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KERNEL ESTIMATE AND CAPACITY IN DIRICHLET SPACES

O. EL-FALLAH, Y. ELMADANI, K. KELLAY

Abstract. Let µ be a positive finite measure on the unit circle. The associated Dirichlet

space D(µ) consists of holomorphic functions on the unit disc whose derivatives are square

integrable when weighted against the Poisson integral of µ. First, we give an estimate of

the norm of the reproducing kernel kµ of D(µ). Next, we study the notion of µ-capacity

associated with D(µ), in the sense of Beurling–Deny. Namely, we give an estimate of

µ-capacity of arcs in terms of the norm of kµ. We also provide a new condition on closed

sets to be µ-polar. Our method is based on sharp estimates of norms of some outer test

functions which allow us to transfer these problems to an estimate of the reproducing

kernel of an appropriate weighted Sobolev space.

1. Introduction

Let H2 denote the classical Hardy space of analytic functions on the unit disc D hav-
ing square summable Taylor coefficients at the origin. Every function f ∈ H2 has non-
tangential limits almost everywhere on the unit circle T = ∂D. We denote by f(ζ) the
non-tangential limit of f at ζ ∈ T if it exists.
Let µ be a positive finite measure on T, the Dirichlet type space D(µ) is the set of analytic
functions f ∈ H2, such that

Dµ(f) :=
1

2π

∫

T

∫

T

|f(ζ)− f(ξ)|2
|ζ − ξ|2 |dζ |dµ(ξ) <∞.

The space D(µ) is endowed with the norm

‖f‖2µ := ‖f‖2H2 +Dµ(f).

If dµ(eit) = 0, then D(µ) = H2 and if dµ(eit) = dm(t) = dt/2π, the normalized arc measure
on T, then D(µ) is the classical Dirichlet space D.
These spaces were introduced by Richter in [12] by examining the 2-isometries on the
Hilbert spaces. A bounded operator T in a Hilbert space H is called 2-isometry if

T ∗2T 2 − 2T ∗T − I = 0,

is said to be cyclic if there exists x ∈ H such that span{T nx, n ≥ 0} is dense in H and
is called analytic if

⋂
n≥0 T

nH = {0}. Richter in [12] proved that every cyclic, analytic

2000 Mathematics Subject Classification. Primary 46E22; Secondary 31A05, 31A15, 31A20, 47B32.

Key words and phrases. Dirichlet spaces, reproducing kernel, capacity, polar set.
Research partially supported by ”Hassan II Academy of Science and Technology” for the first and the

second authors.
1



2 O. EL-FALLAH, Y. ELMADANI, K. KELLAY

2–isometry can be represented as a multiplication by z on a Dirichlet type space D(µ)
for some positive finite measure µ. As consequence [11, 12] Richter gave an analogue of
Beurling’s theorem for the Dirichlet space.

1.1. Reproducing kernels. The reproducing kernel plays an important role in the study
of Hilbert spaces of analytic functions. In particular, it allows to determine the rate of
growth of functions near the boundary and its tangential behavior; their properties are
closely related to embedding theorems, sampling and interpolation sets, and other topics.
Let P [µ] be the Poisson integral of the positive finite measure µ on T

P [µ](z) =

∫

T

1− |z|2
|ζ − z|2dµ(ζ), z ∈ D.

In the following theorem, we provide an asymptotic estimate of the reproducing kernel
kµ of D(µ) on the diagonal.

Theorem 1. Let µ be a finite positive measure on T. We have

kµ(z, z) ≍ 1 +

∫ |z|

0

dr

(1− r)P [µ](rz/|z|) + (1− r)2
,

where the implied constants are absolute.

Let us recall that Shimorin [15] proved that all Dirichlet type spaces have complete
Nevanlinna–Pick reproducing kernels. As an important consequence (see [2, §9.4] and
[14, Theorem 1]), each sequence Z = {zn} ⊂ D satisfying Shapiro–Shields condition∑

z∈Z 1/kµ(z, z) <∞ is a zero set of D(µ). Theorem 1 allows to give examples of zero sets
of D(µ).

To prove the lower estimates of kµ(z, z), we establish a sharp norm estimates of some
outer functions which peak near z. This allows us to transfer our problem to an estimation
of the norm of the kernel of an appropriate weighted Sobolev space. In fact and roughly
speaking, Theorem 1 says that kµ(z, z) ≍ Kϕ(1− |z|, 1− |z|) where Kϕ is the reproducing
kernel of the weighted Sobolev space defined by

W 2(ϕ) :=
{
f ∈ C

(
(0, 2π]

)
: f(x) = f(1) +

∫ 2π

x

g(t)dt, g ∈ L2((0, 2π), ϕdt)
}
,

where ϕ(t) = tP [µ]((1− t)z/|z|) + t2.

1.2. Capacity. The Dirichlet type space is closely related to some notions of potential
theory. Let Dh(µ) be the harmonic version of D(µ) given by

Dh(µ) :=
{
f ∈ L2(T) : ‖f‖2µ := ‖f‖2L2(T) +Dµ(f) <∞

}
.

