeled by a tensor-valued,
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second-order stochastic field: {
C1(y) ; y ∈ R3

}
,

which has mean zero and is mean square homogeneous (stationary). The latter
property means that the cross-correlations of the perturbations at two different
locations y1 and y2 depend on y1 − y2 solely; it is referred to as anisomery in
the geophysical literature (see [35]). If the cross-correlations depend on |y1 − y2|
the medium is statistically isotropic, but this does not preclude it from being
anisotropic. At last, the inhomogeneities are small as expressed by their O(ε

1
2 )

amplitude. This size is the unique scaling which allows them to significantly mod-
ify the energy spreading in the transport regime at long propagation distances; see
e.g. [6, 40]. Larger fluctuations could lead to localization of the waves, a situation
beyond the scope of kinetic models. The fluctuation tensor C1 introduced in (39)
does not necessarily have the same symmetry as the mean elasticity tensor, as ex-
emplified in e.g. [26, 46,48]. Thus it depends on twenty one coefficients {di}16i621

in the general case. The model of correlation between these coefficients is given as
follows:

(40) E {d̂i(q)d̂j(p)} := (2π)3δ(q + p)R̂ij(q) ,

where the correlation function is Rij(y1 − y2) := E{di(y1)dj(y2)} and:

R̂ij(q) :=

∫
R3

dy

(2π)3
eiy·q Rij(y) .

In the above E{·} stands for the mathematical expectation (average). We stress
that the phase function q 7→ R̂ij(q) is even, such that R̂ij(−q) = R̂ij(q).

We note at this stage that a randomly perturbed density may be accounted
for as well in the subsequent developments. However we ignore that possibility in
the remaining of the paper for clarity purposes. The analysis could be carried on,
though, along the same lines as in [6, Sect. 7].

4.2. Multiple scale expansion of the Wigner transform of the elastic wave
equation. Having introduced the random fluctuations of the elasticity tensor, we
can write the elastic wave equation accounting for these inhomogeneities in a similar
form of Eq. (20) as follows. Let us introduce the Christoffel tensor Γ0 of the
slowly varying background, such that Γ0(x,k) = %−1(x)M∗(k)C0(x)M(k). We
also introduce the second order tensor Γ1 corresponding to the random fluctuations
Γ1(x,y,k) := %−1(x)M∗(k)C1(y)M(k). The elastic wave equation (20) is now
considered with the operator Lε defined by:

(41) Lε = L0 + ε
1
2 L1 +

ε

i
L2 + O(ε

3
2 ) ,

where:

L0(x,k) = %(x)Γ0(x,k) ,

L1

(
x,

x

ε
,k
)

= %(x)Γ1

(
x,

x

ε
,k
)
,

L2(x,k) = %(x)Γ2(x,k) = ∇kM∗(k) ·∇xC0(x)M(k) .

(42)

Then by applying the space-time Wigner transforms Wε[·,uε] and Wε[uε, ·] to
Eq. (20) with (εDt)

2uε = Q(εDt)uε of Eq. (27) and Lε given by Eq. (41), we
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obtain respectively:

(43)

Wε[Q(εDt)uε,uε] = Wε[Γ0(x, εDx)uε,uε] +
√
εWε

[
Γ1

(
x,

x

ε
, εDx

)
uε,uε

]
+
ε

i
Wε[Γ2(x, εDx)uε,uε] + O(ε

3
2 ) ,

and:

(44)

Wε[uε, Q(εDt)uε] = Wε[uε,Γ0(x, εDx)uε] +
√
εWε

[
uε,Γ1

(
x,

x

ε
, εDx

)
uε

]
− ε

i
Wε[uε,Γ2(x, εDx)uε] + O(ε

3
2 ) .

Taking the difference of Eq. (43) and Eq. (44) and recalling the rule (23) for Q(εDt),
yields:

(45) 2ω(εDt)Wε[uε] = Wε[Γ0(x, εDx)uε,uε]−Wε[uε,Γ0(x, εDx)uε]

+
√
εWε

[
Γ1

(
x,

x

ε
, εDx

)
uε,uε

]
−
√
εWε

[
uε,Γ1

(
x, ,

x

ε
, εDx

)
uε

]
+
ε

i
Wε[Γ2(x, εDx)uε,uε] +

ε

i
Wε[uε,Γ2(x, εDx)uε] + O(ε

3
2 ) .

Eq. (45) for the case of a randomly inhomogeneous medium is the counterpart of
the Wigner equation (33) for a slowly varying medium, before the rules (24) and
(25) introduced in the Sect. 3.2 are applied. The main difference lies in the terms
involving Γ1, which must be carefully evaluated in an asymptotic analysis since they
contain both scales x and x

ε . We may then make use of the aforementioned rules
of calculus, and an additional one for pseudo-differential calculus with oscillating
coefficients (see Sect. 4.3 below). In view of these considerations, we also introduce
a two-scale version of Wε[uε] as follows:

Wε[uε](t, ω,x,k) = W̃ε

(
t, ω,x,

x

ε
,k
)
.

Moreover, letting y := x
ε , the differential operator Dx acting on the spatial variables

should be replaced by Dx + 1
εDy in Eq. (45), such that the previous asymptotics

in this new set of variables can now account for the fast oscillations of the medium.
Eq. (45) thus reads:

(46) 2ω(εDt)W̃ε = Wε[Γ0(x, εDx + Dy)uε,uε]−Wε[uε,Γ0(x, εDx + Dy)uε]

+
√
ε
(
Wε[Γ1(x,y, εDx + Dy)uε,uε]−Wε[uε,Γ1(x,y, εDx + Dy)uε]

)
+
ε

i

(
Wε[Γ2(x, εDx + Dy)uε,uε] + Wε[uε,Γ2(x, εDx + Dy)uε]

)
+ O(ε

3
2 ) .

