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Abstract 

A visco-hyperelastic constitutive model, based on an original approach initially developed 

by (Billon, 2012) and applied to amorphous rubbery polymers for a one-dimensional 

formalism, was extended in this study to three-dimensional constitutive equations based on a 

thermodynamic framework. The model was applied to a semi-crystalline polyamide polymer, 

PA66.  The experiments included tension and shear testing coupled with synchronized digital 

image correlation and infrared measurements device for capturing the time, temperature, and 

stress state dependence, as well as the complex thermomechanical coupling exhibited by the 

material under large deformation. A notion of equivalent strain rate (based on the time-

temperature principle superposition) was also introduced to show its capability to build master 

curves and therefore decrease the number of testing needed to build a material database. The 

model is based on the Edward Vilgis theory (1986) and accounts for chains network 

reorganization under external loading through the introduction of an evolution equation for 

the internal state variable, η, representing the degree of mobility of entanglement points. The 

model accounting for the equivalent strain rate notion was calibrated using master curves. The 

thermomechanical model agreed well with the experimental mechanical and temperature 

measurements under tension and shear conditions. The approach developed in this study may 

open a different way to model the polymer behavior. 

 

Keywords: constitutive model, polymer, slip-link, disentanglement, viscohyperelasticity, 

thermo-mechanical coupling, polyamide 66, tensile test, shear test. 
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Nomenclature 

ve    Specific internal energy (per unit volume) 

vr    Heat source per unit volume 
q   Heat flux per unit area 

vC    Heat capacity per unit volume 

λ   Heat conductivity 
h   Thermal convection coefficient (in air) 

vs    Specific entropy (per unit volume) 

T    Temperature 

vψ    Helmholtz free energy per unit volume 

thφ    Thermal dissipation 

intφ    Inelastic dissipation 

J   Determinant of the deformation gradient 
eJ    Determinant of the elastic deformation gradient 
vJ    Determinant of the inelastic deformation gradient 

F   Deformation gradient 
eF    Elastic deformation gradient 
vF    Inelastic deformation gradient 
eC    Elastic Cauchy-Green tensor 

l    Velocity gradient 
el    Elastic velocity spatial gradient 

vL    Inelastic velocity spatial gradient 
d   Symmetric part of the velocity gradient 

ed    Symmetric part of the elastic velocity gradient 
vD    Symmetric part of the inelastic velocity gradient 
σ    Cauchy stress tensor 
M    Mandel stress tensor 
S   Second Piola-Kirchhoff stress tensor 

numσ    Numerical stress tensor 

expσ    Experimental stress tensor 

{ }e
3

e
2

e
1 I,I,I   Thee invariants of the elastic Cauchy-Green tensor 

k   Boltzmann's constant 

refT    Reference temperature 

CN    Density per unit volume of permanent nodes 

SN    Density per unit volume of slip-link nodes 
α    Limit of chain extensibility 
η    Degree of mobility of the slip links (entanglement points) 

β   Taylor Quinney’s coefficient 

Cw    Energy stored in permanent nodes 

Sw    Energy stored in entangled network 
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{ }1p0p z,z   Parameters of the degree of mobility of the slip links 

ε&    Experimental strain-rate 

1C    First WLF parameter 

2C    Second WLF parameter 

refT/Ta    WLF shift factor 

eqTa ε&    Equivalent strain-rate at the reference temperature 

0η    Initial value of η  
χ   Tensile and shear correction coefficient 
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1 Introduction 
 

Thermoplastics and more especially semi-crystalline polymers (SCP) have been 

increasingly applied in the industry due to their potential to fulfill the mechanical, electrical 

and/or environmental requirements needed for structural applications ranging from 

automotive, aeronautic to medical sectors. Unfortunately the design of such structural parts 

submitted overtime to complex loading is not reliable enough to optimally use these 

polymers. This is mainly due to their complex mechanical behavior that is sensitive to 

external parameters (such as temperature, strain rate, and triaxiality). As a matter of fact, the 

thermomechanical viscoelastic/viscoplastic behavior of polymers is not always well 

understood and modeled. 

A large number of material models developed to predict the material response of 

thermoplastic polymers can be found in the literature (see Bouvard et al. (2009) for a review). 

Previous work proposed constitutive models combining linear and non-linear springs with 

dashpots enhanced by specific evolution equations to predict the non-linear viscoelastic 

response of polymers (Chaboche (1997), Moreau et al. (2005), Khan et al. (2006), Ayoub et 

al. (2010, 2011), Zaïri et al. (2011), among others). Other constitutive models were proposed 

to capture the elastic–viscoplastic deformation behavior of solid polymers. (e.g., Bardenhagen 

et al. (1997), Buckley et al (1995), Khan and Zhang (2001), Zaïri et al. (2005a, 2005b, 2007, 

2008), Colak (2005), Pyrz and Zaïri (2007), Dusunceli and Colak (2008), Ghorbel (2008), 

Drozdov (2009), Regrain et al. (2009)). Different approaches based on material models 

initially developed for metals were also used to model the mechanical behavior of polymers. 

For instance, we refer to the viscoplastic model based on overstress (VBO) (Krempl and Khan 

(2003), Dusunceli and Colak (2008), Khan and Yeakle (2011), or more recently to the 

constitutive model based on the generalized Frederick–Armstrong–Philips–Chaboche theory 

(Voyiadjis et al. (2012). Efforts were also developed to model the viscoelasticity or hyper-
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viscoelasticity of polymers when deformed in their rubbery state (e.g. G'Sell and Jonas 

(1979), Lai et al. (2005), Roguet et al. (2007)). 

More recently, the mechanical behavior of semi-crystalline polymer has been 

extensively investigated in the literature. A large number of models proposed for SCP are 

based on mixture theory used to combine the behavior of crystalline and amorphous phases. 

The amorphous phase can be modeled based on the early work of Haward and Thackray 

(1968). Improvement of this initial model was carried out by several authors (Boyce et al. 