Dh(µ) is a Dirichlet space in the sense of Beurling–Deny [3]. Some aspects of the potential
theory associated to the general Dirichlet spaces were studied in several papers (see for
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instance [8]). In this paper we will focus on the notion of capacity. We recall at first, the
definition of capacity in the sense of Beurling–Deny. Let U be an open subset of the unit
circle. The cµ-capacity of U is defined by

cµ(U) := inf
{
‖u‖2µ : u ∈ Dh(µ), u ≥ 0 and u ≥ 1 a.e. on U

}
. (1)

As usual we define the cµ-capacity of any subset F ⊂ T by

cµ(F ) = inf{cµ(U) : U open, F ⊂ U}.
Since the L2 norm dominates the Dirichlet type norm, it is completely obvious that sets
having cµ–capacity 0 have Lebesgue measure 0. We say that a property holds cµ-quasi-
everywhere (cµ–q.e.) if it holds everywhere outside a set of cµ–capacity 0. So, cµ–q.e.
implies a.e.. A closed set of capacity zero will be called, throughout this paper, µ–polar
set. If dµ(eit) = dt/2π, the normalized arc measure on T, then D(µ) is the classical
Dirichlet space D and cµ is comparable to the logarithmic capacity, see [10, Theorem 14]
and [1, Theorem 2.5.5].
Our first result on µ-capacity gives an estimate of capacity of arcs in terms of the kernel.
More precisely we have:

Theorem 2. Let I ⊂ T be the arc of length |I| = 1− ρ with the midpoint at ζ ∈ T. Then

cµ(I) ≍
1

kµ(ρζ, ρζ)
.

where the implied constants are absolute.

As a consequence,

cµ({eiθ}) = 0 ⇐⇒
∫ 1

0

dr

(1− r)P [µ](reiθ) + (1− r)2
= ∞. (2)

In the sequel we will suppose that E is a closed set which has Lebesgue measure zero and
µ is a finite positive measure on T. Now our goal is to give sufficient condition on E to
be µ–polar. Let us introduce the local modulus of continuity of µ on E which will play a
crucial role in this paper. It is defined by

ρµ,E(t) := sup{µ(ζe−it, ζeit) : ζ ∈ E}. (3)

Note that ρµ,T = ρµ is the classical modulus of continuity of µ. Let us write

Et := {ζ ∈ T: d(ζ, E) ≤ t},
where d denotes the distance with respect to arc-length, and denote by |Et| the Lebesgue
measure of Et. We can express the function |Et| in terms of

NE(t) := 2
∑

j

1{|Ij |>2t},
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where (Ij) are the components of T\E, as follows
∫ t

0

NE(s)ds = |Et|.

In Theorem 5.4, we give a sufficient conditions on a closed subset E, in terms of ρµ,E
and NE, to be µ-polar. To illustrate this theorem we give here some of its corollaries.

(i) If ∫ π

0

dt∫ t
0
(ρµ(s)NE(s)/s)ds

= +∞,

then cµ(E) = 0.

This result can be considered as an extension of Carleson’s Theorem [4, section IV, The-
orem 2]. In fact if µ = m is the Lebesgue measure then ρµ,E(t) = t and cµ ≍ c (c is the
logarithmic capacity). We obtain Carleson’s theorem which says that if

∫ π
0
dt/|Et| = ∞,

then c(E) = 0.

(ii) Suppose that ρµ,E(t) = O(tα) with 1 ≤ α < 2. If
∫ π

0

dt

tα−1|Et|
= +∞,

then cµ(E) = 0.

(iii) If ρµ,E(t) = O(tα) with α > 2, we have cµ(E) = 0.

Note also that if tα = O(ρµ,{1}(t)) with α < 1, then by (2), cµ({1}) > 0.

The proof of Theorem 5.4 uses an idea analogous to the proof of Theorem 1. However,
our test functions must peak on the whole set E and the desired weighted Sobolev spaces
will depend on µ and E. In fact, we prove that there is no bounded point evaluation at 0
for W 2(ϕ) (where ϕ depends on ρµ,E and NE), then cµ(E) = 0. Note finally, that there is
no bounded point evaluation at 0 for W 2(ϕ) if and only if lim

t→0+
Kϕ(t, t) = ∞.

The plan of the paper is the following. In the next section we recall two formulas of the
Dirichlet type norm; we also give punctual estimates of some outer functions. In Section
3 we give norm estimates of our test functions. In Section 4 we give diagonal asymptotic
estimates of reproducing kernel. In section 5, we prove the announced results on capacity.

Throughout the paper, we use the following notations:

• A . B means that there is an absolute constant C such that A ≤ CB.
• A ≍ B if both A . B and B . A.
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• C(x1, . . . , xn) denote a constant which depends only on variables x1, . . . , xn.

2. Preliminaries

2.1. Norm formulas. In this subsection we recall some results about norm formulas in
Dirichlet type spaces which will be used in what follows.

For a finite positive measure µ on T, the harmonic Dirichlet space Dh(µ) consists of
functions f ∈ L2(T) such that

Dµ(f) :=

∫

T

Dξ(f)dµ(ξ) <∞,

where Dξ(f) is the local Dirichlet integral of f at ξ ∈ T given by

Dξ(f) :=

∫

T

|f(eit)− f(ξ)|2
|eit − ξ|2

dt

2π
.

The Douglas’ formula, see [6, Theorem 7.1.3], expresses the Dirichlet integral of a func-
tion f in terms of the Poisson transform of µ, namely

Dµ(f) =

∫

D

|∇P [f ]|2P [µ]dA, f ∈ Dh(µ),

where dA(z) = dxdy/π stands for the normalized area measure in D. In particular, if
f ∈ D(µ)(= Dh(µ) ∩H2), Douglas’ Formula becomes

Dµ(f) :=

∫

D

|f ′(z)|2P [µ](z)dA(z) <∞.

Another useful formula, due to Richter and Sundberg [13, Theorem 3.1], gives the local
Dirichlet integral of function f in terms of their zeros sequence, their singular measure
and the modulus of their radial limit. We will need, throughout this paper, the Richter–
Sundberg formula mainly for outer functions. Recall that outer functions are given by

f(z) = exp

∫

T

ζ + z

ζ − z
logϕ(ζ)

|dζ |
2π

, (z ∈ D),

where ϕ is a positive function such that logϕ ∈ L1(T). Note that the radial limit of f ,
noted also by f , exists a.e. and |f | = ϕ a.e. on T.