Using finally an asymptotic expansion of W̃ε(t, ω,x,y,k) as:

(47) W̃ε(t, ω,x,y,k)

= W0(t, ω,x,k) +
√
εW1(t, ω,x,y,k) + εW2(t, ω,x,y,k) + o(ε) ,

we equate like-powers of ε in Eq. (46) to obtain a sequence of three equations
for the orders O(ε0), O(ε

1
2 ) and O(ε). This procedure follows [6, Sect. 7] for the

scalar case but is extended in the following to a vector wave equation with matrix
coefficients. Thus we can follow the analysis developed in the Sect. 3 to account for
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the influence of the random perturbations characterized by the operator L1 above.
The O(ε0) terms yield the dispersion properties of W0 as in Sect. 3.4, while the
O(ε) terms yield its evolution properties as in Sect. 3.5. The O(ε

1
2 ) terms yield a

linear relation between W1 and W0 that explicit the contribution of the random
inhomogeneities on the evolution properties of the latter. To obtain it, a formal
rule of pseudo-differential calculus with oscillating coefficients is needed, as already
noticed above. It is given in the next section.

4.3. A rule of pseudo-differential calculus with oscillating coefficients. Let
V(x,y) be a (real) matrix-valued function. Then, we have that [6]:

Wε

[
V
(
x,

x

ε

)
uε,vε

]
=

∫
R3

dp

(2π)3
ei xε ·p V̂(x,p)Wε[uε,vε]

(
x,k− p

2

)
+ O(ε) ,

Wε

[
uε,V

(
x,

x

ε

)
vε

]
=

∫
R3

dp

(2π)3
ei xε ·p Wε[uε,vε]

(
x,k +

p

2

)
V̂∗(x,p) + O(ε) ,

where V̂(x,p) is the component-wise Fourier transform of V(x,y) with respect to
the second variable. In the above we have dropped the dependency of Wε[uε,vε]
with respect to t and ω for clarity purposes. Applying the above formula for highly
oscillatory fluctuations in random media with y ≡ x

ε yields:

(48) Wε[Γ1 (x,y, εDx) uε,vε](x,y,k) =∫
R3

dp

(2π)3
eiy·p H

(
x,k +

Dy

2
,p,k− p

2
+

Dy

2

)
Wε[uε,vε]

(
x,y,k− p

2

)
+O(ε) ,

and:

(49) Wε[uε,Γ1 (x,y, εDx) vε](x,y,k) =∫
R3

dp

(2π)3
eiy·p Wε[uε,vε]

(
x,y,k +

p

2

)
H

(
x,k +

p

2
− Dy

2
,p,k− Dy

2

)
+O(ε) ,

where the 3× 3 matrix H is defined by:

(50) H(x,k,p,q) := %−1(x)M∗(k)Ĉ1(p)M(q) .

Note that it is useful for the sequel to observe that from (50) this matrix verifies
the following property:

(51) H(x,k,p,q) = H∗(x,q,p,k) .

These formulas will be used in the subsequent derivation of the evolution proper-
ties of the Wigner measure accounting for a randomly perturbed elasticity tensor.
Similar results can be established if one also considers random perturbations of the
material density at the small lengthscale ε.

4.4. Dispersion properties. We start by establishing the connection between the
temporal and spatial oscillations of the waves in the high-frequency limit, the so
called dispersion relation. It is given by the leading order terms O(ε0) in Eq. (46).
Since the symbol of the operator L0 of Eq. (42) is identical with the Christoffel
tensor (8) for the case C ≡ C0 up to %−1, we adopt the same notations for the
eigenvectors and eigenvalues of Γ0(x,k) as in Eq. (9). Thus we denote the lat-
ter by {pα(x,k)}1≤α≤R and {ωα(x,k)}1≤α≤R, respectively, with rα the order of
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multiplicity of the eigenvalue ωα. Then:

(52) Γ0(x,k) =

R∑
α=1

ω2
α(x,k)pα(x,k)p∗α(x,k) ,

with p∗α(x,k)pβ(x,k) = δαβIα (the family {pα(x,k)}1≤α≤R forms an orthonormal
basis of R3 for any (x,k) ∈ O × R3). Consequently, any 3× 3 real matrix A(x,k)
can be expanded on this new basis by a spectral decomposition as follows:

A(x,k) =

R∑
α,β=1

pα(x,k)Aαβ(x,k)p∗β(x,k) ,

where Aαβ(x,k) = p∗α(x,k)A(x,k)pβ(x,k). Now the matrix-valued Wigner mea-
sure W0(t, ω,x,k) being Hermitian and positive definite, it is expanded as:

(53) W0(t, ω,x,k) =

R∑
α=1

pα(x,k)wα(t, ω,x,k)p∗α(x,k) .

On the other hand, letting ε → 0 in Eq. (43), and invoking the rule (24) and the
first line of (23), we deduce the following eigenvalue equation:

(54) ω2W0(t, ω,x,k) = Γ0(x,k)W0(t, ω,x,k) ,

which is of course the same as Eq. (29). Therefore, multiplying (54) by p∗α(x,k)
on the left side and by pα(x,k) on the right side, and using the spectral decom-
position (53) of W0, we get that the eigenvalues for the system (54) are identical
to {ω2

α(x,k)}1≤α≤R. Consequently, let (ω,x,k) be such that ω2 = ω2
α(x,k), which

uniquely defines the polarization mode α for this choice of frequency, position and
wave vector. Then the coefficients of the decomposition (53) can be rewritten as:

(55) wα(t, ω,x,k) = aα(t,x,k)δ
(
ω2 − ω2

α(x,k)
)
.

The aα’s are the (possibly matrix-valued) specific intensities for high-frequency
waves in a randomly varying elastic medium. They are Hermitian and positive
definite since the limiting Wigner measure W0 is Hermitian and positive definite.

4.5. Half-order correction O(ε
1
2 ). From now on, we drop the (t, ω,x) depen-

dence for clarity purposes, it being understood that we will come back to this
dependence once the derivation has been completed. By considering the O(ε

1
2 )

terms in Eq. (46) we can calculate Ŵ1(p,k), the Fourier transform of W1(y,k)
with respect to y, in terms of W0(k). This expression will be used in the sequel for
the derivation of the evolution properties of W0. So, by inserting the asymptotic
expansion (47) in (46), and making use of (24), (25), (48) and (49), we obtain the
following O(ε

1
2 ) terms:

0 = Γ0

(
k +

Dy

2

)
W1(y,k)−W1(y,k)Γ0

(
x,k− Dy

2

)
+

∫
R3

dp

(2π)3
eiy·p H

(
k +

Dy

2
,p,k− p

2
+

Dy

2

)
W0

(
k− p

2

)
−
∫
R3

dp

(2π)3
eiy·p W0

(
k +

p

2

)
H∗
(

k− Dy

2
,p,k +

p

2
− Dy

2

)
.