(1988, 2000), Arruda et al. (1995), Buckley and Jones (1995), Wu and van der Giessen 

(1995), Govaert et al. (2000), Tomita (2000), Anand and Gurtin (2003), Anand and Ames 

(2006), Dupaix and Krishnan (2006), Richeton et al. (2007), Belbachir et al. (2010), Zaïri et 

al. (2010, 2011), among others). More recently, formulations of thermomechanical model 

were also proposed to capture the material self-heating under large deformation (Ames et al. 

(2009), Anand et al. (2009), Srivastava et al. (2010a,b), Bouvard et al (2012)). 

Many efforts were carried out to describe the complex mechanical behavior of SCP 

under large deformation behavior. Such models focused on capturing the heterogeneous 

nature of the SCP microstructure at different scales (at the lamellae, at the spherulite, or at the 

continuum level) as well as the material dependence to the external loading conditions (such 

as strain rate, temperature, and/or strain path). Therefore, constitutive equations were 

proposed to account for the material internal microstructure (such as crystal volume fraction) 

(see Kennedy et al. (1994), Lee et al. (2003), Rozanski and Galeski (2013), Ponçot et al. 

(2013), among others). We can also refer to the previously cited VBO model that was 

extended to SCP by incorporating information regarding the degree of crystallinity (Dusunceli 

and Colak (2008)). Other approaches were based on the use of rheological models (spring-

dashpots) to capture the complex mechanical behavior of SCP (Lee et al. (1993a, 1993b), 

Boyce et al. (2000), van Dommelen et al. (2003), Ahzi et al. (2003), Makradi et al. (2005), 
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Khan et al. (2006),Ayoub et al. (2010) , Ayoub et al. (2011)). Recently, micro-mechanical 

model using either analytical or either FE-based homogenization scheme were also proposed 

(Lee et al. (1993a), Nikolov and Doghri (2000), Nikolov et al. (2002), Bédoui et al. (2006), 

Gueguen et al. (2008), Li and Shojaei (2012), Uchida and Tada (2013), Shojaei and Li 

(2013)).  

Despite the fact that the literature is abundant for the mechanical behavior of SCP 

under isothermal condition, only few studies focus on the thermomechanical modeling of such 

material. In this paper, a coupled thermomechanical viscoelastic viscoplastic was proposed 

and validated for semi-crystalline polymers around their glass transition temperature (Tg). 

The model is based on the non-gaussian statistic approach of entangled polymer network 

developed by Edwards and Vilgis (1986) and follows the modification proposed by Billon 

(2012). 

The Edwards and Vilgis model is based on the Ball et al. theory (1981) that introduces 

the concept of slip-link to account for the entanglement slippage along the network chains. 

Prior to Billon (2012), several authors have used the Edwards and Vilgis model and have 

showed its capability to model the polymer network evolution under deformation (see for 

instance, Urayama et al. (2001), Sweeney et al. (1995, 1996, 1997, 2002), Meissner et al. 

(2002), Marco et al. (2002) or Gorlier et al. (2001)). Especially, Meissner et al. extended the 

Edwards and Vilgis model to filler-reinforced networks by incorporating the concept of 

strain-amplification function. 

Recent effort by Billon (2012) focused on proposing constitutive equations to model 

the time-dependent mechanical behavior of polymers close to their Tg. In addition to the 

Edward and Vilgis model, the author assumed specific evolution equations for internal state 

variables related to slip-link and related disentanglement as a source of inelastic mechanisms. 

Therefore, a phenomenological modeling of disentanglement was used to reproduce the 
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viscoelastic behavior of polymers. Additionally, the time and temperature dependence of the 

material was introduced by the use of a time-temperature superposition principle. The one-

dimensional isothermal model (i.e. without thermo-mechanical coupling) was applied to 

amorphous polymers such as PMMA.  

In this paper, an extension of the isothermal model developed by Billon (2012) to 

thermomechanical conditions is presented and applied for a semi-crystalline polymer, 

polyamide 66 (PA66). The model considers the polymer microstructure at the mesoscopic 

level.  The Edward and Vilgis model was used to give an equivalent chain network to the 

polymer. In our case, we consider that the crosslink network may represent the crystalline 

phase and the entangled network the deformation of amorphous region (disentanglement). 

This study focuses on validating the model on the thermomechanical behavior of the PA6.6 as 

well as modeling the material self-heating under large deformation. Model refinement in term 

of a better description of the semi-crystalline structure will be investigated in further effort. 

The paper proceeds first by an experimental characterization of a PA 66 polymer over 

a wide range of strain rates, temperatures, loading conditions (load-unload) and two different 

stress states (tension and shear). Experimental characterization was performed based on a 

synchronized digital image correlation and infrared measurements (Section 2). Next the three-

dimensional thermomechanical formalism of the model is presented following the 

Generalized Standard Materials (GSM) framework described by Lemaitre and Chaboche 

(1985), Germain et al. (1983). All constitutive equations were presented within large 

deformation formalism and followed the thermodynamic framework (Section 3). In Section 4, 

the model parameters were determined within an inverse identification method and the 

thermomechanical response of the model was compared to the experimental data. Finally, 

conclusions were drawn in Section 5. 
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2 Material and experiments 

2.1 PA66 material and protocol 

An experimental database was built for a semi-crystalline polyamide 66 supplied by Solvay. 

Tensile and shear samples were machined in the middle zone of a 3 mm-thick injection 

molded plate. Fig.1 displays the sample geometries (for tensile and shear loading) as well as 

their location in the injected plaque. The humidity being known to have an influence on the 

mechanical properties of the polyamide (Valentin et al. [1987], Verdu [2000]), the material 

was conditioned at the equilibrium with an air containing 50% of relative humidity (RH50) 

during the entire experimental campaign.  

 
Fig.1. (a) Geometry of tensile sample; (b) Geometry of shear sample; (c) Location of the samples in the injected 

plaque. 

Fig. 2 presents the experimental acquisition device used in this study. Tests were performed at 

temperatures ranging from Tg-60 °C to Tg+30 °C and for constant true strain rates ranging 

from 10-4 s-1 to 2.4 s-1 (using video-controlled tests (G’sell et al. [2002]) as refer in Fig 2a). 