Let f ∈ H2 be an outer function such that f(ζ) exists at ζ ∈ T. We have the following
Richter–Sundberg formula :

Dζ(f) =

∫

T

|f(λ)|2 − |f(ζ)|2 − 2|f(ζ)|2 log |f(λ)/f(ζ)|
|λ− ζ |2

|dλ|
2π

. (4)
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2.2. Punctual estimates of test functions. The result obtained in this subsection will
be used in the proof of the lower estimate of the kernel.

Lemma 2.1. Let 1/2 < r = 1 − a < 1 and let Ik = [eiak , eiak+1 ] with a0 = 0, ak = 2ka
(k ≥ 1). Let N be the integer such that 2Na ≤ π < 2N+1a, then

N−1∑

k=0

(k + 1)̟(r, Ik,D) ≍ 1,

where ̟(r, Ik,D) denotes the harmonic measure of Ik at r in D.

Proof. Without loss of generality, we may suppose that 2Na = π. Note that

N−1∑

k=0

(k + 1)̟(r, Ik,D) ≥
N−1∑

k=0

̟(r, Ik,D) ≍ 1.

For the reverse inequality, let g(z) = log 1/|1− rz|. Since g is harmonic in the neighbour-
hood of D,

g(z) =
1

2π

∫ π

−π

1− |z|2
|1− ze−iθ|2 log

1

|1− reiθ|dθ.

So,

g(r) = log
1

1− r2
=

N−1∑

k=0

1

π

∫ ak+1

ak

1− r2

|1− re−iθ|2 log
1

|1− reiθ|dθ. (5)

For k = 0, . . . , N − 1, and θ ∈ (ak, ak+1), we have

1

|1− reiθ| ≍
1

2k
1

1− r
.

By (5), we get

log
1

1− r2
= log

1

1− r
− log 2

N−1∑

k=0

k̟(r, Ik,D) +O(1)

and our result follows. �

Let w : (0, π) → (0,+∞) be a continuous positive function such that logw ∈ L1(T). As
before fw denote the outer function satisfying

|fw(eit)| = w(|t|) a.e. on (−π, π). (6)

Proposition 2.2. Let w : (−π, π) → (0,+∞) be an even continuous positive decreasing
function such that logw ∈ L1(T). Suppose that w(x) ≤ 2w(2x). Let fw be an outer
function given by (6). Then

w(1− r) . |fw(r)|, 0 ≤ r < 1.
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Proof. Let a , Ik and N as in lemma 2.1, and suppose that aN = π. We have

|fw(r)| = exp
{N−1∑

k=0

1

π

∫

Ik

1− r2

|1− reiθ|2 logw(θ)dθ
}

≥ exp
{N−1∑

k=0

log ω(2k+1a)
1

π

∫

Ik

1− r2

|1− reiθ|2dθ
}

≥ exp
{N−1∑

k=0

(logω(a)− (k + 1) log 2)
1

π

∫

Ik

1− r2

|1− reiθ|2dθ
}

≥ exp
{
logw(a)

N−1∑

k=0

̟(r, Ik,D)− log 2

N−1∑

k=0

(k + 1)̟(r, Ik,D)
}
.

We obtain from Lemma 2.1, that w(1 − r) . |fw(r)|. The case aN < π can be treated in
the same way by taking into account the interval [eiaN , eiπ]. �

2.3. Regularization lemma. Let µ be a positive finite measure on T, we set dµ(s) =
dµ(eis). Denote by

µ̂(s) = µ([e−is, eis]) (0 ≤ s ≤ π) and µ̂(s) = µ̂(π) (s > π).

Let

Fµ(x) =

∫ π

−π

x2

x2 + s2
dµ(s) x > 0. (7)

Note that Fµ is increasing and Fµ(x)/x
2 is decreasing. We extend Fµ at the origin by

Fµ(0) = Fµ(0
+). In the following lemma we collect some elementary properties of Fµ

which will be used in the sequel.

Lemma 2.3. Let ν be a positive finite measure on T. We have the following

(1) Fν(x) ≍ xP [ν](1− x), for x > 0,

(2) ν̂(x) . Fν(x) for x ≥ 0,

(3)

∫

x≤|s|≤π

dν(s)

s2
.
Fν(x)

x2
, for x > 0,

(4) If h is a positive monotone function on (0, π). Then
∫ a

−a

h(|x|)dν(x) .
∫ a

0

h(x)

x
ν̂(2x)dx,

(5) If ν̂(2x) ≤ cν̂(x) for some constant c < 4, then Fν(x) .
ν̂(x)

4− c
.



8 O. EL-FALLAH, Y. ELMADANI, K. KELLAY

Proof. (1), (2) and (3) are obvious. To prove (4) suppose that h is a decreasing function.
Clearly if ν({0}) > 0, then (4) is obvious. So, suppose that ν({0}) = 0. We have

∫ a

−a

h(|x|)dν(x) =
∑

n≥0

∫ 2−na

2−(n+1)a

h(x)(dν(x) + dν(−x))

.

m∑

n=0

h(2−na)ν̂(2−na)

.

∫ a

0

h(x)

x
ν̂(2x)dx.

Analogue argument works if h is increasing.
Finally to prove (5), suppose that ν̂(2x) ≤ cν̂(x) with c < 4. We have ν̂(2nx) ≤ cnν̂(x)
and ∫

|t|≥x

dν(t)

t2
dt =

∑

n≥0

∫

2nx≤|t|≤2n+1x

dν(t)

t2
≤

∑

n≥0

ν̂(2n+1x)

22nx2
≤ 4c

4− c

ν̂(x)

x2
.

So

Fν(x) ≤ ν̂(x) +

∫

|θ|>x

x2

x2 + θ2
dν(θ) ≤ ν̂(x) + x2

∫

θ≥x

dν(x)

θ2
.

ν̂(x)

4− c
.

�

3. Norm estimate of test functions

3.1. Norm estimate of analytic test functions. The purpose of this subsection is to
give estimate of norms of some outer functions which play an important role in what
follows.