(56)
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Taking the Fourier transform of (56) with respect to y and using the above defini-
tion, yields:

(57) 0 = Γ0

(
k +

p

2

)
Ŵ1(p,k)− Ŵ1(p,k)Γ0

(
k− p

2

)
+ iθŴ1(p,k)

+ H
(
k +

p

2
,p,k− p

2

)
W0

(
k− p

2

)
−W0

(
k +

p

2

)
H∗
(
k− p

2
,p,k +

p

2

)
,

since W0 is independent of y so that Ŵ0 = (2π)3δ(0)W0. Here θ is a regularization
(limiting absorption) parameter as in [6] that will be sent to 0 at the end of the
derivation. As {pα(k)}1≤α≤R form a complete basis of R3 for all k (and for all x),
the following expansions of Ŵ1 and H hold:

Ŵ1(p,k) =

R∑
α,β=1

pα

(
k +

p

2

)
ŵαβ(p,k)p∗β

(
k− p

2

)
,

H(k,p,q) =

R∑
α,β=1

pα(k)Hαβ(k,p,q)p∗β(q)

= H∗(q,p,k) ,

(58)

where:

ŵαβ(p,k) := p∗α

(
k +

p

2

)
Ŵ1(p,k)pβ

(
k− p

2

)
,

Hαβ(k,p,q) := p∗α(k)H(k,p,q)pβ(q) .
(59)

Injecting the two equations of (58) into (57), with the expansion Γ0(k± p
2 ) =∑

α ω
2
α(k± p

2 )×Πα(k± p
2 ) obtained from Eq. (53), and multiplying by p∗α(k + p

2 )
on the left side and by pβ(k− p

2 ) on the right side, we deduce that:[
ω2
α

(
k +

p

2

)
− ω2

β

(
k− p

2

)
+ iθ

]
pα

(
k +

p

2

)
ŵαβ(p,k)p∗β

(
k− p

2

)
+pα

(
k +

p

2

)
Hαβ

(
k +

p

2
,p,k− p

2

)
wβ

(
k− p

2

)
p∗β

(
k− p

2

)
−pα

(
k +

p

2

)
wα

(
k +

p

2

)
Hαβ

(
k +

p

2
,p,k− p

2

)
p∗β

(
k− p

2

)
= 0 ,

so that:

(60) ŵαβ(p,k) =

wα

(
k + p

2

)
Hαβ

(
k + p

2 ,p,k−
p
2

)
−Hαβ

(
k + p

2 ,p,k−
p
2

)
wβ

(
k− p

2

)
ω2
α

(
k + p

2

)
− ω2

β

(
k− p

2

)
+ iθ

.

4.6. Evolution properties. The evolution equation for W0 is finally obtained
from the O(ε) terms in Eq. (46). It is:

(61) 2ωDtW0(k) = Γ0(k)W2(y,k)−W2(y,k)Γ0(k)

+
1

2i

(
{Γ0(k),W0(k)} − {W0(k),Γ0(k)}

)
+

1

i

[
Γ2(k)− 1

2
∇x ·∇kΓ0(k),W0(k)

]
+

∫
R3

dp

(2π)3
eiy·p H

(
k +

Dy

2
,p,k− p

2
+

Dy

2

)
W1

(
y,k− p

2

)
−
∫
R3

dp

(2π)3
eiy·p W1

(
y,k +

p

2

)
H∗
(

k− Dy

2
,p,k +

p

2
− Dy

2

)
.
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As is usual in homogenization approaches, we may assume that W2 is orthogonal
to W0 in an averaged sense in order to justify the asymptotic expansion (47) with
respect to ε, so that we can drop the terms with W2 in Eq. (61). On the other
hand, since p is a dummy variable in the integrals of Eq. (61), we can interchange
p and q so that it becomes (ignoring the W2 terms for the reason invoked just
above):

(62)

2ωDtW0(k) =
1

2i

(
{Γ0(k),W0(k)} − {W0(k),Γ0(k)}

)
+

1

i

[
Γ2(k)− 1

2
∇x ·∇kΓ0(k),W0(k)

]
+

∫
R3

dq

(2π)3
eiy·q H

(
k +

Dy

2
,q,k− q

2
+

Dy

2

)
W1

(
y,k− q

2

)
︸ ︷︷ ︸

I1

−
∫
R3

dq

(2π)3
eiy·q W1

(
y,k +

q

2

)
H∗
(

k− Dy

2
,q,k +

q

2
− Dy

2

)
︸ ︷︷ ︸

I2

.

The next step consists in computing the integrals I1 and I2 above using the results
obtained in the previous Sect. 4.5 for Ŵ1 in terms of W0. This closure, together
with averaging in Eq. (62), gives rise to a collisional linear radiative transfer equa-
tion for the average of W0. Its collision operator is shown to depend on the phase
functions of the random inhomogeneities, R̂ij(q) in Eq. (40). We obtain here a
general form of the collision kernel accounting for all possible symmetry classes of
elasticity tensors, including the isotropy class which was already considered in [40].
This result is the main contribution of this paper. We detail in the next two sub-
sections how it is derived.

4.6.1. Averaging Eq. (62). The averaging of Eq. (62) requires more specifically the
computation of the averages E{I1} and E{I2}. We first consider E{I1}. Injecting
the inverse Fourier transform p→ y of W1(y,k− q

2 ), we deduce that:

(63) I1 =

∫
R6

dqdp

(2π)6
eiy·(q+p) H

(
k +

Dy

2
,q,k− q− p

2

)
Ŵ1

(
p,k− q

2

)
.