Digital image correlation (DIC) on random patterns (Fig. 2b) was used to analyze the strain 

field on the front face of the sample, while the temperature was measured at the sample 
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surface using an infrared (IR) camera (FLIR SC5000) (see Maurel-Pantel et al. (2011) for 

more details).  

 

Fig.2. (a) Experimental data acquisition system; (b) View of a tensile sample with a random patterns. 

 

2.2 Tensile tests 

Tensile tests were performed at constant true strain-rate between 10-4 s-1 and 2.4 s-1 (using 

video control system described in Fig. 2) and at temperatures ranging from -5°C to 60°C. 

Typical results of DIC and IR measurements are displayed in Fig. 3 for a tensile test 

performed at room temperature. 

 

Fig.3. (a) Hencky strain in the longitudinal direction obtained from DIC measurement; (b) IR measurement on 

the sample side and face for a tensile test (ε&= 2.4 10-1 s-1, T= 26°C). 
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The DIC method was used to analyze the strain field in the three directions. These three-

dimensional strain analyses showed that the material can be considered as transverse 

isotropic, which means that the lateral strain field from the front face is equal to the lateral 

strain field computed from the sample thickness. We also noticed that the volumic strain (or 

hydrostatic strain) remains close to zero. Therefore, the material can be considered as 

isochoric. Thus, we assumed that the material was incompressible. As displayed in Fig. 3a, 

the strain field was observed to be localized in the middle of the process zone. We also 

noticed that the temperature field observed on the sample surface could be superimposed to 

the strain field, the warmer zone being located at the higher strained zone. A small difference 

was observed in tension for the temperatures measured on the back and side faces of the 

sample. Such observation was assumed to be due to the low thermal diffusivity of the 

polymer. However, this difference was so low compared to the overall temperature increase 

during deformation that this phenomenon was neglected. 

In the following, all the stress-strain curves referred to true stress and true strain quantities. 

The true strain was obtained from DIC measurement by performing an average over a box 

capturing a homogeneous longitudinal true strain (as observed in Fig. 3a). The true stress was 

then calculated by applying the condition of transverse isotropy which allows to completely 

define the evolution of specimen section over time. 

Fig. 4 displays the stress-strain and the temperature-strain curves for three different strain 

rates at room temperature. As shown in Fig. 4a, the material exhibits a time dependent 

behavior. We also noticed a material softening starting from strain rate of 0.01 s-1 for a strain 

level of 0.75. Such material softening is induced by material self-heating (as observed in Fig. 

4b) and emphasizes the strong thermomechanical behavior at such low strain rate. Fig. 4b also 

displays: i) a thermoelastic effect that induces a decrease of temperature at small deformation 

for the different strain rates and; ii) a material self-heating starting at 0.01 s -1 for medium 
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strain levels. The thermoelastic effect was also observed for amorphous polymers by Moreau 

et al. (2005). 

 

Fig.4. (a) Stress-strain curves and (b) temperature-strain curves for tensile loading conditions at three different 

strain rates (0.001 s-1, 0.01 s-1, and 0.1 s-1) at room temperature. 

2.3 Shear tests 

Shear testing were performed using Iosipescu configuration (described in standard "ASTM D 

5379") as illustrated in Fig. 5. The shear sample geometry (displayed in Fig. 1) was chosen 

for inducing strain localization in the sample. Indeed, Pierron and Vautrin (1997) showed that 

a triangular notch shape with a specific angle of 90° was providing a simple shear condition. 

However, the experimental device described in Fig. 5 did not allow getting strain field 

measurement in the sample thickness. Shear tests were performed at room temperature for 

constant strain rates ranging from 3.10-3 s-1 to 4.10-1 s-1. 

 

Fig.5. (a) Experimental shear test device based on Iosipescu configuration, (b) schematic view of the mounted 

shear sample. 
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Fig. 6 displays results regarding DIC and IR measurements for a shear test performed at 3.10-2 

s-1 at room temperature. We noticed that the warmer zone was localized in the shear band 

(representing the higher sheared zone). As noticed before, the self-heating zone was confined 

and did not propagate due to the low thermal diffusivity of the polymer.   

 

Fig.6. (a) Hencky strain in the direction of shear loading obtained from DIC measurement, and (b) IR 

measurement on the sample front face under shear loading (ε&= 3.7 10-2 s-1, T= 29°C) 

 

Fig. 7 displays the stress-strain and the temperature-strain curves for four different strain rates 

at room temperature. As shown in Fig. 7a, the material exhibits a time dependent behavior. 

The unloading path was observed to be non-linear with some residual strain. Similar to the 

tensile tests, thermo-elastic effects inducing material cooling were also observed for small 

strain levels (Fig. 7b). We also noticed that the material cooling effect was increased with the 

applied strain rate. 
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Fig.7. (a) Stress-strain curves and (b) temperature-strain curves measured for four different shear strain rates at 

room temperature. 

2.4 Dynamic mechanical analyses 

Dynamic mechanical analyses (DMA) were performed in tension to characterize the material 

α-transition temperature and the material visco-elastic domain. Fig. 8 displays the evolution of 

storage modulus, loss modulus, and tan δ as a function of the temperature. We observed an α-

transition temperature closed to 78°C at 1 Hz. The material also exhibits a strong visco-elastic 

behavior around its transition temperature.  

 

Fig.8. DMA curves at a frequency of 1 Hz for a PA66 material. 

 

The DMA tests performed at different temperatures for frequencies ranging from 0.1 Hz to 

100 Hz allowed building a master curve based on the time-temperature superposition 
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principle. The time-temperature principle was defined using the classical WLF's approach 

given by 

)T(TC

)T(TC
ogal

ref2

ref1
T −+

−−=     (1) 

where 
1C  and 

2C  are material parameters and 
refT  is the reference temperature.  