The following lemma is the first step to prove Theorem 3.2.

Lemma 3.1. Let w : [0, π] → (0,+∞) be a C1 decreasing convex function such that
w(x) ≤ 2w(2x). Suppose that x2|w′(x)| is increasing and let fw be the outer function given
by (6). Then

Dµ(fw) . J1 + J2 + J3,

where

J1 :=

∫ π

x=0

∫ x

y=0

|w′(y)|w(y) |w
′(x)|

w(x)

µ̂(y)

x
dxdy,

J2 :=

∫ π

s=−π

w′(s)2sdµ(s),

J3 :=

∫ π

x=0

∫ π

y=x

x|w′(y)|w(y) |w
′(x)|

w(x)

(∫

y≤|s|≤π

dµ(s)

s2

)
dxdy.
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Proof. Without loss of generality, we may assume that dµ(s) = dµ(−s). By Richter-
Sundberg formula (4) we have

Deis(fw) =
8

2π

∫ π

t=0

∫ t

x=s

∫ x

y=s

w′(y)w(y)
w′(x)

w(x)
dydx

dt

|eis − eit|2 .

So,

Dµ(fw) =
16

2π

∫ π

s=0

∫ π

t=0

∫ t

x=s

∫ x

y=s

w′(y)w(y)
w′(x)

w(x)
dydxdt

dµ(s)

|eis − eit|2

=

∫ π

s=0

∫ π

t=2s

. . .

︸ ︷︷ ︸
I1

+

∫ π

s=0

∫ 2s

t=s/2

. . .

︸ ︷︷ ︸
I2

+

∫ π

s=0

∫ s/2

t=0

. . .

︸ ︷︷ ︸
I3

.

To complete the proof we will estimate each term separately.

If 2s ≤ t ≤ π, we have |t− s| ≥ t/2,

I1 .

∫ π

s=0

∫ π

t=s

∫ t

x=s

∫ x

y=s

|w′(y)|w(y) |w
′(x)|

w(x)
dydx

dt

t2
dµ(s)

.

∫ π

t=0

∫ t

x=0

∫ x

y=0

|w′(y)|w(y) |w
′(x)|

w(x)

(∫

|s|≤y

dµ(s)
)dt
t2
dydx

.

∫ π

x=0

∫ x

y=0

|w′(y)|w(y) |w
′(x)|

w(x)

µ̂(y)

x
dydx

Since w(2x) ≍ w(x) and w′(2x) ≍ w′(x), we have

I2 .

∫ π

s=−π

w′(s)2sdµ(s).

If 0 ≤ t ≤ s/2, then |t− s| ≥ s/2,

I3 .

∫ π

s=0

∫ s

t=0

∫ s

x=t

∫ s

y=x

|w′(y)|w(y) |w
′(x)|

w(x)
dydx

dµ(s)

s2
dt

.

∫ π

t=0

∫ π

x=t

∫ π

y=x

|w′(y)|w(y) |w
′(x)|

w(x)

(∫

y≤|s|≤π

dµ(s)

s2

)
dt

.

∫ π

x=0

∫ π

y=x

|w′(y)|w(y) |w
′(x)|

w(x)

( ∫ π

y≤|s|≤π

dµ(s)

s2

)
xdxdy.

�

Theorem 3.2. Let w : [0, π] → (0,+∞) be a C1 decreasing convex function such that
w(x) ≤ 2w(2x). Suppose that x2|w′(x)| is increasing and let fw be the outer function given
by (6). Then

Dµ(fw) . ‖Fµw′‖∞‖w‖∞,
where Fµ is given by (7).
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Proof. By (3) of Lemma 2.3, we have µ̂ ≤ Fµ. Now Lemma 3.1 gives

J3 .

∫ π

x=0

∫ π

y=x

|w′(y)|w(y) |w
′(x)|

w(x)

Fµ(y)

y2
xdydx

. ‖Fµw′‖∞
∫ π

x=0

∫ π

y=x

|w′(x)| w(y)x
w(x)y2

dydx

. ‖Fµw′‖∞
∫ π

x=0

∫ π

y=x

|w′(x)| x
y2
dydx

. ‖Fµw′‖∞‖w‖∞.

Note that x|w′(x)| . w(x) for all x ∈]0, π]. Indeed, since w(2x) ≍ w(x) and |w′(2x)| ≍
|w′(x)|, it suffices to prove the inequality for x ∈ [0, π/2]. We have

w(x) ≥
∫ π

x

t2|w′(t)|dt
t2

≥ x2|w′(x)|
(1
x
− 1

π

)
≥ x

2
|w′(x)|.

So, again by Lemma 2.3 we get

J1 . ‖Fµw′‖∞
∫ π

x=0

∫ x

y=0

|w′(x)| w(y)
w(x)x

dydx

. ‖Fµw′‖∞
∫ π

x=0

∫ x

y=0

∫ π

u=y

|w′(x)||w′(u)|
w(x)x

dudydx

+ ‖Fµw′‖∞
∫ π

x=0

∫ x

y=0

|w′(x)| w(π)
w(x)x

dydx

= J12 + J22.

We have

J12 . ‖Fµw′‖∞
∫ π

u=0

∫ π

x=0

∫ min(u,x)

y=0

|w′(x)||w′(u)|
w(x)x

dudydx

. ‖Fµw′‖∞
(∫ π

u=0

∫ u

x=0

|w′(x)w′(u)|
w(x)

dudx+

∫ π

u=0

∫ π

x=u

u|w′(x)w′(u)|
xw(x)

dudx
)

. ‖Fµw′‖∞
(∫ π

x=0

|w′(x)|dx+
∫ π

u=0

∫ π

x=u

u|w′(x)w′(u)|
xw(x)

dudx)

. ‖Fµw′‖∞
(
‖w‖∞ +

∫ π

u=0

∫ π

x=u

u|w′(u)|
x2

dudx
)

. ‖Fµw′‖∞‖w‖∞.
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Since w is decreasing, we get

J22 ≤ ‖Fµw′‖∞
∫ π

x=0

∫ x

y=0

|w′(x)|dx
x
dy

≤ ‖Fµw′‖∞‖w‖∞.