We inject the expression of Ŵ1(p,k− q
2 ) obtained from Eq. (58) with Eq. (60):

(64) Ŵ1

(
p,k− q

2

)
=

R∑
α,β=1

pα

(
k− q− p

2

)
ŵαβ

(
p,k− q

2

)
p∗β

(
k− q + p

2

)

=

R∑
α,β=1

[
pα
(
k− q−p

2

)
wα

(
k− q−p

2

)
Hαβ

(
k− q−p

2 ,p,k− q+p
2

)
p∗β
(
k− q+p

2

)
ω2
α

(
k− q−p

2

)
− ω2

β

(
k− q+p

2

)
+ iθ

−
pα
(
k− q−p

2

)
Hαβ

(
k− q−p

2 ,p,k− q+p
2

)
wβ

(
k− q+p

2

)
p∗β
(
k− q+p

2

)
ω2
α

(
k− q−p

2

)
− ω2

β

(
k− q+p

2

)
+ iθ

]
.

Now because of (40), we see that the average of I1 in Eq. (63) with Eq. (64) will
give rise to the Dirac factor δ(q + p). Thus introducing the change of variables:

q− p

2
→ q ,

q + p

2
→ 0 ,
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allows us to write:

δ(0)E{I1} =

R∑
α,β=1

E

{
1

(2π)6

∫
R3

dq

ω2
α(k− q)− ω2

β(k) + iθ
×

H(k,q,k− q)pα(k− q) [wα(k− q)Hαβ(k− q,−q,k)

−Hαβ(k− q,−q,k)wβ(k)] p∗β(k)

}
.

A similar calculus gives E{I2} as:

δ(0)E{I2} =

R∑
α,β=1

E

{
1

(2π)6

∫
R3

dq

ω2
α(k)− ω2

β(k + q) + iθ
×

pα(k) [wα(k)Hαβ(k,−q,k + q)

−Hαβ(k,−q,k + q)wβ(k + q)] p∗β(k + q)H∗(k,q,k + q)

}
.

4.6.2. Matrix radiative transfer equation. Now we insert in Eq. (62) the foregoing
expressions of E{I1} and E{I2}. Multiplying Eq. (62) on the left side by p∗α(k)
and on the right side by pα(k), then using the results of Sect. 3.5 for the projection
of the Poisson and Lie brackets (see Eq. (34)), we have:

(65) δ(0)2ω∂tE{wα}(k) = δ(0)
{
ω2
α(k),E{wα}(k)

}
+ δ(0)[Nα(k),E{wα}(k)]

− i

R∑
β=1

E

{∫
R3

dq

(2π)6

Hαβ(k,q,k− q)Hβα(k− q,−q,k)wα(k)

ω2
β(k− q)− ω2

α(k) + iθ

+

∫
R3

dq

(2π)6

wα(k)Hαβ(k,−q,k + q)Hβα(k + q,q,k)

ω2
α(k)− ω2

β(k + q) + iθ

−
∫
R3

dq

(2π)6

Hαβ(k,q,k− q)wβ(k− q)Hβα(k− q,−q,k)

ω2
β(k− q)− ω2

α(k) + iθ

−
∫
R3

dq

(2π)6

Hαβ(k,−q,k + q)wβ(k + q)Hβα(k + q,q,k)

ω2
α(k)− ω2

β(k + q) + iθ

}
,

where we recall that ∂t ≡ iDt. Here we have used the fact that Hαβ(k,p,q) =
H∗βα(q,p,k) from Eq. (51) and Eq. (58). On the other hand, we have in the

sense of distribution 1
ix+θ →

1
ix + θ̂πδ(x) as θ → 0, where θ̂ stands for the sign

of θ. Consequently, the previous equation implies by letting θ → 0 and changing
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properly the variables q + k→ q and k− q→ q in their respective integrals, that:

(66) δ(0)2ω∂tE{wα(k)} = δ(0)
{
ω2
α(k),E{wα(k)}

}
+ δ(0) [Nα(k),E{wα(k)}]

− θ̂
R∑
β=1

E

{∫
R3

dq

(2π)6

(
πδ
(
ω2
α(k)− ω2

β(q)
)

+
iθ̂

ω2
β(q)− ω2

α(k)

)
×

Hαβ(k,k− q,q)
[
Hβα(q,q− k,k)wα(k)−wβ(q)Hβα(q,q− k,k)

]
+

∫
R3

dq

(2π)6

(
πδ
(
ω2
β(q)− ω2

α(k)
)

+
iθ̂

ω2
α(k)− ω2

β(q)

)
×

[
wα(k)Hαβ(k,k− q,q)−Hαβ(k,k− q,q)wβ(q)

]
Hβα(q,q− k,k)

}
.

We finally proceed as in Eq. (37). At first, we observe that:

δ(ω2
β(q)− ω2

α(k)) =
1

2ωα(k)
δ(ωβ(q)− ωα(k)) .

Second, as for Eq. (37), we split wα into its ”forward” traveling components a+
α for

which ω = −ωα and its ”backward” traveling components a−α for which ω = ωα:
wα = a+

α δ(ω + ωα) + a−α δ(ω − ωα). Third, θ has to be chosen negative to preserve
causality, so that we obtain with Eq. (66):

(67) δ(0)
(
∂tE{a+

α (k)}+
{
ωα(k),E{a+

α (k)}
}

+ [N+
α (k),E{a+

α (k)}]
)

=

R∑
β=1

∫
R3

dq

(2π)5

δ(ωβ(q)− ωα(k))

4ωα(k)ωβ(q)
E{Hαβ(k,k− q,q)a+

β (q)Hβα(q,q− k,k)}

− 1

2

[∫
R3

dq

(2π)5

δ(ωα(k)− ωβ(q))

4ωα(k)ωβ(q)
E{Hαβ(k,k− q,q)Hβα(q,q− k,k)}

]
E{a+

α (k)}

− 1

2
E{a+

α (k)}
[∫

R3

dq

(2π)5

δ(ωα(k)− ωβ(q))

4ωα(k)ωβ(q)
E{Hαβ(k,k− q,q)Hβα(q,q− k,k)}

]
+

[
i

∫
R3

dq

(2π)6

(
E{Hαβ(k,k− q,q)Hβα(q,q− k,k)}

2ωα(k)(ω2
β(q)− ω2

α(k))

)]
E{a+

α (k)}

+ E{a+
α (k)}

[
i

∫
R3

dq

(2π)6

(
E{Hαβ(k,k− q,q)Hβα(q,q− k,k)}

2ωα(k)(ω2
α(k)− ω2

β(q))

)]
.