 

This relationship, introduced by Andrews and Tobolsky (1952), was used to build a master 

curve that accounts for both time and temperature effect on the mechanical behavior. For 

polymers an increase of the deformation rate will shift the DMA curves to higher 

temperatures (i.e. the transition from glassy to rubbery state will occur at higher 

temperatures).The time-temperature superposition principle was widely used for amorphous 

polymers,. However few studies investigated this principle for semi-crystalline polymer such 

as PA66. Fig. 9 displays the methodology used to build the master curve.  WLF parameters of 

68545.C 1 =  and C°= 06245.C 2 at C25T ref °=  were identified for the PA 66. 

 

Fig.9. (a) Methodology of getting a master curve at the reference temperature T0 by applying a horizontal 

shifting (aT) to the frequency curves obtained at different temperatures. (b) Evolution of the coefficient aT=To with 

the applied temperature. 

 
2.5 Introduction of the equivalent strain rate notion 
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In this section, the notion of equivalent strain rate was introduced. This notion was: i) built 

from the time-temperature superposition principle obtained from DMA tests and, ii) used to 

reduce the number of experimental tests performed under tensile and shear conditions. The 

equivalent strain rate, ( )eqTa ε& , was based on the time-temperature superposition principle 

defined at the reference temperature of 25°C and was written using Eq.(1) as : 

( ) ε×=ε×=ε −+
−

−
&&& )T(TC

)T(TC

TeqT
ref2

ref1

10aa        (2) 

where ε&  is the experimental applied strain rate. Fig. 10a shows the different strain rate and 

temperature conditions investigated in this study for tensile tests. The experimental conditions 

were defined by 46 couples of )T,(ε&  ranging from 10-4 s-1 to 2.4 s-1 for the strain rates and 

from -5°C to 60°C for the temperatures. As described in Fig. 10b, these conditions )T,(ε&  can 

be plotted as a new curve )T,(a eqT ε&  describing a range of equivalent strain rates ranging from 

10-9 s-1 to 105 s-1. Notice that: i) one value of equivalent strain-rate is represented by several 

couples of )T,(ε& ; and ii) these points follow a master curve. 

 

Fig.10.(a) Experimental testing conditions (ε& ,T) investigated in this study in tension, (b) New formalism based 

on ( eqTa ε& ,T) description leading to the building of a master curve. 
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Figs. 11 and 12 display the tensile stress-strain curves obtained for different couples of (ε& ,T) 

corresponding to equivalent strain-rates of eqTa ε& =10-5 s-1 and eqTa ε& =10 s-1, respectively. 

Figs. 11b and 12b display similar mechanical behaviors at the same equivalent strain rate. 

Notice that the differences observed at large deformation might be induced by material self-

heating. 

 
Fig.11. Time-temperature equivalence validation: (a) Experimental testing conditions (

eqTa ε& ,T), (b) Tensile 

stress-strain curves at 15
eqT s10 5.1a −−≈ε&  

 
Fig.12. Time-temperature equivalence validation: (a) Experimental testing conditions (

eqTa ε& ,T), (b) Tensile 

stress-strain curves at 1
eqT s 10a −≈ε& . 
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(a) 

 

(b) 

Fig.13. (a) (
eqTa ε& ,T) curve and (b) stress-strain master curves defined for:  (1) (ε&= 3 10-3 s-1, T= 60°C, eqTaε&

=6.05 10-9 s-1); (7) (ε&= 4.7 10-1 s-1, T= 40°C,
eqTa ε& =1.09 10-3 s-1), (12) (ε& = 1.3 10-2 s-1, T= 10°C,   eqTaε& =12.4 

10-3 s-1). 
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Thus, main stress-strain curves were used to describe the overall experimental database. As 

shown in Fig. 13b, one master curve was used for each value of equivalent strain-rate (Fig 

13a). 

Regarding the tensile tests, twelve master stress-strain curves (obtained for twelve different 

equivalent strains) were considered in this study. Regarding the shear tests, four stress-strain 

curves were added to the experimental database. Thus, the thermo-mechanical behavior of the 

material was studied through sixteen stress-strain and temperature-strain curves corresponding 

to a wide range of experimental conditions (as shown in Fig. 10).  

 
3 Thermo-mechanical constitutive equations 

A thermodynamic framework is used in this work to formulate the three-dimensional (3D) 

constitutive equations of the polymer. The purpose of the model is to capture: i) the visco-

elastic/visco-plastic behavior of the material; ii) the different stress states (tension and shear); 

iii) the thermo-mechanical coupling observed under deformation; iv) the material time-

temperature superposition through the introduction of an equivalent strain rate. In a first 

section, the kinematics of the problem are described. Then, the First and Second Laws of the 

thermodynamics are used to express the states laws (deriving from the Helmholtz free energy) 

and the complementary laws (deriving from a convex dissipative potential). The last section 

will describe the 3D constitutive equations of the model, motivated by Billon [1]. The 

constitutive equations of the model will be written in the intermediate configuration following 

methodology similar to Bouvard et al. [2010, 2012]. This work also uses Gibb's (direct) 

notation [Gurtin, 1981] to express tensor quantities and their mathematical operations. 

Considering two second order tensors A and B, tensor operations between the tensors A and B 

are indicated as AB for the inner product, as BA ⊗  for the dyadic product, and A:B for the 

scalar product.  
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3.1 Kinematics 

In standard continuum mechanics form, we let X represent an arbitrary material point in B0 

(body in a reference configuration). The motion of B was described through the mapping 

t),(Xyx =  via a deformation gradient (F), velocity (v), and velocity gradient (l) defined by: 

    
1FFvgrad=lyvyF −==∇= &&   , ,                 (3) 

Using the classical Kröner [1960] and Lee [1969] multiplicative decomposition of the 

deformation gradient F into elastic and inelastic components, we have, 

   ve FFF = , vJJdetJ eF == , Je =detFe, vFdetJv =       (4) 

where Fe represents the elastic part due to “reversible elastic mechanisms” and vF  represents 

the inelastic part due to “irreversible mechanisms”. The decomposition (Eq. 3) suggests the 

existence of an intermediate configuration between the undeformed B0 and the current B 

configuration, denoted by B . The configuration B  was obtained from B by unloading 

through Fe−1 to a zero stress state or relaxed state. 