Finally, applying (4) of Lemma 2.3 with dν(s) = sdµ(s), we have ν̂(t) ≤ tµ̂(t) and

J2 .

∫ π

0

w′(t)2

t
ν̂(2t)dt . ‖Fµw′‖∞‖w‖∞.

�

3.2. Norm estimate of test functions in Dh(µ). Our goal here is to give an estimate of
the norm of some distance functions in Dh(µ) (For analytic distance functions see [7]).The
result of this subsection will be used in the proof of Theorem 5.4.
Let E be a closed subset of T, µ be a positive finite measure and denote by ρµ,E the local
modulus of continuity of µ on E given by (3). Note that ρµ,{1}(t) = µ̂(t). Recall that
NE(t) := 2

∑
j 1{|Ij |>2t}. where (Ij) are the components of T\E.

Lemma 3.3. Let Ω : (0, π] → R
+ be a positive decreasing function, then

∫

T

Ω(dist(ζ, E))dµ(ζ) .

∫ 1

0

Ω(t)
ρµ,E(t)

t
NE(t)dt.

Proof. Write T \ E = ∪nIn, where (In)n = (eiαn , eiβn)n are the components of T \ E. Let
dµn(t) = dµ(t+ αn) + dµ(βn − t), By Lemma 2.3

∫

In

Ω(dist(ζ, E))dµ(ζ) ≍
∫ |In|/2

0

Ω(t)dµn(t)

.

∫ |In|/2

0

Ω(t)
µ̂n(t)

t
dt

.

∫ |In|/2

0

Ω(t)
ρµ,E(t)

t
dt.

Summing over all In, we get
∫

T

Ω(dist(ζ, E))dµ(ζ) .

∫ 1

0

Ω(t)
ρµ,E(t)

t
NE(t)dt,

and the proof is complete. �

Lemma 3.4. Let E be a closed subset of T. Let w be a convex decreasing function and let
Ω(ζ) = w(d(ζ, E)). Then

Dµ(Ω) . I1 + I2 + I3,
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where

I1 :=

∫ π

0

∫ π

0

(w(t)− w(t+ s))2

s2
ρµ,E(t)

t
NE(t)dsdt,

I2 =

∫ π

0

w′(t)2ρµ,E(2t)NE(t)dt,

I3 :=

∫ π

t=0

∫ π

s=t

(w(t)− w(t+ s))2

s2
ρµ,E(s)

s
NE(t)dsdt,

Proof. Set δ = d(ζ, E) and δ′ = d(ζ ′, E). By Lemma 3.3 we have

J1 =
1

2π

∫

T

∫

δ′≤δ

(w(δ)− w(δ′))2

|ζ − ζ ′|2 |dζ |dµ(ζ ′)

.

∫

T

∫

δ′≤δ

(w(δ′)− w(δ′ + |ζ − ζ ′|))2
|ζ − ζ ′|2 |dζ |dµ(ζ ′)

.

∫

T

∫ π

s=0

(w(δ′)− w(δ′ + s))2

s2
dsdµ(ζ ′)

.

∫ π

0

∫ π

0

(w(t)− w(t+ s))2

s2
ρµ,E(t)

t
NE(t)dsdt,

and

J2 =
1

2π

∫

T

∫

δ≤δ′

(w(δ)− w(δ′))2

|ζ − ζ ′|2 dµ(ζ ′)|dζ |

.

∫

T

∫

T

(w(δ)− w(δ + |ζ − ζ ′|))2
|ζ − ζ ′|2 dµ(ζ ′)|dζ |

.

∫

ζ∈T

∫

|ζ′−ζ|≤δ

+

∫

ζ∈T

∫

|ζ′−ζ|≥δ

= J21 + J22.

Clearly we have

J21 .

∫

T

w′(δ)ρµ,E(2δ)|dζ | .
∫ π

0

w′(t)2ρµ,E(2t)NE(t)dt.

With the same calculation, as in Lemma 3.3, we have

J22 .

∫ π

t=0

∫ π

s=t

(w(t)− w(t+ s))2

s2
ρµ,E(s)

s
NE(t)dsdt.

Since Dµ(w) = J1 + J2, we get our result. �

For a positive increasing function ψ such that ψ(0) = 0, we set

Mψ,E(s) = max
(∫ s

0

ψ(t)

t
NE(t)dt,

ψ(s)

s
|Es|

)
, (8)
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where Et = {ζ ∈ E : dist(ζ, E) ≤ t}. If ψ is concave, then ψ(x)/x is decreasing and

ψ(s)

s
|Es| ≤

ψ(s)

s

∫ s

0

NE(t)dt ≤
∫ s

0

ψ(t)

t
NE(t)dt =Mψ,E(s).

And if ψ is convex then ψ(x)/x is increasing, so
∫ s

0

ψ(t)

t
NE(t)dt ≤

ψ(s)

s

∫ s

0

NE(t)dt =
ψ(s)

s
|Es| =Mψ,E(s).

The function ψ is called α–admissible if ψ is concave or convex and ψ(s)/sα is decreasing
for some α > 0. Now we can state the main result of this subsection

Theorem 3.5. Let E be a closed subset of T. Let w be a convex decreasing function and
let Ω(ζ) = w(d(ζ, E)). Suppose that there exists an α–admissible function ψ, with α < 2,
such that ρµ,E(s) ≤ ψ(s). Then

Dµ(Ω) ≤ C(α)‖w′Mψ,E‖∞‖w‖∞.
Proof. We apply lemma 3.4. An analogue calculation, as in the proof of Theorem 3.2, gives

I1 + I2 . ‖w′Mρµ,E ,E‖∞‖w‖∞.
Now we consider the integral I3. We have

I3 = 2

∫ π

t=0

∫ π

s=t

∫ t+s

u=t

∫ t+s

v=t

w′(u)w′(v)
ρµ,E(s)

s3
NE(t)dvdudsdt

.