In the above derivation we have invoked a crucial mixing assumption as in [6,
40]: indeed, it is expected that E{HαβHβαa+

α} ' E{HαβHβα}E{a+
α} since both

quantities H and a+
α vary on different scales. On the other hand, we have from

the correlation model (40) that E{d̂i(p)d̂j(−p)} = δ(0)(2π)3R̂ij(p). Therefore
we shall introduce the following definition of the so-called differential scattering
cross-sections σαβ , 1 ≤ α, β ≤ R:

(68) δ(0)(2π)3σαβ(k,q)[A(q)] :=
π

2ωα(k)ωβ(q)
E {Hαβ(k,k− q,q)A(q)Hβα(q,q− k,k)}
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for any rβ × rβ square matrix A(q), such that σαβ [a+
β ] = σαβ [E{a+

β }] invoking
the aforementioned mixing assumption. From this definition it can be verified
straightforwardly, at least in the scalar case rβ = 1, that the differential scattering
cross-sections satisfy the following general reciprocity relationships:

σαβ(k,q) = σβα(−q,−k) ,

σαβ

(
ωk̂

cα(k̂)
,
ωq̂

cβ(q̂)

)
= σβα

(
ωq̂

cβ(q̂)
,
ωk̂

cα(k̂)

)
,

as expected from wave physics. We also define the total scattering cross-section
matrices Σα, 1 ≤ α ≤ R as:

(69) Σα(k) =
1

2

R∑
β=1

{∫
R3

σαβ(k,q)[Iβ ]δ(ωβ(q)− ωα(k))
dq

(2π)3

− i

π

∫
R3

(
1

ωβ(q)− ωα(k)

)
σαβ(k,q)[Iβ ]

dq

(2π)3

}
.

Eq. (67) then reads:

(70) ∂ta
+
α (t,x,k) +

{
ωα(x,k),a+

α (t,x,k)
}

+ [N+
α (x,k),a+

α (t,x,k)] =

R∑
β=1

∫
R3

σαβ(x,k,q)[a+
β (t,x,q)]δ(ωβ(x,q)− ωα(x,k))

dq

(2π)3

−Σα(x,k)a+
α (t,x,k)− a+

α (t,x,k)Σ∗α(x,k) ,

still denoting the averages E{a+
α} by a+

α . In the above we have re-introduced the
space-time dependence of all quantities whenever applicable. Contrary to the result
of Eq. (37), the specific intensities aα for the R modes propagating in the medium
get coupled by its random inhomogeneities. The radiative transport equations (70)
above generalize Eqs. (4.32) of [40] to arbitrary anisotropy of the elastic medium,
in that the differential and total scattering cross-sections we have derived embed
all possible cases of elastic constitutive models. We note here that if the order
of multiplicity of all modes is one, the specific intensities a+

α are scalars satisfying
the system (2). Eq. (70) above considers the most general case when some modes
possibly have a multiplicity higher than 1, as for an isotropic medium. Now some
particular classes of practical significance in engineering mechanics are discussed in
the next section.

5. Example calculations

The aim of this section is to apply the formula for the differential and total scat-
tering cross-sections derived in Sect. 4.6, Eqs. (68) and (69), for some usual classes
of anisotropy. We consider cubic, transverse isotropic (hexagonal) and orthotropic
(orthorhombic) materials. Elastic isotropy is also detailed in order to demonstrate
that the analysis developed in the foregoing section is consistent with some already
known results. The elasticity tensor C = [Cijkl] of Eq. (39) is a fourth-order tensor
satisfying the minor (Cijkl = Cjikl = Cijlk) and major (Cijkl = Cklij) symmetries
invoked in Sect. 2.1. For clarity purposes we adopt Voigt’s notation in this section.
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It considers the following one-to-one correspondence between a symmetric pair (i, j)
of three-dimensional indices and a multi-index I ranging from 1 to 6:

11↔ 1 , 22↔ 2 , 33↔ 3 , 23↔ 4 , 31↔ 5 , 12↔ 6 .

We can thus represent the elasticity tensor C or its counterpart C0 for the un-
perturbed background medium as a symmetric 6 × 6 matrix with the following
equivalence:
(71)

C =


C1111 C1122 C1133 C1123 C1131 C1112

C2211 C2222 C2233 C2223 C2231 C2212

C3311 C3322 C3333 C3323 C3331 C3312

C2311 C2322 C2333 C2323 C2331 C2312

C3111 C3122 C3133 C3123 C3131 C3112

C1211 C1222 C1233 C1223 C1231 C1212

 ≡


C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

 .
For the following applications it is first necessary to identify the eigenvalues and
eigenvectors of the Christoffel tensor Γ0 of the bare medium from the components of
C0 corresponding to each case of anisotropy, and compute the tensor H(x,k,p,q) of
Eq. (50). Then we shall be able to deduce the differential and total scattering cross-
sections, σαβ(x,k,q) and Σα(x,k) respectively, for the considered cases. Now the
correlation functions y 7→ Rij(y) of Eq. (40) are normalized such that:

4

3
πa3

ij =

∫ +∞

0

y2dy

∫
S2

dΩ(ŷ)Rij(yŷ) ,

where y = |y|, ŷ = y/y, and S2 is the unit sphere of R3 with the uniform prob-
ability measure Ω. This normalization introduces the correlation lengths aij . We
may assume in the following examples and without loss of generality that these
parameters are all equal to a single parameter a. Different models of the phase
functions q 7→ R̂ij(q), which are the three-dimensional Fourier transforms of these
normalized correlation functions (NCF), may be invoked as discussed in e.g. [33]
and references therein. We will adopt here a Markov (exponential) model, by which:

(72) R̂ij(q) = %ij ×
a3

π2

1

(1 + (a|q|)2)2
, Rij(y) = %ij × exp

(
−|y|
a

)
,

for a = 6−
1
3 a. The %ij ’s are scalars quantifying the amount of correlation between

di and dj for 1 ≤ i, j ≤ 21. Indeed, it is argued in [45] that this model describes
fairly well the correlation structure of both continuous and discrete materials. This
particular choice does not however restrict our results in any respect. At last,
we assume in the following examples that the fluctuation tensor C1 and the mean
tensor C0 belong to the same symmetry class. Our analysis, though, allows different
morphological and crystallographic textures to be considered at the slow and fast
scales since C0 and C1 are allowed to vary independently with the position. So this
simplifying choice, again, does not restrict it, its physical relevance being out of the
scope of this paper in any case. Our objective here is only to demonstrate that our
derivation can effectively be used in practical applications.