Using Eq. (4), the velocity gradient l is written in B as 

    
1evee1 FLFlFFl −− +== & , 1vvv FFL −= &                  (5) 

where 1eee FFl −= & . el  and vL  can be decomposed into their symmetric and skew parts, i.e., 

eee wdl +=  and vvv WDL += . 

Three main assumptions are made regarding the model: i) the material is incompressible (

1det =F ); ii) the flow is incompressible, implying 1det =vF  and 0tr =vL , and iii) the flow 

is irrotational, meaning 0W v =  [Boyce et al., 1989; Gurtin and Anand, 2005] and then 

vv DL = . This last assumption was used to simplify the equations and was not based on 

experimental evidence. 

 

3.2 Thermodynamics 

A reduced global form of balance energy (Holzapfel (2000)) can be expressed in spatial 

description as 
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( )∫∫ +⋅∇−=

B

v

B

v dvr:dve
Dt

D
qlσ                         (6) 

where ve  is the specific (per unit volume in the current volume) internal energy, σ  is the 

Cauchy stress, q is the heat flux per unit area, and vr  is the heat source per unit volume in B. 

 

The Clausius-Duhem inequality can be expressed in spatial description as (Holzapfel (2000)) 
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where 
vs  is the specific entropy (per unit volume in the current volume). 

 

A local form of the First Law and the Second Law of thermodynamics can be expressed in the 

configurationB  as (see Bouvard et al. (2010) for more details) 

 
( ) 0Re vv =−⋅∇++− QD:MFdF:S veeeT&  (8) 

 
T

T

1

T

1

T

R
s

2

v
v ∇⋅+⋅∇−≥ QQ&  (9) 

where 
ve  and 

vs  are the specific (per unit volume) internal energy and entropy, respectively; 

Q  is the heat flux per unit area; vR  is the heat source per unit volume; SCM e=  is the 

Mandel stress, with eeTe FFC =  being the elastic Cauchy-Green tensor; S is the 

corresponding second Piola-Kirchhoff stress expressed in configuration B  as 

1111eJ −−−− == eTeeTe
τFFσFFS  ( τ  is the Kirchhoff stress). 
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The Helmholtz free energy per unit volume, 
vψ , in the current relaxed B  is related to the 

internal energy and entropy by 

 
vvv sTe −=ψ , vvvv sTsTe &&&& −−=ψ  (10) 

The Clausius-Duhem inequality can then be obtained by using Eq. (10) and substituting the 

expression for vR  from Eq. (8) into Eq. (9), we get the following, 

 
( ) 0T

T

1
sT vv ≥∇⋅−++−ψ− QD:MFdF:S veeeT&&  (11) 

The Helmholtz free energy function was assumed to depend on a number of independent state 

variables: the elastic Cauchy-Green tensor eC , a set of internal state variables (ISVs) Π , and 

temperature T  as 

 ( )T,ˆ
vv Πψ=ψ ,Ce  (12) 

As described in [Billon, 2012], an ISV, η, was used to quantify the degree of mobility of the 

slip links (entanglement points).  

Thus, the time derivative of ψ  can be calculated as 

 

T
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η

η

ψ̂ˆ
vvv

v
&&&&

∂
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+
∂
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+
∂
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=ψ e
e

C:
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 (13) 

The first term of Eq. (13) can be expressed as 
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1&&&&
  (14) 

Substituting Eq. (14) into Eq. (11), we obtain 

 0T
T

1
η

η

ψ̂
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2 v

v
vv ≥∇⋅−

∂
∂−








−

∂
ψ∂−++
























∂
ψ∂− QD:MFdF:
C

S veeeT
e

&&  (15) 

Using standard arguments (Coleman and Gurtin, 1967), we obtain from Eq. (15) the 

constitutive equations of S  and vs : 
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eC
S

∂
∂
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T

ˆ
s v

v ∂
ψ∂−=              (16) 

The dissipation inequality can now be reduced to 
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4342144 344 21

& QD:M v

 

(17) 

where the first term intφ regroups the inelastic work dissipated from irreversible mechanisms 

and the internal work associated with the polymer network reorganization (chains relaxation 

inducing chains disentanglement). The second term represents the thermal dissipation. 

 

The heat equation can be expressed by a combination of some of the above equations. Thus, 

substituting Eqs. (16) into Eq. (13), we obtain the following for the derivative expression of 

the free energy: 

 Tsη
η

ψ̂

2

1
v

v
v

&&&& −
∂

∂+=ψ eC:S             (18) 

Using this equation in Eq. (10) with Eq. (8), we obtain 
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+− QD:M v &&  (19) 

Using Eq. (16)2, the material time derivative of the entropy vs  can be obtained as 
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The last term of Eq. (20) can be obtained using the definition of the heat capacity per unit 

volume vC with Eq. (16)2 as the following, 

 ( )vv
v

v sT
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e
C +ψ

∂
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∂
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T

s
TC v

v ∂
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=       (21) 
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Then, the heat equation can be found combining Eqs. (19) and (20) and using Eqs. (16) and 

(21): 
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After arranging some terms, one obtains 
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3.3 Constitutive equations (based on Billon (2012)) 

• Helmholtz free energy 

The model developed by Billon (2012) is based on the non-gaussian statistic approach of 

entangled polymer network developed by Edwards and Vilgis (1986). The Edwards-Vilgis 

free energy can be decomposed into two components: i) the energy due to the polymer 

network deformation constrained by permanent nodes (crosslinks); and ii) the energy due to 

the polymer network deformation constrained by slip links such as entanglement points. The 

Edwards and Vilgis hyper-elastic model can therefore be described by: 