∫ π

t=0

∫ π

s=t

∫ 2s

u=t

∫ 2s

v=t

|w′(u)||w′(v)|ρµ,E(s)
s3

NE(t)dvdudsdt

.

∫ π

v=0

|w′(v)|ψ(v)
v2

∫ v

u=0

|w′(u)||Eu|dudv

.

∫ π

v=0

|w′(v)| 1

v2−α

∫ v

u=0

|w′(u)|ψ(u)
uα

|Eu|dudv

≤ C(α) sup
u

(
|w′(u)|ψ(u)

u
|Eu|

)∫ π

v=0

|w′(v)| 1

v2−α
v2−αdv

≤ C(α) sup
u

(
|w′(u)|ψ(u)

u
|Eu|

)
‖w‖∞.

�

Corollary 3.6. Let E be a closed subset of T. Let w be a convex decreasing function and
let Ω(ζ) = w(d(ζ, E)). Suppose that ρµ,E(t) = O(tα) for some α > 0. Then

(1) Dµ(Ω) ≤ C(α) sup
t≥0

∣∣∣w′(t)

∫ π

t

tα−1NE(t)dt
∣∣∣‖w‖∞, if 0 < α ≤ 1,

(2) Dµ(Ω) ≤ C(α) sup
t≥0

∣∣w′(t)tα−1|Et|
∣∣‖w‖∞, if 1 ≤ α < 2,

(3) Dµ(Ω) ≤ C(α) sup
t≥0

∣∣w′(t)| log t||Et|
∣∣‖w‖∞, if α = 2,
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(4) Dµ(Ω) ≤ C(α, h) sup
t≥0

∣∣w′(t)h(t)|Et|
∣∣‖w‖∞, if α > 2, where h is a positive increasing

function such that h(0) = 0 and
∫
0
ds/h(s) <∞.

Proof. (1) and (2) are direct consequences of Theorem 3.5.
Now we prove (3). The proof of Theorem 3.5 gives

I3 .

∫ π

v=0

|w′(v)| log 1

v

∫ v

u=0

|w′(u)||Eu|dudv,

and we get our estimate.
Finally we prove (4). Since |Et| → 0, then there exists a positive increasing function h,
h(0) = 0, such that

∫
0
ds/h(s) <∞. Again, by the proof of Theorem 3.5 we have

I3 . C(α)

∫ π

v=0

|w′(v)|
∫ v

u=0

h(u)

h(u)
|w′(u)||Eu|dudv,

which gives the desired estimate. �

4. kernel estimate

In this section we will prove Theorem 1. The reproducing kernel kµ of D(µ) is defined
by,

f(z) = 〈f, kµ(·, z)〉, f ∈ D(µ), z ∈ D.

So,

kµ(z, z) = sup{|f(z)|2 : f ∈ D(µ), ‖f‖2µ ≤ 1}. (9)

It follows obviously that for |z| ≤ 1/2 we have

kµ(z, z) ≍ 1 +

∫ |z|

0

dr

(1− r)P [µ](rz/|z|) + (1− r)2
.

By Littlewood–Paley identity, we have

‖f‖2µ = ‖f‖2H2 +Dµ(f)

= |f(0)|2 +
∫

D

|f ′(w)|2|[| log |w||+ P [µ](w)]dA(w)

≍ |f(0)|2 +
∫

D

|f ′(w)|2|[(1− |w|) + P [µ](w)]dA(w).

Let f ∈ D(µ)\{0} and let f = IfOf be the inner–outer factorization of f . Then Of ∈ D(µ)
and Dµ(Of) ≤ Dµ(f) (see [13]). Thus by (9), we get

kµ(z, z) = sup{|f(z)|2 : f ∈ D(µ) outer function and ‖f‖µ ≤ 1}. (10)

This observation will be useful in the proof of the lower estimate.
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4.1. Proof of the upper estimate. Let z = ρ ∈ [1/2, 1). By Lemma 2.3, it suffices to
prove that

kµ(ρ, ρ) . 1 +

∫ 1

1−ρ

dx

Fµ(x) + x2
.

Let f ∈ D(µ), since f ∈ H2,

|f(iy)| ≤ ‖f‖H2√
1− y

≤
√
2‖f‖H2 , 0 < y < 1/2.

So, for 0 < y < 1/2, we have

|f(ρ+ i(1− ρ)y)| =
∣∣∣f(iy) +

∫ ρ

0

f ′(t + i(1− t)y)dt
∣∣∣ .

∫ ρ

0

|f ′(t+ i(1− t)y)|dt+ ‖f‖H2.

Let ∆ be the triangle with vertices −i/2, 1, i/2 and let ∆ρ = {x+ iy ∈ ∆ : 0 ≤ x ≤ ρ}.
By change of variables w = u+ iv = t + i(1− t)y, we get

1

1− ρ

∫ (1−ρ)/2

−(1−ρ)/2

|f(ρ+ iη)|dη =

∫ 1/2

−1/2

|f(ρ+ i(1− ρ)y)|dy

.

∫ ρ

0

∫ 1/2

−1/2

|f ′(t+ i(1− t)y)|dydt+ ‖f‖H2

.