5.1. Isotropic case. We start by considering the case of elastic isotropy already
derived in [40]. Our purpose is to show that the theory developed in Sect. 4 embeds
the existing results for that particular symmetry class. The elasticity tensor C0 of
the background medium depends on the two Lamé’s coefficients λ and µ. In view
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of Eq. (71) it thus reads:

(73) C0 =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 .

The Christoffel tensor is given by Eq. (11) as Γ0(x,k) = (c2P(x) − c2S(x))k ⊗ k +
c2S(x)|k|2I and we have R = 2 (α = P or S) and rP = 1, rS = 2 as outlined
in Sect. 3.6. Its eigenvalues are ω2

P(x,k) = c2P(x)|k|2 and ω2
S(x,k) = c2S(x)|k|2,

corresponding to the eigenvectors:

(74) pP(x,k) = k̂ , pS(x,k) = k̂⊥ = [ẑ1(k), ẑ2(k)] ,

where ẑ1(k) and ẑ2(k) are such that (k̂, ẑ1, ẑ2) forms an orthonormal triplet. On
the other hand, we deduce from Eq. (50) using the notations of Eq. (40), that:

H(x,k,p,q) = %−1(x)
[
d̂λ(p)k⊗ q + d̂µ(p)q⊗ k + d̂µ(p)(k · q)I

]
.

By a straightforward calculation inserting (74) into Eq. (59) we have:

HPP(x,k,p,q) = %−1(x)|k||q|
[
d̂λ(p) + 2(k̂ · q̂)2d̂µ(p)

]
,

HPS(x,k,p,q) = %−1(x)2(k · q)d̂µ(p)
(
k̂ · ẑ1(q), k̂ · ẑ2(q)

)
,

HSS(x,k,p,q) = %−1(x)|k||q|d̂µ(p)G′(k,q) ,

where G′(k,q) = G(k,q) + (k̂ · q̂)T(k,q), and G(k,q) and T(k,q) are the 2 × 2
matrices given as in Eqs. (1.11) and (1.20) of [40] by:

Gjk(k,q) = (ẑj(k) · q̂)(ẑk(q) · k̂) , Tjk(k,q) = ẑj(k) · ẑk(q) , 1 ≤ j, k ≤ 2 .

The differential scattering cross-sections of Eq. (68) are then derived as:

σPP(k,q)[aP] =
π

2

|k|2

%(λ+ 2µ)

[
R̂λλ(k− q) + 4(k̂ · q̂)2R̂λµ(k− q)

+ 4(k̂ · q̂)4R̂µµ(k− q)
]
aP(q) ,

σPS(k,q)[aS] =
π

2

4|k|2

%µ
(k̂ · q̂)2R̂µµ(k− q)G(q,k) : aS(q) ,

σSS(k,q)[aS] =
π

2

|k|2

%µ
R̂µµ(k− q)[G′(k,q)][aS(q)][G′(k,q)] ,

σSP(k,q)[aP] =
π

2

4|k|2

%µ
(k̂ · q̂)2R̂µµ(k− q)G(k,q)aP(q) ,

in full agreement with the results of [40, Sect.4.5], up to a proper normalization of
the fluctuation tensor and its power spectral density functions p 7→ R̂ij(p).



KINETIC MODEL OF ELASTIC WAVES IN ANISOTROPIC MEDIA 27

5.2. Cubic anisotropy. Here, the elasticity tensor C0 of the background medium
depends on three coefficients c1, c2 and c3 and reads:

C0 =


c1 c2 c2 0 0 0
c2 c1 c2 0 0 0
c2 c2 c1 0 0 0
0 0 0 c3 0 0
0 0 0 0 c3 0
0 0 0 0 0 c3

 .

Then the Christoffel tensor Γ0 of Eq. (42) reads:

(75) Γ0(x,k) = %−1(x)
[
(c2 + c3)k⊗ k + c3|k|2I +Adiag(k2

1, k
2
2, k

2
3)
]

in a cartesian frame (ê1, ê2, ê3), withA = c1−c2−2c3. Notice that if this anisotropy
factor A = 0, the Christoffel tensor (75) relative to cubic anisotropy becomes
identical with that of the isotropic case for c2 ≡ λ and c3 ≡ µ. If the anisotropy
factor A 6= 0, the eigenvalues and eigenvectors of the Christoffel tensor cannot
be computed explicitly. However it can be shown [2, 8] that cubic crystals have 7
acoustic axes independently of the elasticity constants, provided that c2 + c3 6= 0
(which correspond to ”special” crystals). These axes are the three coordinate axes,
and the axes (±1,±1,±1) (with one change of sign at a time). On the other hand,
we deduce from Eq. (50) using again the notations of Eq. (40), that:

H(x,k,p,q) = %−1(x)
[
d̂2(p)k⊗ q + d̂3(p)q⊗ k + d̂3(p) (k · q) I

+
(

d̂1(p)− d̂2(p)− 2d̂3(p)
)

diag(k1q1, k2q2, k3q3)
]
.