                                  ( ) ( ) ( ) ( )( )ηψ+αψ=ηψ ,C,C,C eee
ssccv

ˆNˆNkT2/1T,ˆ           (24) 

where k is the Boltzmann’s constant; Nc is the density per unit volume of crosslinking; Ns is 

the density per unit volume of entanglement points; the variable η accounts for the degree of 

mobility of the entanglement points (η being 0 for permanent nodes); α  is the limit of chain 

extensibility. 
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The energy of Edward and Vilgis can also be written as:         
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with  
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Some of the variables were assumed to be dependent of the time and temperature by the use 

of an equivalent strain rate eqTa ε&  (defined at the reference temperature, Tref). This equivalent 

strain rate follows classical time – temperature equivalence principle. Let’s emphasize that 

this latter assumption did not rely on theoretical developments but on an experimental 

observation described in Section 2.5. The use of an equivalent strain rate needs to be related 

to the use of a corresponding equivalent temporal scale. The shift factor, Ta , is well known at 

each time for an instantaneous temperature. So, the development of a temporal equivalence at 

a reference temperature must be related to a time discretization. The equivalent time at 

reference temperature, eqt , is defined in Eq. (26). This equivalent time is a function of the 

physical history seen by the material during the loading and is directly linked to the 

temperature history. 
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where d:d
3

2
eq =ε&  is the equivalent rate of deformation. 

 

Two new parameters, ( ) ( ){ }eqT
*
seqT

*
c aN,aN εε && , was introduced in the Edwards-Vilgis model in 

substitution of { }kTN,kTN sc . The expression of the parameters will be clarified in Section 

3.6. 

• Cauchy stress 

The Cauchy stress can be computed using Eq. (16)1. Using the polar decomposition of eF  

along with the spectral representation of eU  and eC (see Bouvard et al. (2010) for more 

details) such as 

   II
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2 nnUC ee ⊗λ== ∑
=

                  (27) 

with 
e
Iλ  being the positive eigenvalues and 

In  being the orthonormal eigenvectors of eU . 

One can express the stress S, Eq. (16)1, as 
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The Cauchy stress is then given by 
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where p’ is a pressure term that must be determined from the equilibrium equations and the 

boundary conditions of the problem.  

and  
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v
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are defined in Appendix (A). 

 
• Evolution equation of the internal state variable { }η  

The evolution equation of η is related to the rate of polymer chains network reorganization 

when submitted to an external loading. More especially, the variable η accounts for the 

disentanglement of the polymer chains. Following Billon [2012], the kinetic of η depends on 

the elastic energy stored in the entangled network (driven by Sω ) (Eq. (25)). Thus, more the 

elastic energy stored in the entangled network is important, more this network is constraint 

and would have a tendency to disentangle and to relax.  Therefore, the evolution equation of 

η was defined as  

                

( ) ( )( )[ ]( )1,,exp 1
*
0 −−= ηωηωη Ibe

sspp zz&      (30) 
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where { }1
*
0 , pp zz  are material parameters. The specific form of *

0pz will be clarified in Sections 

3.5 and 3.6. 

Notice that such concepts can easily be justified for amorphous phase of polymers. However, 

in the case of a semi-crystalline polymer, theEdward Vilgis theory needs to be seen as an 

equivalent chain network of the polymer. Crystalline phases may be considered as a crosslink 

network and the amorphous region as the entangled network. Disentanglement may represent 

the reorganization of the amorphous region under deformation as well as the possible change 

of topology of the crystalline phases under large deformation. The current effort focus on 

validating a first approach of the model on the available material database. Further effort may 

focus on the introduction of a new potential to describe more accurately the crystalline phase 

deformation. 

 

• Inelastic mechanisms 

To complement the constitutive description, the material viscous flow needs to be described 

in order to capture the kinetics of inelastic mechanisms observed during the deformation of 

the polymer along with the non-linear loading/unloading response of the material.  

The velocity gradient of deformation, vD , can be expressed from intφ in Eq. (17) 

  

0η
η

ψ̂v
int ≥

∂
∂−=φ &vD:M                        (31) 

During testing, mechanical loading provides energy that is made available to the polymer 

chains networks to rearrange themselves. The idea for getting an expression of the material 

inelasticity was to assume that one part of the mechanical energy is stored elastically in the 

chain network and another part is released and used to reorganize/relax the polymer network. 

This reorganization will lead to dissipative mechanism such as heat. Therefore, we assumed 
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that a part of the internal work is proportional to the inelastic energy by introducing the 

coefficient of Taylor-Quinney, β: 

  

vD:M)1( η
η

ψ̂v β−=
∂

∂ &                               (32) 

The coefficient of Taylor-Quinney, )a(f eqTε=β & , was assumed to depend to the applied 

strain rate and temperature. Its expression will be formulated in Section 3.6. 

Eq. (31) is given by 
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The rate of inelastic deformation can be deduced from Eqs. (30) and (32) as 

  














∂
∂

β−
=

)(dev

)(dev
η

η

ψ̂

)(dev

1

)1(

1

2

3 v

M

M

M
D v &                        (34) 

where the Mandel stress, M , and the norm • can be expressed, respectively, as  

   Tee RRM −− σ= 1eJ                  (35) 

   ••=• :
2

3
                        (36) 

The evolution equation for vF  is then represented by 

 vvv FDF =& , vvγ ND v &=   (37) 

where )(dev/)(dev MMvN =  is the direction of viscous flow, and vγ& is a viscous shear 

strain rate. The term 
η

ψ̂ v

∂
∂

in Eq. (35) is defined in Appendix (B). 

• Heat equation 

The heat equation (written in the intermediate configuration) given by Eq. (23) can be 

simplified into: 
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In this equation, different physical mechanisms were illustrated: the heat conduction, the 

thermo-elasticity, the internal work and the thermo-inelastic dissipations. The thermo-elastic 

processes are reversible and induce the cooling of the polymer, whereas dissipative processes 

are irreversible and cause the self-heating of the polymer. 