∫

∆ρ

|f ′(w)| dudv
1− u

+ ‖f‖H2

. Dµ(f)
1/2

[ ∫

∆ρ

dA(w)

(1− u)2((1− |w|) + P [µ](w))

]1/2
+ ‖f‖H2

. Dµ(f)
1/2

[ ∫ ρ

0

du

(1− u)2 + (1− u)P [µ](u)

]1/2
+ ‖f‖H2

. Dµ(f)
1/2

[ ∫ 1

1−ρ

dx

Fµ(x) + x2

]1/2
+ ‖f‖H2. (11)

Denote by D(λ, r) the disc of radius r centered at λ. Since

D(ρ, (1− ρ)/4) ⊂ {z = x+ iy : |x− ρ| ≤ (1− ρ)/4 and |y| ≤ (1− x)/4},
by (11) and the subharmonicity of |f | we obtain

|f(ρ)| .
1

(1− ρ)2

∫ ρ+ 1−ρ
4

x=ρ− 1−ρ
4

(∫ 1−x
2

y=− 1−x
2

|f(x+ iy)dy
)
dx

. Dµ(f)
1/2

[ ∫ 1

5
4
(1−ρ)

dx

Fµ(x) + x2

]1/2
+ ‖f‖H2 (12)

Now from (9), we get

kµ(ρ, ρ) . 1 +

∫ 1

1−ρ

dx

Fµ(x) + x2
≍ 1 +

∫ |z|

0

dr

(1− r)P [µ](rz/|z|) + (1− r)2
.
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4.2. Lower estimate.

4.2.1. Weighted Sobolev spaces. In this subsection we introduce weighted Sobolev spaces
which will be used in the proof of lower estimate of the norm of the kernel of D(µ) and
in the proof of Theorem 5.4. Let ϕ be a nondecreasing continuous function. The Sobolev
space associated with ϕ, W∞(ϕ), consists of real continuous functions f on ]0, 2π] given
by

f(x) = f(2π) +

∫ 2π

x

g(s)ds, 0 < x ≤ 2π, (13)

where g is a measurable function satisfying

||gϕ||∞ = sup
0<x

|g(x)|ϕ(x) <∞.

As usual g will be denoted by f ′. Equipped with the following norm

‖f‖W∞(ϕ) = ‖f ′ϕ‖∞,
W∞(ϕ) is a Banach space. It becomes a topological Banach algebra, if and only if,

∫

0

dx

ϕ(x)
<∞.

We say that f is regular, and write f ∈ R, if f is a C1 convex decreasing function on
[0, 2π], satisfying f(2t) ≤ 2f(t) and t2|f ′(t)| is increasing.

Our goal is to estimate

γϕ(a) = sup
{
f 2(a) : f ∈ W∞(ϕ) ∩R, ‖f‖W∞(ϕ)‖f‖∞ + ‖f‖22 ≤ 1

}
.

First we will examine the hilbertian case

W 2(ϕ) =
{
f of the form (13) : ‖f‖2W 2(ϕ) = ‖f‖22 +

∫ 2π

0

|f ′(t)|2ϕ(t)dt <∞
}
.

We also need the following subspace of W 2(ϕ)

W 2
0 (ϕ) =

{
f of the form (13) : f(2π) = 0, and ‖f‖2W 2

0 (ϕ)
=

∫ 2π

0

|f ′(t)|2ϕ(t)dt <∞
}
.

Clearly, evaluations at points of ]0, 2π] define continuous linear functionals on W 2(ϕ) and
on W 2

0 (ϕ). Let Kϕ, Lϕ be the reproducing kernels of W 2(ϕ) and of W 2
0 (ϕ) respectively. A

simple computation gives the following expression of the reproducing kernel Lϕ of W 2
0 (ϕ).

We have

Lϕ(t, s) =





∫ 2π

t

dx

ϕ(x)
t ≥ s,

Lϕ(s, s) t ≤ s.
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The estimates of Kϕ, on the diagonal is given by

Kϕ(a, a) ≍ 1 + Lϕ(a, a) = 1 +

∫ 2π

a

dx

ϕ(x)
.

It means that

sup
{
f(a)2 : f ∈ W 2(ϕ) , ‖f‖2W 2(ϕ) ≤ 1

}
≍ 1 +

∫ 2π

a

dx

ϕ(x)
.

We have the following proposition.

Proposition 4.1. Suppose that t2/ϕ(t) is increasing and ϕ(t) ≥ t2. Let a < 1/2, we have

γϕ(a) ≍ Kϕ(a, a).

Proof. Since ‖f‖2W 2(ϕ) ≤ ‖f‖W∞(ϕ)‖f‖∞, then γϕ(a) ≤ Kϕ(a, a).
Conversely, let f = f0 + 1, where

f0(x) =

∫ 2π

2π x+a
2π+a

ds

ϕ(s)
, 0 < x ≤ 2π.

Clearly f ∈ R. Since ϕ(2t) ≍ ϕ(t), we have

‖f0‖22 =

∫ 2π

0

f0(t)
2dt

.

∫ π

0

∫ 2π

u=t+a

∫ 2π

v=t+a

1

ϕ(u)ϕ(v)
dudvdt

.

∫ a

t=0

∫ 2π

u=a

∫ 2π

v=a

1

ϕ(u)ϕ(v)
dudvdt+

∫ π

t=a

∫ 2π

u=t

∫ 2π

v=t

1

ϕ(u)ϕ(v)
dudvdt

.

∫ 2π

u=a

∫ 2π

v=a

a

ϕ(u)v2
dudv +

∫ 2π

u=a

∫ 2π

v=u

u

ϕ(u)v2
dudv

. ‖f0‖∞.

Then we obtain

Kϕ(a, a) .
f(a)2

‖f‖W∞(ϕ)‖f‖∞ + ‖f‖22
≤ γϕ(a).