The Hαβ ’s of Eq. (59) are all scalars such that Hαβ(x,k,p,q) = Hβα(x,q,p,k)
with:

Hαβ(x,k,p,q) = %−1(x)|k||q|
[
d̂2(p)(k̂ · pα(x,k))(q̂ · pβ(x,q))

+ d̂3(p)
(

(q̂ · pα(x,k))(k̂ · pβ(x,q)) + (k̂ · q̂)(pα(x,k) · pβ(x,q))
)

+
(

d̂1(p)− d̂2(p)− 2d̂3(p)
)

Tr(k̂⊗ q̂⊗ pα(x,k)⊗ pβ(x,q))
]
.

We apply our results to nickel (Ni), which according to the results in [38] as cited
in [31, Table 6], has mean elasticity constants c1 = 253.0, c2 = 152.0, c3 = 124.0
(in GPa) and density % = 8910 kg/m3. We first plot on Fig. 2 the three velocity
surfaces k̂ 7→ cα(k̂) for k̂ ∈ S2 and α = 1, 2, 3, such that c1 ≤ c2 < c3 where the
equality c1 = c2 holds on the acoustic axes solely. The latter are also displayed on
the pseudo-transverse velocity surface plots. We also plot on Fig. 3 the normalized
partial scattering cross-sections Σ#

αβ = Σαβ/Σα, where the non normalized partial
scattering cross sections Σαβ , and total scattering cross sections Σα, are given by
Eq. (69) as:

Σαβ

(
ωk̂

cα(k̂)

)
= 2πω2

∫
S2

1

c3β(q̂)
σαβ

(
ωk̂

cα(k̂)
,
ωq̂

cβ(q̂)

)
dΩ(q̂) ,

Σα

(
ωk̂

cα(k̂)

)
=

R∑
β=1

Σαβ

(
ωk̂

cα(k̂)

)
.
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Figure 2. Velocity surfaces k̂ 7→ cα(k̂) for single crystal nickel.
Left: pseudo-transverse mode α = 1, middle: pseudo-transverse
mode α = 2, right: pseudo-longitudinal mode α = 3. The dashed
lines display the 4 acoustic axes out of coordinate planes.

Figure 3. Normalized total scattering cross-sections k̂ 7→ Σ#
αβ(k̂)

for single crystal nickel with fixed frequency parameter a|k| = 1
and Markov model for the NCF.

Here all modes have multiplicity one so that R = 3 and the scattering cross-
sections are scalars. The non-dimensional frequency parameter is a|k| = 1, and the
correlation coefficients %ij of Eq. (72) are all equal for 1 ≤ i, j ≤ 3 (this hypothesis
may be physically unrealistic but such a discussion is for the present out of the
scope of the paper). We use the product Gaussian quadrature rule studied in
e.g. [5] for the computation of the integrals on the unit sphere S2 above. We may
comment on these plots by noting that they have symmetries reminiscent of the
underlying material symmetry. It is however hardly possible to elaborate more on
this topic since to our knowledge the present results are new. The scattering cross-
sections displayed here characterize the attenuation of waves by multiple scattering
in the weak coupling regime. Therefore they may be used for the interpretation
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of ultrasonic experiments, for example. In particular, they can be directly related
to some average measure of materials grain sizes in different scattering regimes,
including those covered by the present theory [20].

5.3. Transverse isotropy. Here, the elasticity tensor C0 of the background medium
depends on five coefficients c1, c2, c3, c4 and c5 and reads:

C0 =


c1 c2 c3 0 0 0
c2 c1 c3 0 0 0
c3 c3 c4 0 0 0
0 0 0 c5 0 0
0 0 0 0 c5 0
0 0 0 0 0 c1−c2

2

 .

Then the Christoffel tensor Γ0 of Eq. (42) reads:

(76) Γ0(x,k) = %−1(x)×c1k
2
1 + c1−c2

2 k2
2 + c5k

2
3

c1+c2
2 k1k2 (c3 + c5)k1k3

c1+c2
2 k1k2

c1−c2
2 k2

1 + c1k
2
2 + c5k

2
3 (c3 + c5)k2k3

(c3 + c5)k1k3 (c3 + c5)k2k3 c5(k2
1 + k2

2) + c4k
2
3

 .
On the other hand, we deduce from Eq. (50) using again the notations of Eq. (40),
that:

H(x,k,p,q) = %−1(x)×

k1q1d̂1(p) + k3q3d̂5(p)

+ 1
2k2q2(d̂1(p)− d̂2(p))

1
2k2q1(d̂1(p)− d̂2(p))

+k1q2d̂2(p)
k1q3d̂3(p) + k3q1d̂5(p)

1
2k1q2(d̂1(p)− d̂2(p))

+k2q1d̂2(p)

k2q2d̂1(p) + k3q3d̂5(p)

+ 1
2k1q1(d̂1(p)− d̂2(p))

k2q3d̂3(p) + k3q2d̂5(p)

k3q1d̂3(p) + k1q3d̂5(p) k2q3d̂5(p) + k3q2d̂3(p)
(k1q1 + k2q2)d̂5(p)

+k3q3d̂4(p)


.

The elasticity coefficients are related by the constraints for positive definite energy
density:

c2
2 < c2

1 , c2
3 < c1c4 ,

2c1c2
3 + c4c2

2 − 2c2c2
3 < c2

1c4 ,

and c1, c4, c5 > 0. There are at most either 1 acoustic axis ê3, or this very axis and
a circular cone of axis ê3 for this symmetry class [8] (ignoring the ”special” and
”pathological” cases dealt with in detail in this latter reference).

We apply our results to zinc (Zn), which according to the Landolt-Börnstein
database [30] as cited in [8, Table 5], has mean elasticity constants c1 = 165,
c2 = 31.1, c3 = 50.0, c4 = 61.8, c5 = 39.6 (in GPa), and density % = 7140
kg/m3. The sole acoustic axis is ê3. We first plot on Fig. 4 the three velocity
surfaces k̂ 7→ cα(k̂) for k̂ ∈ S2 and α = 1, 2, 3, such that c1 ≤ c2 < c3 where the
equality c1 = c2 holds on the acoustic axis solely. We also plot on Fig. 5 the
normalized partial total scattering cross-sections Σ#

αβ defined as in Sect. 5.2. Here
all modes have multiplicity one, so that R = 3 and the scattering cross-sections
are scalars as for nickel. The non-dimensional frequency parameter is a|k| = 1,
and the correlation coefficients %ij are all equal for 1 ≤ i, j ≤ 5 (with the same
reservation for this assumption as for the case of nickel). Regarding symmetries,
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Figure 4. Velocity surfaces k̂ 7→ cα(k̂) for single crystal zinc.
Left: pseudo-transverse mode α = 1, middle: pseudo-transverse
mode α = 2, right: pseudo-longitudinal mode α = 3.