 

Using Eq. (32) with Eq. (38), the previous equation can also be written as 
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where 
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Finally, the heat equation can be expressed as 
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3.4 Thermomechanical coupling 

The heat equation is applied to calculate the temperature from a computed stress. As a first 

step, the model was implemented in MATLAB and calculations were made for the specimen 
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thickness (1D) as shown in Fig.14. Only heat conduction expression and surface heat 

convection equation were considered. The heat equation can be rewritten using Eq. (14) as 

( ) ( )( ) v*
S

*
C

e*
S

*
C2

2

th D:M  ww)1(d:τ ww
x

T
TC +β−+β+++

∂
∂λ=ρ &      (43) 

where λ  is the heat conductivity (equal to 0.3 in the case of PA66). The surface heat 

convection equation is considered as a boundary condition for the thermal resolution: 

( )∞−=− TTh
dx

dT
k  Neumann condition      (44) 

where h is the thermal convection coefficient (classically equal to 10 for a vertical surface 

with natural air flow at temperatures close to room temperature), and ∞T  is the applied 

temperature. 

 

Fig.14. 1D calculation of the temperature field in the sample thickness 

 

3.5 Tensile and shear correction coefficient 

Polymeric materials exhibit a strong dependence to the stress state. A study was initially 

performed to characterize which model parameter will be the most influent in capturing the 

material stress state dependence. We observed that the model was able to fit the tensile and 

shear tests by mainly modifying the parameter *
0pz . Note that *

0pz  controls the kinetic of 
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disentanglement. Such kinetic should be different under tension and shear loading. Therefore 

to account for the stress state dependence, we assumed the following form for *0pz : 

d:z:d p3

2
**

0 Tp az =     (45) 
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where d is the velocity gradient, pz  is a tensorial expression dependent of the parameter 0pz  

(fitted from tensile tests) and of χ, a correction coefficient (fitted from shear tests), 

 

3.6. Model parameters 

The main parameters { }αβ ,z,z,,N,N 1p
*

0p
*
s

*
c  were summarized below: 

• 
*
cN : The density per unit volume of crosslinking or fixed nodes 

• 
*
sN : The density per unit volume of entanglement points or sliding nodes 

• α : The limit of chain extensibility 

• 0pz , 1pz : Evolution parameters of the sliding potential between the entanglement 

points 

• β : Taylor-Quinney coefficient 

Moreover, six material parameters characteristic of the polyamide 6.6 were used: 
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• The WLF law parameters 
1C  and 

2C  

• 0η = 0.2343 the theoretical value minimizing free energy of molecular system [16] 

• 0ρ : the material density 

• thC : the heat capacity 

• h : the thermal convection coefficient 

To account for the equivalent strain rate notion, eqTa ε&  defined in Section 2.5, some of these 

parameters needed to be refined. Thus, we have assumed that the parameters (
*
cN , 

*
sN , β) 

follows a sigmoid function. This choice was motivated by the range of investigated 

experimental strain rates and temperatures that crosses the alpha transition temperature of the 

material and leads to a wide variety of mechanical behavior. Thus, following the storage 

modulus evolution with the temperature observed in DMA (Fig. 8), a sigmoid function was 

used to capture the important variation of mechanical behavior that characterizes the polymer 

from its glassy to its rubbery state. Then we assumed the following expressions for (
*
cN , 

*
sN , β

): 
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where { }mNNNN sscc ,,,,, *
1

*
0
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1

*
0 τ  are material parameters. 

 ( ) 













+
+=

− m
eqTa 210

1

2

ετ
βββ

&
    (48) 

where { }10 ,ββ  are material parameters. *
0pz  is defined in case of tension loading as 
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 ( ) eqTpeqTp azaz εε && ⋅= 0
*
0      

 (49) 

where 0pz  is a material parameter. 

  ( ) αεα =eqTa &         (50) 

where α  is a material parameter. Finally a total of eleven parameters is needed for the 

model. The identification of the parameters with the equivalent strain rate can be found in 

Appendix C.  

 

4 Comparison model-experiments 
 
The model was implemented in MATLAB®. The implementation details can be found in 

Appendix D. 

 
4.1. Parameters identification on tensile and shear tests 

An identification procedure based on an inverse method was set up to calibrate the model 

parameters{ }χββτα ,,,,,,,,,,, 1010
*
1

*
0

*
1

*
0 ppsscc zzmNNNN . Fig.15a displays the experimental 

testing conditions ( eqTa ε& ,T) available in the PA66 experimental database (Section 2) in term 

of  stress-strain master curves for tensile and shear loading conditions. Fig. 15b displays the 

three tensile and three shear conditions (corresponding to six equivalent strain rate eqTa ε& ) 

used to fit the parameters. 
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Fig.15. (a) The different testing conditions (

eqTa ε& ,T) available in this study for the tensile and shear conditions. 

(b) Presentation of the six conditions used to fit the model parameters. 

 

A cost function (Eq. 51) was defined using a classical “mean squared” expression between the 

computed and the measured stress and temperature. The fitting algorithm was decomposed 

into two steps: i) first a kriging method (Roux and Bouchard (2013)) was used to build a 

response surface in order to select the best set of initial parameters; ii) then a simplex method 

was used to obtain the optimal parameters values. This last method consists to identify for a 

number of selected tests a set of parameters x  minimizing the cost function S described 

below: 
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In Eq. 51, the same weight is chosen between thermal and mechanical information (i.e. 