And the proof is complete. �

4.2.2. Proof of the lower estimates. Let z = r ∈]1/2, 1[ and let w ∈ R. We consider the
outer function fw given by

|fw(eit)| = w(|t|), a.e on [−π, π].
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Let ϕ(x) = Fµ(x) + x2. By (10), Proposition 2.2 and Theorem 3.2 we have

kµ(r, r) &
|fw(r)|2
‖fw‖2D(µ)

&
w2(1− r)

‖w‖W∞(Fµ)‖w‖∞ + ‖w‖22

&
w2(1− r)

‖w‖W∞(ϕ)‖w‖∞ + ‖w‖22
.

Thus

kµ(r, r) & γϕ(1− r).

By Proposition 4.1, we obtain the result.

5. Capacity

Let µ be a positive finite measure on T and let cµ be the associated capacity given by
(1). The capacity cµ is a Choquet capacity [4, 9] and so for every borelian set of T we have

cµ(E) = sup{cµ(K) : K compact , K ⊂ E}.

Note that cµ satisfies a weak-type inequality. Namely:

cµ({ζ ∈ T : |f(ζ)| ≥ t cµ-q.e.}) ≤
‖f‖2µ
t2

, f ∈ Dh(µ).

As consequence of this inequality we have the following properties.

Proposition 5.1. The following properties are satisfied

• Let E ⊂ T be a Borel set and let Mµ(E) := {f ∈ D(µ) : g|E = 0 cµ-q.e}. Then
the set Mµ(E) is closed in D(µ).

• If f ∈ D(µ) is cyclic for D(µ) then f is outer function and cµ(ZT(f)) = 0.

• Every function f ∈ D(µ) has non-tangential limits cµ-q.e on T, more precisely The
radial limit limr→1− f(rζ) exists and is finite for every f ∈ Dh(µ) if and only if
cµ(ζ) > 0.

Proof. See [5, 9]. �

Now we will give the proof of the estimate of the capacity of arcs.
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Proof Theorem 2. Suppose that ζ = 1. Let w ∈ R and let fw be the outer function
satisfying

|fw(eit)| = w(|t|), a.e on [−π, π].
It’s clear that w(|I|) . w(x) for |x| ≤ 2|I|. We have

γϕ(|I|) . 1/cµ(I).

By proposition 4.1, we obtain

cµ(I) . 1/kµ(ρ, ρ), (ρ = 1− |I|).
For the reverse inequality note that

cµ(I) = inf{‖f‖2µ : f ∈ C1, 0 ≤ f ≤ 1 and f = 1 on I}.
Consider the function u ∈ Dh(µ) such that 0 ≤ u ≤ 1 and u|I = 1. Hence u ∈ Dh(µ)∩C1.
We have P [u](1 − |I|) ≍ 1. Let ρ = 1 − |I|, a similar argument, as in the proof of (12),
gives

P [u](ρ) . Dµ(u)
1/2

√
kµ(ρ, ρ) + ‖u‖L2(T).

So kµ(ρ, ρ)−1/2 . Dµ(u)
1/2, and

cµ(I) ≥
1

kµ(ρ, ρ)
.

2

As an immediate consequence, we obtain

Corollary 5.2. Let λ ∈ T.

cµ({λ}) = 0 ⇐⇒
∫ 1

0

dx

(1− x)P [µ](xλ) + (1− x)2
= ∞.

Now we will give some sufficient conditions on a closed subset of T to be µ–polar. Let E
be a closed subset of T. We define nE(ε), the ε–covering number of E, to be the smallest
number of the closed arcs of length 2ε that cover E. Note that

εnE(ε) ≤ |Eε| ≤ 4εnE(ε), 0 < ε ≤ π.

Let

κµ(r) = inf{kµ(rζ, rζ) : ζ ∈ supp µ}.
It ’s easy to see that κµ is unbounded if and only if, for each ζ ∈ T, we have cµ(ζ) = 0. In
this case one can prove easily, by the sub-additivity property of capacity, that

Corollary 5.3. Let E be a closed subset of T such that lim
r→1−

κµ(r) = ∞. If

nE(ε) = o(κµ(1− ε)), ε→ 0,

then cµ(E) = 0.
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Recall that for a positive increasing function ψ on (0, 2π) such that ψ(0) = 0, we set

Mψ,E(s) = max
( ∫ s

0

ψ(t)

t
NE(t)dt,

ψ(s)

s
|Es|

)
, s ∈ (0, 2π).

Now we can state the main result of this section.

Theorem 5.4. Let E be closed subset of T such that ρµ,E ≤ ψ where ψ is α–admissible
for some α < 2. If ∫ π

0

dt

Mψ,E(t)
= +∞,

then cµ(E) = 0.

Proof. Note that Mψ,E is given by (5), so Mψ,E(s) is increasing. Let a > 0. By the
definition of capacity and using Theorem 3.5 and Proposition 4.1 we have

KMψ,E
(a, a) ≍ γ2Mψ,E

(a) .
1

cµ(E)
.

When a goes to zero, we get ∫ π

0

dt

Mψ,E(t)
.

1

cµ(E)
.

And the proof is complete. �

Remarks. Now we give some examples:

(i) Let E be a closed subset of T and let M̃µ,E(t) =
∫ t
0
(ρµ(s)NE(s)/s)ds. If

∫ π

0

dt

M̃µ,E(t)
= ∞,

then cµ(E) = 0.

(ii) If µ = m is the Lebesgue measure, then cµ is comparable to the logarithmic capacity

and M̃µ,E(s) = |Es|. Theorem 5.4 says that if
∫

0

dt

|Et|
= +∞,

then c(E) = 0. This result is du to Carleson [4, Theorem 2, p.30].

(iii) Let K be a closed subset of T such that ρµ,K(s) = O(s1+β) for some 0 < β. If β < 1,
then every subset ofK with Hausdorff dimension less than β is µ-polar. If β > 1, then every
subset E of K with |E| = 0 is µ-polar. The following measures dµ(ζ) = d(ζ,K)βdm(ζ)
provide such examples.
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