Figure 5. Normalized total scattering cross-sections k̂ 7→ Σ#
αβ(k̂)

for single crystal zinc with fixed frequency parameter a|k| = 1 and
Markov model for the NCF.

the same comment as for cubic anisotropy may be done for these plots.

5.4. Orthotropy. Here, the elasticity tensor C0 of the background medium de-
pends on nine coefficients c1, c2, c3, c4, c5, c6, c7, c8 and c9 and reads:

C0 =


c1 c2 c3 0 0 0
c2 c4 c5 0 0 0
c3 c5 c6 0 0 0
0 0 0 c7 0 0
0 0 0 0 c8 0
0 0 0 0 0 c9

 .
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Figure 6. Velocity surfaces k̂ 7→ cα(k̂) for single crystal celestite.
Left: pseudo-transverse mode α = 1, middle: pseudo-transverse
mode α = 2, right: pseudo-longitudinal mode α = 3. The dashed
lines display the 10 acoustic axes.

Then the Christoffel tensor Γ0 of Eq. (42) reads:

(77) Γ0(x,k) = %−1(x)×c1k
2
1 + c9k

2
2 + c8k

2
3 (c2 + c9)k1k2 (c3 + c8)k1k3

(c2 + c9)k1k2 c9k
2
1 + c4k

2
2 + c7k

2
3 (c5 + c7)k2k3

(c3 + c8)k1k3 (c5 + c7)k2k3 c8k
2
1 + c7k

2
2 + c6k

2
3

 .
On the other hand, we deduce from Eq. (50) using again the notations of Eq. (40),
that:

H(x,k,p,q) = %−1(x)×

k1q1d̂1(p) + k2q2d̂9(p)

+k3q3d̂8(p)
k1q2d̂2(p) + k2q1d̂9(p) k1q3d̂3(p) + k3q1d̂8(p)

k1q2d̂9(p) + k2q1d̂2(p)
k1q1d̂9(p) + k2q2d̂4(p)

+k3q3d̂7(p)
k2q3d̂5(p) + k3q2d̂7(p)

k1q3d̂8(p) + k3q1d̂3(p) k2q3d̂7(p) + k3q2d̂5(p)
k1q1d̂8(p) + k2q2d̂7(p)

+k3q3d̂6(p)


.

The elasticity coefficients are related by the constraints for positive definite energy
density:

c2
2 < c1c4 , c2

3 < c1c6 , c2
5 < c4c6 ,

c1c2
5 + c4c2

3 + c6c2
2 − 2c2c3c5 < c1c4c6 ,

and c1, c4, c6, c7, c8, c9 > 0. There are at most 16 acoustic axes for this symmetry
class [8] (ignoring again the ”special” and ”pathological” cases dealt with in detail
in this latter reference).

We apply our results to celestite (SrSO4), which according to the Landolt-
Börnstein database [30] as cited in [8, Table 1], has elasticity constants c1 = 104.0,
c2 = 77.0, c3 = 60.0, c4 = 106.0, c5 = 62.0, c6 = 123.0, c7 = 13.9, c8 = 27.9, c9 =
26.6 (in GPa), and density % = 3960 kg/m3. There are 10 acoustic axes computed
as (0, 0.77,±0.64), (0, 0.70,±0.71), (0.49,±0.87, 0), and (±0.43,±0.88,±0.22) (with
one change of sign at a time), in agreement with the data given in [8, Table 2]. We
first plot on Fig. 6 the three velocity surfaces k̂ 7→ cα(k̂) for k̂ ∈ S2 and α = 1, 2, 3,
such that c1 ≤ c2 < c3 where the equality c1 = c2 holds on the acoustic axes solely.
The latter are also displayed on the pseudo-transverse velocity surface plots. We
also plot on Fig. 7 the normalized partial total scattering cross-sections Σ#

αβ de-
fined as in Sect. 5.2. Here again all modes have multiplicity one, so that R = 3 and
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Figure 7. Normalized total scattering cross-sections k̂ 7→ Σ#
αβ(k̂)

for single crystal celestite with fixed frequency parameter a|k| = 1
and Markov model for the NCF.

the scattering cross-sections are scalars as for nickel or zinc. The non-dimensional
frequency parameter is a|k| = 1, and the correlation coefficients %ij are all equal
for 1 ≤ i, j ≤ 9 (with the same reservation for this assumption as for the cases of
nickel and zinc).

6. Conclusions

In this paper, the radiative transfer equations describing the propagation of high-
frequency elastic (vector) waves in arbitrarily anisotropic, random media have been
derived. These results generalize the models elaborated in [40] for isotropic media
and in [6] for scalar waves. In this respect they achieve the main extension iden-
tified in this latter publication for the proposed theory based on a second-order
formulation of the elastic wave equation and the use of a spatio-temporal Wigner
transform. It is believed that this generalization has interesting applications in the
passive imaging techniques which have been developed recently in the geophysical
literature, in the non destructive evaluation of heterogeneous polycrystalline ma-
terials, or in the understanding of mesoscopic phenomena such as the enhanced
coherent back-scattering effect or the refocusing properties of time-reversed waves
in random media. An immediate perspective of the present work consists in deriv-
ing the diffusion limit of the radiative transfer equations applicable to anisotropic
media [35]. Another direction is to consider the influence of the correlation struc-
tures of the random inhomogeneities on the shape of the scattering cross-sections
in view of possibly develop composite materials with particular directional proper-
ties. Such correlation features may also be enriched by the random matrix models
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studied in a different context [21, 47]. These extensions are the subject of ongoing
investigations.
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