1therm
i

mech
i =ω=ω ). After approximately 500 increments with the simplex method, the 

identification converged to an optimal set of parameters with an error of 1,26 % with the 

experimental response. The identified parameters values are reported in Table 1. 
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Table.1 
Parameters identification for PA66 based on the testing conditions described in Fig. 18 

Parameters Identified Values Units 

0CN  
3.5794 107 m-3 

1CN  5.0974 108 m-3 

0SN  1.8275 107 m-3 

1SN  
2.7971 107 m-3 

0β  
7.532 10-1 - 

1β  
1.368 10-1 - 

m 3.04 10-2 -  

τ  1.4503 s 

0pz  4.08898 101 - 

1pz  1.0 - 

α  5.3 10-3 - 

h  1.57689 101 W.m-2.K-1 

χ 
7.522 10-1 - 
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Fig.16. Comparison model experiments for the six sets of conditions used to fit the model parameters for tensile 

conditions (8) (9) (10) and for shear conditions (14) (15) (16) as related in Fig. 18. 
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Fig. 16 displays the comparison between the numerical and experimental results for the model 

parameters. Fig. 16 (8) to (10) depicts results for tensile loading while Fig. 16 (14) to (16) 

displays results for shear loading. The computations were performed using parameters 

reported in Table 1. In tension, the model response shows good agreement with the 

experimental testing. The model captures the viscoelastic/viscoplastic behavior of the material 

for different strain path (load-unload) as well as the material cooling/self-heating. Regarding 

shear loading, we can notice more discrepancy. The model seems to have more difficulties 

capturing the initial slope of the true stress-strain curve as well as capturing accurately the 

temperature evolution in the material. However the main trend in term of thermomechanical 

coupling is captured. Further investigation would need to be performed to improve the 

material stress state dependence of the model. 

 

4.2. Model validation 
 
Fig. 17 and Fig. 18 display the model prediction (with the set of parameters reported in Table 

1) on the overall material database. We can notice that the model response is in good 

agreement with the different tensile tests performed at different strain rates and temperatures. 

The mechanical response of the material for loading/unloading path was accurately captured 

by the model as well as the self-cooling and self-heating of the material during loading. As 

noticed in the previous section, more discrepancy was observed for shear loading but again 

the trend was well reproduced. Such discrepancies could come for differences of boundary 

conditions assumed for the model and those observed experimentally. 

However, we can notice that this model characterized by only twelve parameters 

{ }χββτα ,,,,,,,,,,, 1010
*
1

*
0

*
1

*
0 ppsscc zzmNNNN  and written in term of equivalent strain rate was 

able to capture the mechanical behavior of PA6.6 over a wide range of strain rates (ranging 
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from 10-4 s-1 to 2.4 s-1) and temperatures (ranging from -5°C to 60°C). An error of 4,12 % was 

observed between experimental and numerical curves on the overall loading conditions. 

  

Fig.17. Model validation for all experimental tensile conditions. 
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Fig.18. Model validation for all experimental shear conditions. 

 
6 Conclusions 

A thermomechanical constitutive model, based on the approach proposed by (Billon, 

2012) for amorphous rubbery polymers was extended to three-dimensional constitutive 

equations and framed in a thermodynamic framework. The model was applied to a semi-

crystalline polyamide polymer, PA66. The mechanical behavior of the PA66 was investigated 

through tensile and shear loading testing performed at different strain rates and temperatures. 

The mechanical tests were coupled with synchronized digital image correlation and infrared 

measurements device with the purpose of capturing the time, temperature, and stress state 

dependence, as well as the complex thermomechanical coupling exhibited by the polymer 

under large deformation. A notion of equivalent strain rate based on the time-temperature 
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superposition was also used to decrease the number of experimental testing needed for the 

material characterization and the model calibration. The model based on the Edward Vilgis 

theory (1986) and accounting for chains network reorganization under external loading 

through the introduction of an evolution equation for the internal state variable, η, was 

validated on the experimental mechanical and temperature measurements under tension and 

shear conditions. Good agreement was observed between model response and experimental 

results. Further investigations are needed to improve the stress state dependence of the model 

as well as its implementation in FE code to fully predict the thermomechanical behavior of the 

material. 
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Appendix C 

Figure C1 displays: i) the value of the parameters { }αβ ,,,, 0
**

psc zNN  identified for each 

experimental condition in tensile tests (i.e. for each equivalent strain-rate eqTa ε&  selected on 

the master curves described in Fig.13(a)) and; ii) the evolution of { }αβ ,,,, 0
**

psc zNN  with the 

equivalent strain rate given by Eqs. 47 to 50. 

 
Fig.C1. Comparison between the parameter values identified for each tensile stress-strain master curves (red 

dots) and evolution of these parameters as defined by Eqs. 46 to 49 (blue line). 
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Appendix D 
 

The model was implemented in MATLAB® following the schema described in Fig. D1. The 

η  variable was defined as the driver of the mechanical model. In a first step, the computation 

and experimental conditions were initialized, then a Newton-Raphson algorithm was used to 

determine η  with a criterion based on the inelastic strain-rate tensor value. 

 

Fig.D1. Schematic representation of the thermo-mechanical model implementation. 

 

The heat equation was solved using a finite difference θ-method, where we have defined a 

number of elements, Nx, in the sample thickness. The model is well conditioned and 

converges quickly to the optimal value of η . Results are presented in Fig. D2. 

Fig. D2 displays the model response in term of stress-strain curve and temperature evolution 

during a tensile loading for the experimental condition (9) (ε&= 1.83 10-2 s-1, T= 21.6°C) as 

displayed in Fig. 13 (a). Fig.D2a gives a comparison between the experimental and numerical 

stress-strain curves. The model correctly predicts the polymer mechanical behavior under 
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large deformation and captures the viscoelastic/viscoplastic behavior for a load-unload strain 

path. We can notice that the model slightly overestimates the elastic modulus as well as the 

transition between elastic and inelastic behavior. Fig. D2b gives a comparison between the 

temperature-strain curve measured experimentally on the sample surface and the model 

prediction. The model response is in good agreement with the material self-heating induced 

by the thermo-mechanical coupling evolving during the deformation. However, we observe 

that the model overestimates the material self-heating during unloading. Fig. D2c shows two 

numerical results: the temperature-strain response at the sample surface and in the bulk of the 

material. Due to the small thickness of the specimen, the thermal gradient in the thickness 

stays limited. Such temperature evolution in the thickness is described in Fig. D2d. 

 

Fig.D2. Model predictions: (a) tensile stress-strain curve for ε&= 1.83 10-2 s-1, T= 21.6°C,
eqTa ε& =8.04 10-2 s-1  ; (b) 

temperature-strain curve at the sample surface; (c) numerical prediction of the temperature at the surface and 

core sample; (d) evolution of the predicted temperature field in the sample thickness. 
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